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Abstract

Research is being performed to examine the applicability of parallel direct block-diagonal-

bordered sparse matrix solvers for irregular sparse matrix problems derived from the elec-

trical power systems community. Moreover, we believe that this research also has utility for

irregular sparse matrix factorization for applications where the data is hierarchical. Direct

block-diagonal-bordered sparse matrix algorithms exhibit distinct advantages when com-

pared to current general parallel direct sparse matrix solvers. Task assignments for numeri-

cal factorization on distributed-memory multi-processors depend only on the assignment of

independent blocks to processors and the processor assignments of data in the last diago-

nal block. In addition, data communications are signi�cantly reduced and those remaining

communications are generally uniform and structured. Parallel block-diagonal-bordered

sparse matrix algorithms require modi�cations to the traditional sparse matrix preprocess-

ing phase that include an explicit load balancing step coupled to a specialized ordering step

to uniformly distribute the workload throughout a distributed-memory multi-processor. In

this paper, we propose a new preprocessing phase that includes specialized ordering and

load balancing techniques, we describe in detail the mathematics of block-diagonal-bordered

sparse matrix solvers, and we present implementation details and empirical parallel perfor-

mance data for a prototype direct block-diagonal-bordered sparse matrix solver running on

a Thinking Machines CM-5 using message passing.



1 Introduction

Solving sparse linear systems practically dominates scienti�c computing [15], but the perfor-

mance of sparse matrix solvers have tended to trail behind their dense matrix counterparts

[12]. Parallel sparse matrix solver performance generally is less than similar dense matrix

solvers even though there is more inherent parallelism in sparse matrix algorithms than

dense matrix algorithms. The limited success with e�cient sparse matrix solvers is not

surprising, because general sparse matrix solvers require more complicated algorithms and

signi�cantly more complicated data structures that require irregular memory reference pat-

terns. The irregular nature of these problems has aggravated the problems of implementing

sparse matrix solvers on vector or parallel architectures: e�cient algorithms for these classes

of machines require regularity in available data vector lengths and in interprocessor commu-

nications patterns. The greater complexity and irregularity of sparse matrix computations

make this �eld an area with active research as parallel sparse matrix solvers are developed

and optimized for particular applications.

Our research has focused on applications from the electrical power systems community

where portions of the sparse matrix are naturally in block-diagonal-bordered form and the

remaining portions of the sparse matrix can be ordered to yield additional independent

diagonal blocks and reduce the number of equations in the borders. These naturally block-

bordered-diagonal sparse matrices occur when simulating power systems in order to examine

the stability of electrical power system generators when a transient-type event occurs [1, 2,

6]. Given adequate computing power, electrical power system transient stability analysis

could be incorporated into real-time control software for electrical power utilities, and a

detailed view of an unfolding power grid failure could be provided to operators so that

they could rapidly make informed, proactive decisions to minimize the extend of cascading

power system network and generator failures. As a real-time grand challenge computing

application, transient stability analysis would require a fast, e�cient parallel sparse matrix

solver.

These matrix forms remain static for extended periods of time because the sparse matri-

ces represent actual electrical power distribution networks and electrical generators. Mod-

i�cations to the electrical distribution networks are costly and represent the addition or

removal of actual high voltage electrical distribution lines. Meanwhile, generators usually

have high startup and shutdown costs, so they are brought on-line for periods usually lasting

a minimum of several hours. Consequently, sparse matrices representing electrical power

systems remain static for a su�ciently long period of time to justify the additional e�ort

for special matrix ordering to minimize the number of �llin and the number of calculations

and also justify the additional e�ort for balancing the number of calculations on individual
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processors in order to ensure e�cient use of parallel computing resources.

The work presented in this paper could signi�cantly improve performance of electrical

power systems transient stability analysis and also electrical power systems load 
ow anal-

ysis. Moreover, we believe that this research also has utility beyond this application and

the techniques developed in this work can readily be extended to develop e�cient parallel

direct solvers for other irregular, hierarchical sparse matrices encountered in other scienti�c

and engineering applications.

1.1 Parallel Direct Block-Diagonal-Bordered Sparse Matrix Solvers

Research is in progress to examine e�cient parallel algorithms for the direct solution of the

sparse systems of equations

Ax = b; (1)

when the sparse block-diagonal-bordered A matrix is factored into upper and lower trian-

gular matrices, e.g., A = LU . Forward reduction and backward substitution steps are then

required to solve for the vector x in the initial system of linear equations. The parallel direct

solution of sparse matrices in block-diagonal-bordered form is performed in three distinct

steps:

1. factorization,

� factorization of the independent blocks,

� updates to the last block using data from the borders,

� factorization of the last block,

2. forward reduction,

� reduction of the independent blocks,

� updates using data from the borders,

� reduction of the last block,

3. backward substitution,

� substitution of the last block,

� broadcast of data to the processors,

� substitution of the independent blocks.

Each step involves highly parallel operations on data in the independent blocks, operations

on data in the last block, and operations that couple the data in the independent blocks

to data in the last block. This step involves data communications in algorithms developed
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Figure 1: Block Bordered Diagonal Form Sparse Matrix Solution Steps

for distributed-memory multi-processor architectures. Figure 1 illustrates both the fac-

torization steps and the reduction/substitution steps for a block-diagonal-bordered sparse

matrix.

LU factorization of block-diagonal-bordered sparse matrices has signi�cant advantages

over general sparse matrix solvers. First, for all but the last block, every processor is

assigned all the data required for calculations performed by that processor. Second, all

calculations in the independent blocks and borders can be performed in parallel, without

requiring communications to fetch data to perform updates. The LU factorization of the

diagonal blocks can be performed in parallel without requiring interprocessor communica-

tions, and the numerical updates of the last block utilizing data in the borders, can also be

performed in parallel. For this step, communications are only required to send partial sums

of updates to the appropriate processors that possess data values in the last block of the

matrix. Interprocessor communications are signi�cantly reduced and are now also uniform

and structured. Finally, the last block is factored in the most e�cient manner depending on

the density of this sub-matrix. The factorization steps are illustrated in part (a) of �gure 1.

After the numerical factorization of the block-diagonal-bordered matrix, most of the

calculations in the remaining forward reduction and backward substitution phases can also

be performed in parallel without requiring communications. The reduction/substitution

steps are illustrated in part (b) of �gure 1. The forward reduction stage can be performed in
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parallel until the last block is reduced. Communications are required to accumulate partial

sums of products as the border equations are reduced. Likewise, most of the calculations

in the backward substitution phase can be calculated in a highly parallel manner after the

substitution is performed for the last block, and the results are broadcast to all processors.

Block-diagonal-bordered matrix forms o�er signi�cant advantages when solving sparse

linear systems of equations. In a manner dissimilar to sparse linear solvers described in

[7, 8, 9, 12, 23, 24, 25, 26, 27, 31], the task assignments for parallel numerical factorization

of a block-diagonal-bordered matrix depend only on the assignment of independent blocks

to processors and the processor assignments of data in the last diagonal block. However,

additional computational work must be performed in the initial stages that determine which

independent blocks are assigned to particular processors.

Block-diagonal-bordered sparse matrix algorithms require modi�cations to the normal

preprocessing phase. Each of the numerous papers referenced above use the paradigm to

order the sparse matrix and then perform symbolic factorization in order to determine the

locations of all �llin values so that static data structures can be utilized for maximum

e�ciency when performing numerical factorization. We propose modifying this commonly

used sparse matrix preprocessing phase to include an explicit load balancing step coupled

to the ordering step so that the workload is uniformly distributed throughout a distributed-

memory multi-processor and parallel algorithms make e�cient use of the computational

resources.

To transform a sparse matrix into block-diagonal-bordered form requires relatively so-

phisticated ordering techniques, and also requires that load balancing be performed based

on the number of calculations in each independent block. Due to the poor correlation of the

number of rows or columns in a sparse matrix independent block with the workload, the

actual number of calculations in each independent block must be determined in a pseudo

factorization step during the preprocessing phase. Pseudo factorization also determines the

location of all �llin so that e�cient static data structures can be utilized when pivoting for

numerical stability is not required. The three-step preprocessing phase required for e�cient

factorization of this matrix form will be more computationally intensive than the simple

algorithms required to prepare a matrix for numerical factorization presented in the recent

literature. The additional processing requirements for these steps limit the applicability

of this technique to repetitive solutions of static network structures, where the additional

e�ort can be amortized over multiple solutions of similar linear systems.
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1.2 Overview

In this paper, we describe both sequential and parallel variants of the LU factorization

algorithm used to solve the system of linear equations Ax = b, where A is a sparse matrix in

block-diagonal-bordered form. We describe methods to transform a general sparse matrix

to block-diagonal-bordered form and we also describe an implementation of the parallel

block-diagonal-bordered sparse matrix solver on the Thinking Machines CM-5 using explicit

message passing. In section 2 of this paper, we describe in detail the mathematics of sparse

LU factorization including the precedence relationships in the algorithms, the two step

process presented in recent literature to preprocess a sparse matrix before performing sparse

Choleski factorization, and a version of Crout's LU factorization algorithm for sparse matrix

factorization. This section includes a general discussion of forward reduction and backward

substitution, and also includes a survey of the sparse matrix literature in order to place this

work in context with other research.

In section 3, we propose a new three-step preprocessing phase to replace the present two-

step preprocessing phase. We describe the specialized ordering, pseudo factorization, and

load balancing steps required for e�cient parallel algorithm implementations on distributed-

memory multi-processors. This preprocessing step is the key to the e�cient use of block-

diagonal-bordered sparse matrix algorithms for highly irregular sparse matrices. In sec-

tion 4, we describe the options available for the LU factorization of block-diagonal-bordered

matrices that are dependent on the precedence relationships inherent in the algorithm. In

section 5, we describe both a sequential block-diagonal-bordered sparse matrix algorithm

and a parallel version implemented on the CM-5. In section 6, we present performance

results when testing the software implementations on sample matrices. These data include

measured speedup and e�ciency as a function of the order of the matrix for both the LU fac-

torization step and the forward reduction/backward substitution steps. Lastly, in section 7,

we present our conclusions and brie
y describe future research.

2 Background

Consider the direct solution of the linear system

Ax = b; (2)

where A is an N�N sparse matrix. For this research, it has been assumed that this matrix

is neither symmetric nor position symmetric, however, the algorithms can be extended to

Choleski factorization of symmetric positive de�nite matrices with minimal modi�cations

to the mathematics or the software implementation described in section 5. Additional

discussions on the state of the literature for Choleski factorization are presented below.
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The sparse matrix A can be numerically factored into two separate triangular matrices, one

sparse matrix being lower triangular, L, and the other sparse matrix being upper triangular,

U :

Ax = LUx = b; (3)

A lower triangular matrix, L, has all zeros above the diagonal and an upper triangular

matrix, U , has all zeros below the diagonal. Triangular linear systems can be readily solved

numerically by solving for the �rst value in the triangular linear system and substituting

that value into subsequent equations. This procedure is repeated for all equations in the

linear system.

2.1 LU Factorization

LU factorization is a variant of Gaussian elimination, and has numerous variants that

depend on the order of calculations in addition to other implementation factors. There

any numerous algorithms for LU factorization of dense matrices, that have three nested for

loops around the statement:

ai;j = ai;j �
(ai;k � ak;j)

ak;k
: (4)

In this statement, the indices run:

� k - along the diagonal,

� i - down the rows,

� j - across the columns.

Sparse matrix LU factorization can mirror any dense LU factorization algorithm, although

generally a sparse matrix algorithm has only one explicit for loop, which can be for any

single index in the dense case. The remaining indices are examined only for non-zero values

in the original matrix or for non-zero values that will occur from �llin in the matrix. Sparse

matrix �llin occurs when a value that formally was zero becomes non-zero in the process

of factoring the matrix. Fillin can be controlled in sparse LU factorization of a matrix by

ordering the matrix before factorization [5]. Fillin is discussed in greater detail below.

The most signi�cant aspect of parallel sparse LU factorization is that the sparsity struc-

ture can be exploited to o�er more parallelism than is available with dense matrix solvers.

Parallelism in dense matrix factorization is achieved by distributing the data in a manner

that the calculations in one of the for loops in equation 4 can be performed in parallel.

Due to precedence relationships in the algorithm, this is generally the inner most for loop.

Sparse factorization algorithms have inadequate calculations using the inner most index for

e�cient parallelism; however, sparse matrices have additional parallelism as a result of the
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nature of the data and the precedence rules governing the order of calculations. Instead of

just parallelizing the inner most for loop as in parallel dense matrix factorization, entire

independent portions of a sparse matrix can be factored in parallel | especially when the

sparse matrix has been ordered into block-diagonal-bordered form.

2.2 Precedence in LU Factorization

Parallel implementations of direct linear solvers must cope with the precedence relationships

that exist in the order of calculations. Before calculations can be completed on a row

or column, non-zero values from previous rows and columns must be available and all

calculations in those rows and columns must be completed. Precedence relationships in

the calculations cause frequent synchronization in parallel algorithms, which reduce the

granularity in the amount of available calculations making it more di�cult to uniformly

distribute processing load.

Varying the order of the for loops in a dense LU factorization causes di�erent algorithms:

some LU factorization algorithms o�er more available parallelism than others. One class of

LU factorization algorithms is referred to as fan-in algorithms, because data from previous

rows or columns are sent inward to the column and row being modi�ed. This algorithm

type is illustrated in �gure 2, in addition to the fan-out factorization technique. For fan-out

factorization, data from one row or column can be used in the modi�cation step for all

subsequent rows and columns. However, a row or column is not completely factored until

all previous rows and columns have been modi�ed. In order to develop an e�cient parallel

block-diagonal-bordered LU factorization algorithm, a hybrid combination of both fan-in

and fan-out precedence relations have been included in the same algorithm.

For dense matrix fan-in algorithms, only a single column or row can be modi�ed at any

time; however, multiple rows or columns can be modi�ed concurrently in sparse matrices

due to the fact that multiple rows and columns may be independent of other rows and

columns. For a fan-in algorithm, the block-diagonal-bordered sparse matrix form presented

in �gure 1 clearly illustrates column and row independence for the independent diagonal

blocks. There simply is no data in previous rows/columns to be included in the calculations.

This phenomenon will be described in greater detail in section 3.

The goals of this research are to develop highly e�cient, scalable parallel sparse LU

factorization algorithms. To accomplish this goal, we propose rede�ning the matrix order-

ing phase to more e�ciently exploit mutually independent calculations while signi�cantly

reducing concerns with precedence throughout as many of the calculations in a parallel

implementation as possible. In this work, we plan to minimize the e�ects of precedence in

block-diagonal-bordered sparse matrix algorithms by localizing calculations in independent
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Figure 2: Fan-in and Fan-out LU Factorization Algorithms for Dense Matrices

sub-matrices that are spread throughout a multi-processor.

2.3 Crout's LU Factorization Algorithm

This research is based upon a factorization algorithm commonly attributed to Crout [5, 13].

We modify it to yield the general sequential sparse factorization algorithm presented in

�gure 3.

Element level dependencies for each of the two steps of this algorithm are illustrated

in �gure 4 for a general sparse matrix. To update a non-zero value Ai;k in the lower

triangular portion of the matrix (L), non-zero column elements Aj;k in the upper triangular

portion of the matrix are multiplied with corresponding non-zero row elements Ai;j in the

lower triangular portion of the matrix. The second update step modi�es values Ak;j in the

upper triangular portion of the matrix (U) by multiplying non-zero lower triangular row

elements Ak;i by corresponding upper triangular column elements Ai;j . The LU matrix is

over-speci�ed so the values on the diagonal of either the upper or lower triangular matrix

portions can be set equal to one [5, 13]. In Crout's implementation, the diagonal values of

L are stored in the original diagonal matrix positions, while the diagonal values of U are

all equal to 1 but never explicitly stored.
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for k = 1 to N /* for all elements along the diagonal */

/* lower triangular */

for each i 2 [k;N ]

for each j 2 [1; k� 1] such that Ai;j 6= 0 and Aj;k 6= 0

Ai;k  Ai;k � (Ai;j �Aj;k)

endfor

endfor

/* upper triangular */

for each j 2 [k + 1; N ]

for each i 2 [1; k� 1] such that Ak;i 6= 0 and Ai;j 6= 0

Ak;j  Ak;j � (Ak;i �Ai;j)

endfor

Ak;j  (Ak;j=Ak;k)

endfor

endfor

Figure 3: Sparse Crout LU Factorization

(a) Lower Triangular Matrix Update (b) Upper Triangular Matrix Update

j

COLUMN
j

k,j

ROW ROW

ROW
i

COLUMN
k

Ai,j

Ai,k

Ak,k

A j,k
i

j

i,jA

ROW
k

COLUMN
i

COLUMN

A

A

k,i

k,k A

L

U

L

U

Figure 4: Element Level Dependencies for General Sparse LU Factorization
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2.4 Fillin

It is important to note that in this implementation, L and U can reuse the memory from the

initial sparse matrix A, as long as provisions for storage of �llin values are provided. This

algorithm assumes no pivoting is required to ensure numerical stability. Fillin results when

either Ai;j and Aj;k or Ak;i and Ai;j are both non-zero and Ai;k or Ak;j are initially equal to

zero. The amount of �llin in the factorization of a sparse matrix is highly dependent on the

order in which calculations are performed. There are many ways to order a sparse matrix

to reduce the amount of �llin [5, 9, 12]. Two noteworthy ordering techniques are minimum

degree ordering and nested dissection. The foundation for minimum degree ordering is

based in graph theory, which shows that �llin can be minimized by �rst eliminating rows

and columns that have the fewest number of non-zero values, thus minimizing early �llin,

which will hopefully minimize �llin later in the factorization. Minimum degree ordering is

a greedy algorithm that is far from optimal because no good tie breaking rules exist and

numerous rows and columns have equal numbers of elements. Nested dissection recursively

breaks a matrix into a block-diagonal-bordered form where �llin is limited by the resulting

structure. This technique is marginally e�ective for irregular networks or sparsity patterns,

although it is considered the theoretical benchmark to which the quality of orderings are

compared [12]. We have developed other ordering techniques for highly irregular matrices

[14] that

� partition the matrix into mutually independent blocks,

� balance the load for multi-processors.

This research is introduced later in this paper.

2.5 Symbolic Factorization and Static Data Structures

Sparse matrices have only a small percentage of non-zero values, consequently, they are

stored in an implicit form, where only non-zero values and corresponding row and column

location identi�ers are stored. The most e�cient sparse matrix algorithms, that do not

require pivoting to maintain numerical stability, use implicit static data structures to store

the matrix, in order to reduce the overhead of adding data to dynamic data structures.

Static data structures require that all locations of all non-zero values be known when al-

locating memory for the data structures. This includes the location of all �llin. Example

static data structures are the CSC or compressed storage of columns format [10, 24], or C

language data structures that store the non-zero values, row and column location identi�ers

for a speci�c value, (i; j), and possibly additional pointers to subsequent values in columns

or rows.
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A naive approach to determine �llin in a sparse matrix when performing LU factor-

ization or Choleski factorization is to simply symbolically duplicate the operations of the

factorization [12]. Such a naive algorithm would require the same time complexity as numer-

ical factorization, O(Nm), where 1:2 < m < 1:5 for many sparse matrix applications [18].

However, it is possible to reduce the time complexity of symbolic factorization for set-based

algorithms to less than O(�(L)), where �(L) represents the number of non-zero values in the

factored matrix. References [9, 12] each contain excellent discussions of symbolic factoriza-

tion for Choleski factorization. For asymmetric matrices, if the data is diagonally dominant

and there are no requirements to use pivoting or partial-pivoting to maintain numerical

stability of the calculations, then an algorithm based on symmetric symbolic factorization

could be implemented to determine the location of all �llin in both the upper and lower

triangular portions of the matrix. If pivoting is required to maintain numerical stability

when factoring a sparse matrix, non-static data structures will be required because pivoting

dynamically modi�es the sparsity structure of a matrix.

2.6 Forward Reduction/Backward Substitution

After a matrix A is factored into the two matrices L and U in

Ax = LUx = b; (5)

the solution of the vector x for a given b vector follows a two step process. First, there is

the forward reduction step where

Ly = b (6)

is solved for a temporary working vector y, and then the solution for x is obtained by the

backward substitution step

Ux = y: (7)

LU factored matrices can be reused many times when solving for multiple right-hand side

bm vectors in the linear equation Axm = bm. It is common practice in iterative solutions of

non-linear equations using Newton's method to evaluate the linear system in the Jacobian

only every k (k � 1) iterations, because of the computational complexity to solve the linear

system. Consequently, e�cient parallel implementations of forward reduction and backward

substitution are required even though the complexity of these steps are signi�cantly less than

the workload to factor the matrix.

The sequential version of forward reduction and backward substitution are traditionally

viewed as straight forward implementations of loops to directly solve for yi and xi in the

equations

yi =
(bi � (y1 � Li;1 + � � �+ y(i�1) � Li;(i�1)))

Li;i
; (8)
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and

xi = (yi � (xN � Ui;N + � � �+ x(i+1) � Ui;(i+1))): (9)

In these equations, the values Li;j and Ui;j are the lower and upper triangular matrices re-

spectively, that are generated by the LU factorization step. For L and U matrices generated

by Crout's factorization algorithm, equation 9 does not require a �nal division operation

because the all values Ui;i are equal to 1. However, like factorization, there are multiple

distinct ways to manipulate the data in the nested for loops. Instead of performing reduc-

tion and substitution by rows using equation 8 and equation 9, the values yj and xj can be

calculated using bj and yj respectively in the formulas

yj = (bj=Li;i); (10)

and

xj = yj : (11)

Then the entire jth column in forward reduction or backward substitution respectively can

be updated using the formulas

bi = (bi � (yj � Li;j)); 8i > j; (12)

and

yi = (yi � (xj � Ui;j)); 8i < j: (13)

After the entire jth column has been updated, the values of y(j+1) and x(j+1) can be calcu-

lated and this procedure iteratively repeated for all columns.

Figure 5 presents a comparison of row and sub-matrix reduction/substitution. This

�gure illustrates the loop order for the two algorithm types by the large arrows, while

smaller arrows depict the calculation order. For row reduction/substitution, the calculations

are constrained to within rows, after which a value of yi or xi is calculated. However, for

sub-matrix reduction/substitution, the value of yj or xj is calculated �rst, then all values

remaining in the sub-matrix are used to update bi and yi values.

2.7 A Survey of the Literature

Signi�cant research e�ort has been expended to examine parallel matrix solvers | for both

dense and sparse matrices. Numerous papers have documented research on parallel dense

matrix solvers [4, 29, 30], and these articles illustrate that good e�ciency is possible when

solving dense matrices on multi-processor computers. The calculation time complexity of

dense matrix LU factorization is O(N3), and there are su�cient, regular calculations for

good parallel algorithm performance. Some implementations are better than others [29, 30],

nevertheless, performance is deterministic for:
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Figure 5: Alternative Forward Reduction/Backward Substitution Schemes

� the algorithm,

� the multi-processor architecture,

� the number of processors,

� the matrix size.

Direct sparse matrix solvers, on the other hand, have computational complexity signi�-

cantly less than O(N2), and some papers refer to the complexity of particular applications

ranging from O(N1:2) to O(N1:5) [18]. With signi�cantly less calculations than dense di-

rect solvers, and lacking uniform, organized communications patterns, direct parallel sparse

matrix solvers often require detailed knowledge of the application to permit e�cient imple-

mentations. The greater complexity and irregularity of sparse matrix computations make

this �eld an area with active research as parallel sparse matrix solvers are developed and

optimized for particular applications.

The basics for general sequential direct sparse matrix solvers, including numerical sta-

bility and ordering techniques to limit �llin are presented in [5]. There are many papers

that examine sparse matrix algorithms for multi-processors and vector computers, however,

there are limited numbers of papers describing research into parallel non-symmetric direct

sparse matrix solvers. A concurrent non-symmetric sparse solver was developed as part of

a petrochemical processing simulation [21]. Frontal or multi-frontal techniques o�er some

promise for algorithms designed for vector and vector computer-based multi-processors [4].

General sparse matrix solvers store data in compressed implicit data structures. In order
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to use vector processors in an e�ective manner, the hardware must have indirect addressing

capabilities or the data must be processed with vector scatter and gather operations.

Meanwhile, the bulk of recent research into parallel direct sparse matrix techniques has

centered around symmetric positive de�nite matrices, and implementations of Choleski fac-

torization. A signi�cant number of papers concerning parallel Choleski factorization for

symmetric positive de�nite matrices have been published recently [7, 8, 9, 12]. These pa-

pers have thoroughly examined many aspects of the parallel direct sparse matrix solver

implementations, symbolic factorization, and appropriate data structures. Techniques to

improve interprocessor communications using block partitioning methods have been exam-

ined in [24, 25, 26, 27]. Techniques for sparse Choleski factorization have even been de-

veloped for single-instruction-multiple-data (SIMD) computers like the Thinking Machines

CM-1 and the MasPar MPP [15]. This discussion is by no means an exhaustive literature

survey, although it does represent a signi�cant portion of the direct sparse matrix research

performed for vector and multi-processor computers.

References [7, 8, 9, 12, 24, 25, 26, 27] have kept with a general four step paradigm for

parallel sparse Choleski factorization:

� order the matrix to minimize �llin,

� symbolic factorization to identify �llin and set up static data structures,

� numerical factorization,

� forward reduction/backward substitution.

In this paper, we break from this four step process and introduce a process that is applicable

to highly irregular sparse matrices. We propose a new three-step preprocessing phase to

replace the two-step preprocessing phase of ordering and symbolic factorization. While the

original development of our method was directed toward applications from the electrical

power systems community, it has wider applicability to many irregular sparse matrix appli-

cations. Because of the irregular nature of the sparse matrices, explicit load balancing of

the workload among the processors is required.

The direct matrix technique presented in this paper may even compete with other par-

allel sparse matrix solvers for regular problems, because task assignments for numerical

factorization of a block-diagonal-bordered matrix depend only on the assignment of inde-

pendent blocks to processors and the processor assignments of data in the last diagonal

block. Techniques based on block-diagonal-bordered sparse matrices have absolutely no

task organization graph, because the entire problem of task assignments are performed in

an initial stage that performs load-balancing, and all data is available on the processor for
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calculations until the solution of the last diagonal block in the matrix. Communications are

also more uniform and structured.

3 A New Three-step Preprocess Phase

The primary goal of this paper is to describe the signi�cant bene�ts of using block-diagonal-

bordered sparse matrices when performing sparse LU factorization in parallel on distributed-

memory multi-processors. For parallel sparse block-diagonal-bordered matrix algorithms to

be e�cient when factoring irregular sparse matrices, the following three step preprocessing

phase must be performed:

� order into block-diagonal-bordered form,

� pseudo factor to identify both �llin and the number of calculations for independent

blocks, and

� load balance to uniformly distribute the calculations among processors.

The �rst step determines the block-diagonal-bordered form; the second step determines the

locations of �llin values for static data structures and also determines the number of calcu-

lations in independent blocks for the load balancing step; and the third step determines a

mapping of data to processors for e�cient implementation of the algorithm for the user's

data. These three steps may be incorporated into an optimization framework that uses

the three-step preprocessing phase to produce matrix orderings with optimal overall perfor-

mance for a particular version of the block-diagonal-bordered sparse matrix factorization

algorithm. Future research may examine the applicability of producing an automated tool

that has the capabilities of �nding both an optimal matrix ordering and an optimal version

of the multi-processor algorithm that is driven by the characteristics of the sparse matrix.

Di�erent versions of the block-diagonal-bordered LU factorization algorithm are possible

depending on the speci�c architecture and characteristics of the matrix. These algorithms

will be discussed in more detail in section 4.

The metric for load balancing or the metric for an optimization routine to determine

the most e�cient overall ordering technique must be based on the actual workload required

by the individual processors. This number may di�er substantially from the number of

equations assigned to processors because the number of calculations in an independent sub-

block is a function of the number and location of non-zero matrix elements in that block

| not the number of equations in a block. Determining the actual workload may require a

detailed simulation of all processing and interprocessor data communications.
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Figure 6: Sample Graph with Four Independent Subgraphs/Sub-Matrices

3.1 Ordering

The ordering portion in the preprocessing phase must identify subsections of the matrix

that are mutually independent. For symmetric matrices, there is a graph-theoretical inter-

pretation for independent sub-matrices. Independent sub-matrices simply have no shared

edges in their undirected graph. A simple example to illustrate the concept of independent

subgraphs is illustrated in �gure 6. This �gure has four independent portions of the graph

connected by nodes that form the coupling equations. No subgraph element has edges to

any portion of the graph other than within the local subgraph or extending to the coupling

equations.

Few matrices can be readily ordered into block-diagonal-bordered form with equal work-

load in each block. The exception to this rule are highly regular matrices from the structural

analysis community, where the nested dissection ordering technique can produce balanced

block-diagonal-bordered matrices on some regular matrices [12]. Recursive spectral bisec-

tion can be used to partition irregular matrices [3, 17, 20], and subsequently, the coupling

equations can be extracted. Unfortunately, this technique, as well as nested dissection,

relies on dividing the matrix into m equal sized partitions, without considering the coupling

equations or considering the number of calculations in each independent block. A third

method to order a sparse matrix into block-diagonal-bordered form is referred to as node

tearing [5, 19], which is a specialized form of diakoptics [11]. This technique attempts to

extract the natural structure in the matrix or graph, and generally produces many irreg-

ularly sized blocks, while minimizing the number of coupling equations. Load balancing

techniques must be used after the node tearing matrix ordering step to uniformly distribute
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the processing load onto a multi-processor. It is important to note that independent blocks

can be assigned to any processor without requirements for interprocessor communications

to factor the sub-block.

3.2 Pseudo Factorization

As stated above, the metric for performing load balancing or for comparing the performance

of ordering techniques must be based on the actual workload required by the processors in a

distributed-memory multi-computer. Consequently, more information is required than just

the locations of �llin as in previous work that used symbolic factorization to identify �llin

for static data structures [9, 12, 24].

To accomplish the two-fold requirement for both identifying the location of �llin and

determining the amount of calculations in each independent block, we propose that a pseudo

factorization step be included in the preprocessing phase. Pseudo factorization is merely

a replication of the numerical factorization process without actually performing the calcu-

lations. Counters are used to tally the numbers of calculations to factor the independent

data blocks and the numbers of calculations to update the last block using data from the

borders.

There is no way to avoid the computational expense of this preprocessing step, because

the computational workload in factorization is not correlated with the number of equations

in an independent block. The number of calculations when factoring an independent sub-

block is a function of the number and location of non-zero matrix elements in that block |

not necessarily the number of equations in the block. The workload during the numerical

factorization step may di�er substantially from the number of equations assigned to pro-

cessors. E�cient sparse matrix solvers require that any disparities in processor workloads

be minimized in order to minimize load imbalance overhead, and consequently, to maximize

processor utilization.

3.3 Load Balancing

The load balancing step of the preprocessing phase can be performed with a simple pigeon-

hole type algorithm that uses one of several metrics based on the numbers of calculations

determined in the pseudo factorization step. There are three distinct steps in the proposed

block-diagonal-bordered matrix solver:

� factor independent blocks,

� update the last block using data from the borders,

� factor the last block.
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Load balancing may emphasize uniformly distributing the processing workload in any one

of the steps, or it may attempt to optimize the distribution of processing workload for a

combination of the three phases. A preliminary investigation into this area has emphasized

uniformly distributing the workload to separate processors based on the number of calcu-

lations when factoring both the independent blocks and calculating the updates of the last

block from data in the borders [14]. The second factorization step, updating the last block

using data in the borders, requires that partial sums be accumulated from multiple proces-

sors and sent to the processor that holds the data for an element in the last block. However,

we are assuming that communications can be made regular for all processors | a research

goal | so the independent nature of calculations in the independent blocks will permit a

processor to start the second phase as soon as that processor has completed factoring the

independent blocks. No processor synchronization is required between these steps and it

is assumed that communications will occur independent of the calculations. Consequently,

the sum total of all calculations in the independent blocks can be used for load balancing.

A pigeon-hole algorithm is a simple greedy assignment algorithm that distributes ob-

jective function values to multiple pigeon-holes in a manner that minimizes the disparity

between the sums of objective function values in each pigeon-hole. This is performed in a

three-step process. First the objective function values for each of the independent blocks are

placed into descending order. Second, the Nprocs greatest values are distributed to a pigeon-

hole for each processor, where Nprocs is the number of processors in a distributed-memory

multi-computer. Then the remaining objective function values are selected in descending

order and placed in the pigeon-hole with the least aggregate workload. This algorithm

is straightforward and minimizes the disparity in aggregate workloads between processors.

This algorithm �nds an optimal distribution for workload to processors, however, actual

disparity in processor workload is dependent on the irregular sparse matrix structure. This

algorithm works best when there are minimal disparities in the workloads for independent

blocks or when there are many more independent blocks than processors. In this instance,

the workloads in multiple small blocks can sum to equal the workload in a single larger

block.

The pseudo factorization step incurs signi�cantly more computational cost than sym-

bolic factorization in previous sparse matrix solvers. Additionally, the ordering phase is

more costly than minimum degree ordering used extensively in irregular sparse matrix prob-

lems, and load balancing is often not explicitly considered. Consequently, block-diagonal-

bordered sparse matrix solvers have signi�cantly more overhead in the preprocessing phase,

and consequently, the use of this technique will be limited to problems that have static

matrix structures that can reuse the ordered matrix and load balanced processor assign-

ments multiple times in order to amortize the cost of the preprocessing phase over numerous
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matrix factorizations.

4 LU Factorization of Block Bordered Diagonal Matrices

LU factorization of block-diagonal-bordered sparse matrices has signi�cant advantages over

general sparse matrix solvers. For all but the last block, every processor has all data re-

quired for calculations performed by that processor, so all calculations for the independent

blocks and borders can be performed in parallel. Moreover, LU factorization of the blocks

can be performed in a highly parallel manner that doesn't require interprocessor commu-

nications. For this step, communications are only required to send the partial updates to

the appropriate processors that possess data values in the last block of the matrix. Finally,

the last block is factored in the most e�cient manner depending on the density of that

sub-matrix. Research with ordering matrices representing real power system networks has

shown that it is possible to reduce the number of coupling equations and, consequently, the

size of the last block to a point where this sub-matrix becomes nearly dense after �llin.

Moreover, e�cient dense matrix solvers have been described in the literature [4, 29, 30].

After the numerical factorization of the block-diagonal-bordered matrix, most of the

calculations in the remaining forward reduction and backward substitution phases can also

be performed in a highly parallel manner. The forward reduction stage can be performed

in parallel until the last block is reduced. Communications are required only to accumulate

partial sums of products from the solved variables as the border equations are reduced.

Likewise, most of the calculations in the backward substitution phase can be calculated in

parallel without the need for additional communications after the substitution is performed

for the last block, and the results are broadcast to all processors.

This section of the paper describes the bene�ts of LU factorization of block-diagonal-

bordered sparse matrices and also describes variants of Crout's algorithm that are applicable

to parallel block-diagonal-bordered form LU factorization. Variants of the algorithm are

possible depending on implementation details dictated by the nature of the sparse matrix

and the multi-processor architecture.

4.1 Numerical Factorization

The general nature of block-diagonal-bordered LU factorization algorithms described in

this paper follows Crout's algorithm presented in section 2.3. Crout's algorithm is a fan-

in algorithm that updates a row/column from previous values. During the preprocessing

phase, the matrix is ordered into block-diagonal-bordered form, the location of all �llin

is determined to permit static data structures, and load balancing is performed on the

independent blocks in order to distribute the workload uniformly to all processors when
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Figure 7: Precedence Relationship for Independent Blocks

factoring the independent blocks. The data is distributed to processors in such a manner

that the data for an independent block and the corresponding portions of the borders are

a assigned to the same processor. This is illustrated in �gure 1(a).

The �rst step of the parallel algorithm performs LU factorization of the independent

blocks is straightforward. Precedence permits the parallel factorization of each independent

block and its associated section of border. Figure 7 depicts the precedence in the calculations

for a block in an idealized block-diagonal-bordered sparse matrix. The data in each block

and border portion may also be sparse. Figure 8 illustrates the element level dependencies

for non-zero elements in both the diagonal block and the associated portion of the border.

Note that normal fan-in precedence relationships illustrated in �gure 7 at �rst glance suggest

that data may be required from previous border sections possibly stored on other processors;

however, due to the block-diagonal-bordered form of the matrix, any value Aj;k that would

be used for an update in a previous block is equal to zero by de�nition. Consequently, no

interprocessor communications is required in this parallel LU factorization step, because all

data is assigned to the processor that uses it to perform updates.

The second step in the numerical factorization of a block-diagonal-bordered matrix

is to update the last block using data in the borders. For a fan-in algorithm, �gure 9

illustrates the required calculations for the factorization of the �rst column and row of the

last block. However, precedence permits the updates from the borders to occur in any

order as long as they occur before the column and row updates are completed. For parallel

algorithms, there are de�nite advantages in calculating all updates from the borders at

the same time. For systems where the communications latency when generating a message
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dominates the communications costs, limited numbers of long messages have signi�cant

advantages over numerous short messages. Performing all updates at the same time in

order to generate long messages can save signi�cant time that would otherwise be part of the

communication overhead in the parallel algorithm. When implemented on processors with

low latency communications support for short messages, it may be advantageous to perform

these calculations in a manner that more closely resembles a general fan-in algorithm. It

may even be advantageous to calculate the partial sums and store the values until the

processors holding a data value that is part of the last block initiates the retrieval of a value

to complete the factorization of a column or row.

Figure 10 illustrates the element level data dependencies for updates to elements in the

last block by data in the borders. To update value Ai;k in the last block, the value Aj;k in

the upper border and the value Ai;j in the lower border must be multiplied together. All

other values in the same column as Aj;k (within the independent block) and the same row

as Ai;k (within the independent block) can be multiplied together and summed to minimize

communications further. Partial sums are calculated for all independent blocks and cor-

responding borders, so partial sums now become a function of the number of processors,

rather than the number of independent blocks. The partial sums can be further reduced

in parallel if the partial sums are generally non-zero. Parallel reduction of partial sums is

illustrated in �gure 11. If the partial sums are sparse relative to the various processors,

then the partial sums should be sent directly to the corresponding processor to minimize

communications. Eventually the partial sums are subtracted from the elements in the last
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block. Similar calculations are required for the upper triangular portion of the last block

and the borders.

The third step in the numerical factorization of a block-diagonal-bordered matrix is the

factorization of the last block in the matrix. Due to the �llin in the matrix, it is common for

the lower right portion of the last block to be nearly dense. By not explicitly storing zero

values, implicit sparse matrix storage overcomes the overhead of storing row and column

location indicators and pointers to the next value in a row or column. However, when

a portion of a matrix becomes dense due to �llin, that portion of the matrix should be

stored and factored in dense form. The most desirable situation would be to have a small

last block that is signi�cantly dense to permit explicit storage of the matrix so that this

sub-matrix can be updated e�ciently as a dense matrix. In this situation, the best parallel

dense matrix factorization algorithm for the particular target architecture could be used to

factor the last block. Otherwise, the algorithm would be more complicated and include a

partitioning of the last block sub-matrix into a dense block in the lower right hand corner

with the remainder of this sub-matrix being sparse. The size of the last block is dependent

on the structure in the data and the ordering algorithm in the preprocessing phase.

For sparse matrices that have nearly dense last blocks, one method of enhancing LU

factorization algorithms on either sequential or parallel architectures is to control the size of

the last block. It is better to have a small, very dense last block rather than a larger block

that is less dense, but still su�ciently dense as to require explicit storage of the matrix for

e�cient factorization. It can be shown that the number of multiplication and subtraction

operations to factor either the lower triangular or the upper triangular portions of the last
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block, assuming that the data will be stored explicitly as a dense matrix, are

Nops =
(N3

lb �Nlb)

6
(14)

Where Nlb is the size of the last block. Thus, the number of calculations are O(N3
lb),

and even small increases in the size of the last block cause large increases in the number of

calculations. A 25% increase in the size of the last block doubles the number of calculations,

and a 60% increase in the number of equations in the last block increases the number of

calculations by a factor of four. Consequently, controlling the size of the last block during

the ordering step of the preprocessing phase can have signi�cant rami�cations on the run

time of block-diagonal-bordered sparse matrix factorization algorithms.

4.2 Forward Reduction/Backward Substitution

Block-diagonal-bordered matrices have the potential for e�cient reduction and substitution

steps because of limited, regular communications, as seen in �gure 1(b). The solution of

values in the y vector corresponding to the independent diagonal blocks can be solved in a

highly parallel manner. For the forward reduction step, the only communications required

are to send the partial sums of products from rows in the borders to those processors that

hold the data for the last block and these partial sums can be reduced in parallel in the

same manner as the reduction of partial sums in the factorization step, depicted in �gure 11.

In essence, the partial sums of products of (yj � Ai;j), 8j such that Ai;j 6= 0 are used to

modify the value of bi. After all updates have been made using the values of yj in the

independent blocks, the forward reduction of the last block can proceed using the best

available techniques for the nature of this sub-matrix.

For the backward substitution step that calculates the values in the vector x, the values

must be broadcast to all processors. If the data in the last block is distributed to multiple

processors, each value must be broadcast to all other processors immediately after they are

calculated. In this instance, special techniques that support lightweight communications

processes, such as active messages [22] on the Thinking Machines CM-5 can be used to

minimize communications latency. Regardless of the communications capabilities of the

distributed-memory multi-processor, as soon as values in the x vector from the last block

have been broadcast to all processors, calculations to update the y vector can be made with

Ui;j values in the borders because of the sub-matrix precedence relationship in backward

substitution. After all values in the x vector from the last block have been solved, the

remaining calculations to solve for values of x in the independent blocks can be performed

in parallel without requiring additional interprocessor communications, because all data for

rows are allocated to a processor and because blocks are independent with no requirement

to send x vector values to other processors.
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There are additional algorithm implementation features that can improve the e�ciency

of forward reduction and backward substitution. By including information in the data

structures on the row and column locations of a value in the implicit storage of the matrix,

indexing overhead can be minimized by permitting modi�cations in both the forward re-

duction and backward substitution steps that do not require the calculation of the row or

column locations of a value.

5 Sparse Matrix Solver Implementations

Implementations of a block-diagonal-bordered sparse matrix solver have been developed in

the C programming language for both sequential computers and for the Thinking Machines

CM-5 multi-computer using message passing and a host-node paradigm. Performance data

has been gathered for each of the two software implementations and performance compar-

isons are presented in the next section. Both the sequential and parallel block-diagonal-

bordered sparse matrix solvers use implicit hierarchical data structures based on vectors

of C programming language structures. These data structures are optimal for either se-

quential or parallel implementations and provide good cache coherence, because non-zero

data values and row and column location indicators are stored in adjacent physical memory

locations. The parallel implementation presented in this section has been developed as an

instrumented proof-of-concept to examine the e�ciency of the data structures and the e�-

ciency of the basic message passing when partial sums are sent to the last block to update

values. The last block in this initial parallel implementation has been factored sequentially

in the host processor. In order to minimize communications times in the second step of

factorization when partial sums of updates from the borders are sent to the host processor,

vectors of all non-zero partial sums from a processor are constructed. For this implementa-

tion, there has been no attempt at parallel reduction of the partial sums of updates in the

borders.

Section 5.2 and section 5.3 includes pseudo-code outlines of the sequential and parallel

algorithms respectively. Appendix B contains more detailed versions of these algorithms

that include all for and for each loops.

5.1 The Hierarchical Data Structure

An implicit hierarchical data structure has been developed to e�ciently store and retrieve

data for a non-symmetric block-diagonal-bordered sparse matrix. This data structure is

static, consequently, the locations of all �llin must be determined before memory is allocated

for the data structures. In addition, due to the static nature of the data structure, explicit

pointers to subsequent data locations can be used in order to reduce indexing overhead. Row
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and column location indicators are explicitly stored as are pointers to subsequent values in

columns and rows that are required when updating values in the matrix. This sparse matrix

research has considered real-time applications, so the use of additional memory in the data

structures is traded for reduced indexing overhead. Modern distributed memory multi-

processors can be purchased with substantial amounts of random access memory at each

node, so this research examines data structures that are designed to optimize processing

speed at the cost of increased memory usage when compared to other compressed storage

formats. We compare the memory requirements for these data structures to the memory

requirements for the more conventional compressed data structures below.

The hierarchical data structure is composed of eight separate parts that implicitly store

a block-diagonal-bordered sparse matrix. The hierarchical nature of these structures store

only non-zero values, especially in the borders where entire rows or columns may be zero.

Eight separate C language structures are employed to store the data in a manner that can

e�ciently be accessed with minimal indexing overhead. Static vectors of each structure

type are used to store the block-diagonal-bordered sparse matrix. Figure 12 graphically

illustrates the hierarchical nature of the data structure, where the eight separate C structure

elements presented in that �gure are:

1. block identi�er,

2. matrix diagonal element,

3. non-zero value in a lower triangular matrix diagonal block (arranged by rows),

4. non-zero value in a upper triangular matrix diagonal block (arranged by columns),

5. non-zero row in the lower border,

6. non-zero column in the upper border,

7. non-zero value in the lower border (arranged by rows),

8. non-zero value in the upper border (arranged by columns).

At the top of the hierarchical data structure is the information on the storage locations

of independent blocks, the last block, and the lower and upper borders. The next layer in

the data structure hierarchy are the matrix diagonal and the identi�ers of non-zero border

rows and columns. Data values on the original matrix diagonal are stored in the diagonal

portion of the data structure, however, most of the remaining information stored along with

each diagonal element are pointers so that data in related columns or rows can be rapidly

accessed.
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Data in the strictly lower triangular portion of the matrix is stored by rows; likewise,

data in the strictly upper triangular portion of the matrix is stored by columns. This

data storage scheme minimizes the e�ort to �nd non-zero Ai;k | Ak;j pairs used to modify

Ai;j by consecutively storing values in lower triangular rows and upper triangular columns.

However, Crout's algorithm requires access to the next non-zero value in the same column

or row for lower/upper triangular matrices, so pointers are used to permit direct access to

those values without requiring searching for the data as is required in compressed storage

formats. This data structure provides the bene�ts of a doubly linked data structure in

order to minimize indexing overhead. The data pertaining to any diagonal element has

pointers to the �rst non-zero element in the lower triangular row and upper triangular

column. There are also pointers to the next non-zero value in the lower triangular column

and the upper triangular row. This data structure trades memory utilization for speed by

storing all row and column indicators with a non-zero value. In addition, the combination

of adjacent storage of non-zero row and column values and the explicit storage of row and

column identi�ers, greatly simplify the forward reduction and backward substitution steps.

The remaining portions of the hierarchical data structure e�ciently store the non-zero

values in the borders. Because entire lower border rows or upper border columns may be

sparse in a block, two layers are required to store this data in an e�cient manner. The next

level in this portion of the hierarchy, stores the location of the �rst non-zero value in the row

or column. The corresponding row and column identi�ers can be found by referencing the

structure that the pointer references. The non-zero values in the lower and upper borders

are stored with the same format as data in the diagonal blocks. A complete listing of the

27



elements in the data structure is presented in appendix A.

Conventional compressed data formats require less storage than this data structure;

however, two reasons exist that justify the use of additional memory: large available memo-

ries are available with state-of-the-art distributed-memory multi-processors and these algo-

rithms have been designed with the expressed intention to support real-time applications.

The compressed data format requires

Sc = (�fp+ �int)� �(A) + (�int � n) (15)

bytes to store the A matrix implicitly. Likewise, the hierarchical data structure used in this

implementation requires

Sh = (�fp+(3��int))��(A)+(�int�n)+((3��int)�Nblocks)+((2��int)�Nborder) (16)

bytes to store the same matrix implicitly.

where:

Sc is the storage requirements in bytes for the compressed data structure.

Sh is the storage requirements in bytes for the hierarchical data structure.

�fp is the length if a 
oating point data type.

�int is the length if an integer data type.

�(A) is the number of non-zero values in the matrix.

n is the order of the matrix.

Nblocks is the number of independent blocks.

Nborder is the number of non-zero row and column segments in the borders.

For double precision 
oating point representations of the actual data values and single word

integer representations of all pointers, the hierarchical data structure takes approximately

twice the data storage of the compressed data structure. By doubling the storage, there is

a signi�cant decrease in indexing overhead, especially considering that to �nd a value in a

row or column, the average search will be one-half the average number of values in the row

or column. Given that this costly search must be performed for nearly every non-zero value

in the matrix, substantial indexing overhead is required when using the implicit compressed

storage format.

Nevertheless, there is nothing in the nature of block-diagonal-bordered form matrices

that limits the use of modi�ed compressed data structures that simply use the hierarchical

nature of this data structure to identify independent blocks with compressed data structures

substituted throughout the remainder of the data structure. However, the data structure is

closely tied to the implementation of the block-diagonal-bordered sparse matrix algorithms
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and modifying the data structures would require changes in the code used to identify values

to be used in updates of matrix values.

While the general Crout factorization algorithm permits partial pivoting [13], this static

hierarchical data structure assumes that no pivoting is required to maintain numerical sta-

bility in the calculations. Traditional numerical pivoting can be di�cult in a general sparse

matrix due to the sparsity structure and concerns for �llin, so considerations are made to

relax the normal numerical pivoting rules in Markowitz pivoting when the matrix is nei-

ther positive de�nite nor diagonally dominate [5]. Block-diagonal-bordered sparse matrices

o�er the potential for an additional relaxed pivoting rule that limits pivoting choices to

within a diagonal matrix block. Numerical pivoting choices could be further limited to a

small neighborhood of an equation when sparse matrices are ordered into recursive block-

diagonal-bordered form. For the present research, it is assumed that numerical pivoting

will not be required, because the matrices for our applications will be diagonally dominate

if not positive de�nite.

5.2 The Sequential Algorithm

The sequential algorithm we propose for LU factorization of block-diagonal-bordered sparse

matrices follows the version of Crout's algorithm presented during the background discussion

in section 2. The fan-in form of Crout's algorithm is followed for each independent block and

the corresponding portion of the border. The last block is also factored in a fan-in manner,

however, data in the borders must be used in the update ofAi;j values in the last block. None

of the independent blocks need be concerned with data from other blocks or corresponding

border sections, so the algorithm to factor the last block di�ers from the algorithm for the

independent blocks. In this implementation, the last block is also factored using sparse

techniques. This factorization algorithm is presented in �gure 13. Other implementations

of this algorithm may consider the last block to be dense, or a combination of sparse and

dense. Such a consideration would be dependent on the nature of the sparse matrix.

Our research into ordering power systems distribution network matrices into block-

diagonal-bordered form has illustrated that there are substantial reductions in the number

of �llin for this ordering technique when compared to conventional ordering techniques

such as minimum degree ordering [14]. Consequently, the ordering techniques required for

e�cient parallel algorithms also bene�t sequential algorithms.

The remaining steps in the sequential algorithm are forward reduction and backward

substitution. The sequential version of these algorithms are straight forward implemen-

tations of the row reduction/substitution technique discussed in section 2.6. Pseudo-code

versions of the algorithms for sequential forward reduction and sequential backward substi-
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/* factor the independent blocks and corresponding borders */

for all independent blocks l

for all elements k along the diagonal in block l

Update the kth column in the lth lower diagonal block

Update the kth column in the lth lower border piece

Update the kth row in the lth upper diagonal block

Update the kth row in the lth upper border piece

endfor

endfor

/* factor the last block */

for all elements k along the diagonal in the last block

Update the kth column using data from the last block

Update the kth column using data from the borders

Update the kth row using data from the last block

Update the kth row using data from the borders

endfor

Figure 13: Sequential Sparse LU Factorization
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/* reduce the independent blocks */

for all independent blocks l

for all rows i in block l

Update bi using yj and Li;j values in the independent diagonal blocks

yi  (bi=Li;i)

endfor

endfor

/* reduce the last block */

for all rows i in the border and last block

for all independent blocks l

Update bi using yj and Li;j values in the borders

endfor

Update bi using yj and Li;j values in the last block

yi  (bi=Li;i)

endfor

Figure 14: Sequential Sparse Forward Reduction

tution are presented in �gures 14 and 15 respectively. The backward substitution step does

not require a �nal division operation, because the all values Ui;i are equal to 1. Detailed

versions of the factorization, forward reduction, and backward substitution algorithms are

presented in appendix B.

5.3 The Parallel Algorithm

Implementation of the parallel block-diagonal-bordered sparse matrix solver has been devel-

oped in the C programming language for the Thinking Machines CM-5 multi-processor using

message passing and a host-node paradigm. The same implicit hierarchical data structure

used in the sequential implementation is used in the parallel implementation, although the

data structure is partitioned and the data are physically allocated to the distributed mem-

ory located with the various processors. This parallel implementation has been developed

as an instrumented proof-of-concept to examine the e�ciency of the data structures and

the overhead of message passing when partial sums are sent to the last block to update val-

ues located there. This implementation is a simpli�ed version of a block-diagonal-bordered

sparse matrix solver, where the last block in this initial parallel implementation has been

factored sequentially on the host processor. The actual code that implements the factoriza-
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/* substitute in the last block */

for all rows i in the last block

Update yi using xj and Ui;j values in the last block

xi  yi

endfor

/* substitute in the independent blocks and the border*/

for all independent blocks l

for all rows i in block l

Update yi using xj and Ui;j values in the border

Update yi using xj and Ui;j values in the diagonal block

xi  yi

endfor

endfor

Figure 15: Sequential Sparse Backward Substitution

tion algorithm presented in �gure 16 contains extra node timing calls and communications

to send this timing data back to the host processor for display. In spite of the extra com-

munications overhead due to the instrumentation and the signi�cant sequential portion of

this proof-of-concept code, empirical performance data illustrates good speedup potential.

Performance of this algorithm is discussed in the next section.

By limiting the factorization of the last block to a sequential process on the host pro-

cessor, all partial sums of updates for values in the borders in the second phase of the

factorization step can be sent with a single message to the host processor. A vector of

structures identifying all non-zero elements in the last block is used to determine those

partial sum values that need to be calculated. In order to minimize communications times

in this factorization step, a single vector of all non-zero partial sums is constructed at each

processor. For this implementation, there has been no attempt at parallel reduction of the

partial sums of updates from the borders.

The remaining steps in the parallel algorithm are forward reduction and backward sub-

stitution. The parallel version of these algorithms combine row reduction/substitution

and sub-matrix reduction/substitution. The combination of these techniques is utilized

to minimize communications times, by generating long vectors. Later implementations of

block-diagonal-bordered matrix algorithms will include the use of active messages for fast

transfers of individual partial sums or for fast broadcast values of xi to other processors.
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Node Program

/* factor the independent blocks and corresponding borders */

for those independent blocks l assigned to this processor

for all elements k along the diagonal in block l

Update the kth column in the lth lower diagonal block

Update the kth column in the lth lower border piece

Update the kth row in the lth upper diagonal block

Update the kth row in the lth upper border piece

endfor

endfor

/* update the last block */

for all non-zero elements m in the vector of partial sums

for each k such that Li;k and Uk;j 6= 0

�m  �m + (Li;k � Uk;j) where m! (i; j)

endfor

endfor

Send the sparse vector of partial sums to the host processor

Host Program

/* Update values in the last block using partial sums calculated by nodes from the border */

for all processors p

Receive the next available vector of partial sums

for all elements m in the vector of partial sums

Ai;j  Ai;j � �m where m! (i; j)

endfor

endfor

/* factor the last block */

for all elements k along the diagonal in the last block

Update the kth column using data from the last block

Update the kth row using data from the last block

endfor

Figure 16: Parallel Sparse LU Factorization
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Pseudo-code versions of the algorithms for parallel forward reduction and parallel backward

substitution are presented in �gures 17 and 18 respectively. As in the sequential algorithm,

the parallel backward substitution step does not require a �nal division operation, because

all values Ui;i are equal to 1, Detailed versions of the factorization, forward reduction, and

backward substitution algorithms are presented in appendix B.

6 Preliminary test results

6.1 Test Matrices

Preliminary empirical data collected using the block-diagonal-bordered sparse matrix solver

has been collected on the Thinking Machines CM-5. In spite of the fact that the parallel im-

plementation has instrumentation messages creating additional communications overhead,

and the last block is factored sequentially on the host processor, the speedup for the par-

allel implementation performance has been substantial for large sparse matrices. The data

used in the tests has been machine generated with a regular pattern, although the software

implementation does not exploit the data regularities | the matrix was solved as if it were

irregular. A regular data matrix was used because of the ease with which the location of

all �llin values could be determined. In order to eliminate the need for load balancing,

the number of independent blocks used in each test matrix is a multiple of the number of

available processors on the Northeast Parallel Architectures Center (NPAC) CM-5.

An example of the test matrices is presented in �gure 19. This �gure depicts the sparsity

structure in a matrix, where non-zero matrix elements can be interpreted as either the edges

in a graph or they can be interpreted as non-zero coe�cients in sparse linear equations.

Non-zero values are black, zero values are light gray, and �llin values are medium gray.

This matrix is the smallest test matrix for which performance data is presented in this

paper, and it has 32 independent blocks, with four sub-blocks and four separate sets of

coupling equations in the sparse borders in each independent block. Matrices with larger

numbers of equations are generated by increasing the number of independent blocks and the

corresponding coupling equations in the borders. The choice of this test matrix form has

been motivated partially by the simplicity of the form in order to generate rapidly regular

matrices for code veri�cation and preliminary benchmarking purposes, but also motivated

by the desire to expose the algorithms described in the previous section to controlled data

in order to investigate the performance of each portion of the sequential and parallel block-

diagonal-bordered sparse matrix algorithms. The use of these controlled matrices limits all

load imbalance overhead in subsequent benchmarking. As a result, processing bottlenecks

are not masked by artifacts in the data. When working with irregular sparse matrices,
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Node Program

/* reduce the independent blocks */

for all independent blocks l assigned to this processor

for all rows i in block l

Update bi using yj and Li;j values in the independent diagonal blocks

yi  (bi=Li;i)

endfor

endfor

/* update the last block */

for all rows i in the last block

if row i has any non-zero Li;j

for each j such that Li;j 6= 0

�m  �m + (yi � Li;j) where m i

endif

endif

endfor

Send the sparse vector of partial sums to the host processor

Host Program

/* Update bi values using partial sums from the borders */

for all processors p

Receive the next available vector of partial sums

for all elements m in the vector of partial sums

bi  bi � �m where m! i

endfor

endfor

/* reduce the last block */

for all rows i in the last block

Update bi using yj and Li;j values in the last block

yi  (bi=Li;i)

endfor

Figure 17: Parallel Sparse Forward Reduction
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Host Program

/* substitute in the last block */

for all rows i in the last block

Update yi using xj and Ui;j values in the last block

xi  yi

endfor

Broadcast the x-values to the node processors

Node Program

/* substitute in the independent blocks and the border*/

Receive the x values from the host

for all independent blocks l

for all rows i in block l

Update yi using xj and Ui;j values in the border

Update yi using xj and Ui;j values in the independent diagonal blocks

xi  yi

endfor

endfor

Figure 18: Parallel Sparse Backward Substitution
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Figure 19: Sample Test Matrix With 32 Independent Blocks

it will be the task of the load balancing step to minimize any load imbalance overhead.

Eventually, performance of the algorithms will be dependent on the inherent structure of

real, irregular sparse matrices. Moreover, we are examining matrix partitioning and load

balancing algorithms that will yield better performance than nested dissection algorithms

on irregular data.

6.2 Parallel Algorithm Performance

Parallel algorithm performance was measured using 32 processors, the default number of

processors on NPAC's Thinking Machines CM-5. The number of independent blocks, num-

ber of equations per matrix, the number of non-zero values, and the percentage of non-zero

values are presented in table 1. The data used to test the algorithms should exhibit linear

timing performance for factorization as the number of equations is increased, because the

performance for sequential and parallel factorization can be described as the sum of multi-

ple terms where the only variables in the equations are Nblocks, the number of independent

blocks, and Nblocks=proc, the number of independent blocks assigned to each processor.

Tseq � (Nblocks � Tind) + (Nblocks � T�) + Tlast (17)

Tpar � (N blocks
proc

� Tind) + ((N blocks
proc

� T�) + (Nprocs� Tcomm)) + (Nprocs� Tvps) + Tlast (18)

where:
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Tseq is the total factorization time for the sequential algorithm.

Tpar is the total factorization time for the parallel algorithm.

Nblocks is the number of independent blocks.

Nblocks=proc is the number of independent blocks per processor.

Tind is the time to factor an independent block.

T� is the time to calculate the partial sums of updates in the borders.

Tcomm is the time to communicate the partial sums to the host node.

Nprocs is the number of processors.

Tvps is the time to update Ai;j values using the partial sums.

Tlast is the time to factor the last block.

All values in these equations are essentially constants, except for Nblocks and Nblocks=proc.

Given the equations to predict processing time for both the sequential and parallel factor-

ization with this data, run-time algorithm performance is expected to be proportional to

Nblocks, the number of blocks. There are a constant number of equations per block, so the

time to factor these test matrices should be proportional to the total number of equations

or the order of the matrix. The computational complexity to factor an independent block,

Tind, in equations 17 and 18 is O(n3ind) where nind is the number of equations in the inde-

pendent sub-matrix. As long as nind remains constant, the time to factor the entire matrix

should grow at a constant rate.

Figure 20 presents the wall-clock time required to factor test matrices with the sequen-

tial algorithm running only on the CM-5 host processor and the parallel algorithm running

on the CM-5 host processor and the 32 node processors. The time required to factor these

test matrices is linear as predicted for both the sequential and parallel algorithms. Classes

of test matrices with linear growth in the number of calculations provide conservative es-

timates of speedup and e�ciency for parallel algorithms when compared to classes of test

matrices that have numbers of calculations that increase at polynomial rates. These test

matrices add independent blocks of constant size rather than enlarging the independent

blocks. Consequently, this class of test matrices has linear growth in the number of cal-

culations as a function of the matrix order, in contrast to classes of test matrices where

the size of sub-blocks is increased and the numbers of calculations would increase at a

polynomial rate. For the class of test matrices with enlarged sub-blocks, improved perfor-

mance could be a function of the increasing number of calculations that are available to be

performed in parallel. The test matrices used throughout this preliminary examination of

block-diagonal-bordered sparse matrix factorization algorithms exhibit good correlations of

these theoretical predictions with empirical data,
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# blocks=proc n # non-zero % non-zero

1 2112 38912 0.87210

2 4160 75776 0.43790

4 8256 149504 0.21930

8 16448 296960 0.10980

16 32832 591872 0.05490

Table 1: Sample Matrix Sizes
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Figure 20: Linear Performance of Block-Bordered-Diagonal Sparse Matrix Factorization
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The empirical data on the performance of the parallel block-diagonal-bordered sparse

matrix solver described in section 5 has been collected using the 32 processor NPAC CM-

5 for the block-diagonal-bordered sparse matrix factorization algorithms implemented in

C using the CMMD version 2.0 library of message passing functions. Speedup has been

calculated for the �ve sample matrices, and is graphically presented in �gure 21. This

graph plots speedup versus the number of equations in the matrix for

� total (�) | factorization, a single forward reduction, and a single backward substitu-

tion,

� a single factorization (3),

� a single forward reduction (>),

� a single backward substitution (< ).

Likewise, e�ciency is graphically represented in �gure 22. For factorization, speedup ranges

from 10.2 to 27.5 for the 32 processor NPAC CM-5 which corresponds to e�ciency values

ranging from 32% to 86%.

Parallel factorization performance is rather good; however, forward reduction and back-

ward substitution performance is not as promising for this implementation. Speedup for

forward reduction ranges from 0.5 to 2.0 and more signi�cantly, the actual times for parallel

factorization and parallel forward substitution are nearly equal. For a matrix with 32832

equations, the ratio of the time for factorization to the time for forward reduction is 3.5. For

2112 equations, the time ratio is only 2.3. Performance di�culties with the parallel forward

reduction algorithm are caused by fewer calculations in the forward reduction step than

the factorization step, and inadequate calculations exist to overcome the communications

overhead. Additional research will address faster communications techniques to attempt to

minimize this problem,

Meanwhile, speedup for parallel backward substitution is less than for parallel factor-

ization, although somewhat better than for parallel forward reduction. The broadcast com-

munications step in parallel backward substitution is more e�cient than the accumulation

step in parallel forward reduction, primarily because there are less sequential operations

involved. Parallel backward substitution performance yielded speedups of 1.3 to 19.2 that

correspond to e�ciency values of 4% to 60%. Parallel performance tends to increase rather

rapidly as larger matrices are processed. The empirical data collected for backward sub-

stitution is not monotonically increasing, as is all other speedup curves in �gure 21. The

probable explanation for this phenomenon is that measured performance for the parallel

algorithm at this point was corrupted by processor contention. Given the small actual run

time, a small increase in execution time would drastically e�ect this measurement. There
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Figure 21: Speedup for the Block Bordered Diagonal Form Sparse Matrix Solver
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Figure 22: E�ciency for the Block Bordered Diagonal Form Sparse Matrix Solver
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is no reason to believe that performance for backward substitution would not be follow a

curve �tted to the other data points.

While the speedups for parallel forward reduction and parallel backward substitution

are less than the speedup for factorization, the performance for factoring the matrix and a

single forward reduction and a single backward substitution step is still reasonably good.

Speedup for the solution of a single b vector ranges from 5.4 to 19.9 with corresponding

e�ciency values of 17% to 62%.

6.3 Processing Bottlenecks

The implementation of the parallel block-diagonal-bordered sparse matrix solver included

communications to gather timing information for the node processors. Timing information

was sent from the nodes to the host processor for display. These timing values permitted

a visual check of parallel algorithm performance during run time and also provided data

to analyze processing bottlenecks. The sample data was by de�nition load balanced, so

disparities in this timing data are unquestionably a result of processing bottlenecks. The

only area where processing bottlenecks are apparent in the data occurs in the accumulation

of partial sums in the factorization and forward reduction steps.

Table 2 presents the minimum and maximum times reported by the nodes when gener-

ating the sparse vector of partial sums. The minimum values represent the time required

to calculate the partial sums of update values, to generate the sparse vector of partial

sums, and to perform the communications with the host node. The maximum values also

include any time the slowest node processor incurred while waiting for the host processor

to complete the communications of the sparse vector. There are two distinct bottlenecks

illustrated in this data. The �rst bottleneck is a result of the time required to develop

the sparse vector of partial sums, and the second bottleneck is caused by the sequential

processing of the partial sums at the host node. All partial sums are calculated in parallel

during this step before any communications are performed: then all node processors send

the partial sums to the host processor which must both receive the messages and �nish

sequentially accumulating the partial sums.

Until later versions of the parallel block-diagonal-bordered sparse matrix solver perform

the factorization of the last block in parallel, there is nothing that could a�ect the second

bottleneck, however, the use of a di�erent communications model that permits the e�cient

use of short messages can minimize the �rst bottleneck. The initial startup time | repre-

sented by the values in the two columns of minimum processing times | can be reduced

to nearly zero, with the use of active messages. With active messages, several words can

be sent between any processors on the CM-5 in less than 2 microseconds [22, 28]. This is
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Factorization Forward Reduction

n minimum maximum minimum maximum

2112 60,987 �s 93,805 �s 34,572 �s 34,572 �s

4160 27,658 �s 82,843 �s 154,075 �s 154,079 �s

8256 13,9324 �s 245,315 �s 264,733 �s 264,756 �s

16448 117,640 �s 299,392 �s 252,238 �s 252,248 �s

32832 258,028 �s 806,859 �s 658,532 �s 658,547 �s

Table 2: Timings for Processing Bottlenecks

substantially less than the minimum times reported in table 2, so an active message con-

struct in the algorithm should minimize the delay time that the host processor sits idle

while waiting to begin processing.

Active messages will also be a signi�cant factor in future implementations when the

data for the last block is distributed onto multiple processors. For such implementations,

multiple messages would be required to send the partial sums to the appropriate node

processors. When data for the last block is distributed onto multiple processors, minimizing

the idle time of a single processor waiting for data from the �rst block will no longer be

of primary concern. Rather for these implementations, the focus will be to minimize the

total communications latency incurred because more, although, shorter messages will be

required than in the present implementation. Active messages are speci�cally designed to

have reduced communications latency, so both processing bottlenecks observed above can

be minimized in those implementations that perform the last calculations in parallel and

use active messages for communications.

6.4 Comparison to Amdahl's Law

These parallel algorithm implementations each have a substantial sequential portion. Am-

dahl's law [16] describes theoretical limits on parallel performance due to the sequential por-

tion of the algorithm. After reviewing the de�nition, Amdahl's law-based performance es-

timates are compared to measured performance for parallel block-diagonal-bordered sparse

matrix factorization.

De�nition (Amdahl's Law) Given T1, the time to solve a problem on a single pro-

cessor, then Tnp, the time to solve a problem on np processors, can be parameterized in

� 2 [0; 1] by

Tp � �T1 + (1� �)
T1

p
; (19)
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where � is the inherently sequential fraction of computations. The aforementioned estimate

of Tp can be used when estimating the relative speedup Sp [21] by

Sp =
p

1 + (p� 1)�
=

1

�+ (1� �)=p
� S

1
� ��1; (20)

where relative speedup is de�ned as

Sp �
T1

Tnp
: (21)

Amdahl's Law can be used to estimate the maximum potential relative speedup by taking the

inverse of the sequential portion of the parallel problem.

It can be shown that the amount of processing required for the last diagonal block in

the test matrices is approximately four times the processing required for each independent

block. Independent diagonal blocks are divided into four sections, while the last block is

divided into only two sections. The computational complexity of each independent matrix

subsection is O(n3ind). For the test matrix with 32 independent blocks, the sequential

workload is approximately

(2� 8)

((32� 4� 1) + (2� 8))
=

1

9
: (22)

According to Amdahl's law, a task with 1
9
of the operations being sequential limits speedup

to no more than 9, regardless of the number of processors applied to the problem. The

speedup obtained for parallel block-diagonal-bordered sparse matrix factorization for this

matrix was 5.4 | which is consistent with Amdahl's law because the measured speedup

does not exceed the Amdahl's law estimate of the bound on speedup. For the largest matrix

reported in this paper, the sequential portion of the processing would be only 1
129

of the

total operations. Consequently, according to Amdahl's law, speedup would not be limited

by sequential calculations for a 32 processor CM-5. Additional computations in block-

diagonal-bordered sparse matrix algorithms must be performed in parallel for performance

to be scalable for smaller sized matrices.

While the parallel block-diagonal-bordered matrix algorithms described in this report

had signi�cant amounts of sequential calculations in the last block, other versions of these

algorithms are possible that signi�cantly increase the amount of parallel operations when

processing this section of the matrix. In spite of the large amount of sequential calculations

in the last block, this simple test implementation illustrates that parallel factorization per-

formance is very promising. Nevertheless, additional operations in future algorithms must

be performed in parallel so that those algorithms are scalable. Depending on the charac-

teristics of the data, it may be possible to factor the last block using proven parallel dense

matrix techniques. Meanwhile, state-of-the-art communications techniques can also be em-

ployed to improve the communications performance of all three parallel algorithms. The
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same active message communications techniques that may improve parallel factorization

performance may also reduce the bottlenecks when performing parallel forward reduction

and utilizing active messages may improve the broadcast of x vector values in the backward

substitution phase.

7 Conclusions

This paper describes research into the applicability of parallel direct block-diagonal-bordered

sparse matrix solvers. Direct sparse solvers for matrices in this form exhibit distinct ad-

vantages. In particular, data communications are signi�cantly reduced when compared to

general direct sparse matrix solvers described in the present literature and communications

are also more uniform and structured. Communications in block-diagonal-bordered sparse

matrix solvers is a function of the number of processors and less dependent on the data.

Task assignments for numerical factorization of a block-diagonal-bordered sparse matrix

depend only on the assignment of independent blocks to processors and the processor as-

signments of data in the last diagonal block. Block-diagonal-bordered sparse matrix solvers

require special preprocessing to be e�cient. Other papers in the literature have proposed a

two step preprocessing phase that includes ordering the matrix and then performing sym-

bolic factorization to determine the locations of all �llin values so that static data structures

can be utilized for maximum e�ciency when performing numerical factorization. In this

paper, we describe the requirements for a three step preprocessing phase for e�cient parallel

block-diagonal-bordered sparse matrix solvers on distributed-memory multi-processors that

includes:

� ordering the matrix into block-bordered-diagonal form,

� pseudo factoring the matrix to identify both �llin and number of calculations for

independent blocks,

� load balancing the workload to distribute the calculations among processors uniformly.

This �rst implementation of block-diagonal-bordered sparse matrix algorithms demon-

strates good speedup for factorization with test matrices, in spite of the sequential portions

of the code that signi�cantly limit parallel performance and algorithm scalability. There

are areas for improvement in the algorithms presented herein. As part of our on-going

research, we plan to parallelize all calculations, focusing on those calculations in the last

matrix block. We plan to examine ordering techniques to determine whether or not e�-

cient vectorization of the calculations are feasible for real power systems admittance ma-

trices. We also plan to use new sophisticated communications techniques such as active
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messages and virtual channels to minimize processing bottlenecks and permit hiding com-

munications overhead behind calculations. Further research is planned to tune the parallel

block-diagonal-bordered sparse matrix algorithms for optimum performance on the Think-

ing Machines CM-5 with power systems network matrices, and then develop additional

versions of the parallel block-diagonal-bordered sparse matrix algorithms for e�cient oper-

ation on other multi-processor architectures. Lastly, we intend to compare the performance

and accuracy of these techniques with iterative methods, such as waveform relaxation [18].

Future research may even examine the applicability of producing an automated tool that

has the capabilities of �nding both an optimal matrix ordering and an optimal version of the

multi-processor algorithm that is driven by the characteristics of the irregular sparse matrix

and the target computer architecture. Numerous versions of the block-diagonal-bordered

sparse matrix algorithms are possible depending on the speci�c computer architecture and

characteristics of the matrix.

The research presented in this paper illustrates great promise for parallel block-diagonal-

bordered sparse matrix solvers when the data is regular and there is no load imbalance over-

head encountered in the parallel algorithm. In order to minimize load imbalance overhead

with real sparse matrices, explicit load balancing will be required for distributed-memory

multi-processor algorithms. To ensure the most uniform distribution of workload to proces-

sors, research to examine graph partitioning, node clustering, and node tearing techniques

for irregular matrices will be required as part of the ordering phase. Techniques to order ir-

regular matrices into recursive block-diagonal-bordered form have been examined for power

systems distribution networks. This work is discussed in a companion paper [14].
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A The Hierarchical Data Structure

The block-diagonal-bordered sparse matrix solver is written in the C programming language,

and the implementation of the hierarchical data structure uses vectors of C structure data

types. A detailed list of the eight parts of the hierarchical data structure, in addition to a

description of each data structure �eld, are listed below.

1. block identi�er

� pointer to the last diagonal element in the block

� pointer to the �rst non-zero lower border row pointer

� pointer to the �rst non-zero upper border column pointer

2. matrix diagonal element

� Ai;j | non-zero value

� pointer to the �rst non-zero value in row i in this lower diagonal block

� pointer to the next non-zero value in column j in this lower diagonal block

� pointer to the �rst non-zero value in column j in this upper diagonal block

� pointer to the next non-zero value in row i in this upper diagonal block

3. non-zero value in a lower triangular matrix diagonal block (arranged by rows)

� Ai;j | non-zero value

� i | row indicator

� j | column indicator

� pointer to the next non-zero value in column j in this lower diagonal block

4. non-zero value in a upper triangular matrix diagonal block (arranged by columns)

� Ai;j | non-zero value

� i | row indicator

� j | column indicator

� pointer to the next non-zero value in row i in this upper diagonal block

5. non-zero row in the lower border

� pointer to the �rst non-zero lower border row

6. non-zero column in the upper border
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� pointer to the �rst non-zero upper border column

7. non-zero value in the lower border (arranged by rows)

� Ai;j | non-zero value

� i | row indicator

� j | column indicator

� pointer to the next non-zero value in column j in the lower border

8. non-zero value in the upper border (arranged by columns)

� Ai;j | non-zero value

� i | row indicator

� j | column indicator

� pointer to the next non-zero value in row i in the upper border
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B Block Bordered Diagonal Form Sparse Matrix Algorithms

This appendix contains detailed descriptions of both the sequential and parallel algorithms

implemented for the Thinking Machines CM-5. Figures 23 and 24 describe the sequential

block-diagonal-bordered sparse LU factorization algorithm that was implemented using the

hierarchical data structure described in section 5. Figure 23 describes the sequential al-

gorithm to factor the independent blocks, and �gure 24 describes the sequential algorithm

to factor the last block. Figures 25 and 26 respectively describe the sequential forward

reduction and backward substitution steps. Figures 28 and 27 describe the parallel block-

diagonal-bordered sparse LU factorization that was implemented for the CM-5 using the

CMMD message passing libraries for the node and host programs respectively. The par-

allel forward reduction algorithm is presented in �gures 30 and 29, also for the node and

host programs respectively. The parallel backward substitution algorithm is presented in

�gure 31. Additional implementation details are discussed in section 5.
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/* factor the independent blocks and corresponding borders */

for l = 1 to (Nblocks � 1) /* for all independent blocks */

for k = (n(l�1) + 1) to nl /* for all elements along the diagonal in block l */

for each i 2 [k; nl] /* lower diagonal blocks */

for each j 2 [(n(l�1) + 1); k� 1] such that Ai;j 6= 0 and Aj;k 6= 0

Ai;k  Ai;k � (Ai;j �Aj;k)

endfor

endfor

for each i 2 [(n(Nblocks�1) + 1); nNblocks
] /* lower borders */

for each j 2 [(n(l�1) + 1); k� 1] such that Ai;j 6= 0 and Aj;k 6= 0

Ai;k  Ai;k � (Ai;j �Aj;k)

endfor

endfor

for each j 2 [(k+ 1); nl] /* upper diagonal blocks */

for each i 2 [(n(l�1)+1); k� 1] such that Ai;j 6= 0 and Ak;i 6= 0

Ak;j  Ak;j � (Ak;i �Ai;j)

endfor

Ak;j  (Ak;j=Ak;k)

endfor

for each j 2 [(n(Nblocks�1) + 1); nNblocks
] /* upper borders */

for each i 2 [(n(l�1)+1); k� 1] such that Ak;i 6= 0 and Ai;j 6= 0

Ak;j  Ak;j � (Ak;i �Ai;j)

endfor

Ak;j  (Ak;j=Ak;k)

endfor

endfor

endfor

Figure 23: Sequential Sparse LU Factorization | Independent Blocks
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/* factor the last block */

for k = (n(Nblocks�1) + 1) to nNblocks
/* for all elements along the diagonal in the last block */

for each i 2 [k; nNblocks
] /* lower diagonal block */

for each j 2 [(n(Nblocks�1)
+ 1); k� 1] such that Ai;j 6= 0 and Aj;k 6= 0

Ai;k  Ai;k � (Ai;j �Aj;k)

endfor

for l = 1 to (Nblocks � 1) /* for all independent blocks */

for each j 2 [(n(l�1) + 1); nl] such that Ai;j 6= 0 and Aj;k 6= 0

Ai;k  Ai;k � (Ai;j �Aj;k)

endfor

endfor

endfor

for each j 2 [k + 1; nNblocks
] /* upper diagonal block */

for each i 2 [(n(Nblocks�1) + 1); k� 1] such that Ak;i 6= 0 and Ai;j 6= 0

Ak;j  Ak;j � (Ak;i �Ai;j)

endfor

for l = 1 to (Nblocks � 1) /* for all independent blocks */

for each i 2 [(n(l�1) + 1); nl] such that Ak;i 6= 0 and Ai;j 6= 0

Ak;j  Ak;j � (Ak;i �Ai;j)

endfor

Ak;j  (Ak;j=Ak;k)

endfor

endfor

endfor

Figure 24: Sequential Sparse LU Factorization | Last Block
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/* reduce the independent blocks */

for l = 1 to (Nblocks � 1) /* for all independent blocks */

for i = (n(l�1) + 1) to nl /* for all rows in block l */

for each j 2 [(n(l�1) + 1); (i� 1)] such that Li;j 6= 0

bi  bi � (yj � Li;j)

endfor

yi  (bi=Li;i)

endfor

endfor

/* reduce the last block */

for i = (n(Nblocks�1) + 1) to nNblocks
/* for all rows in the border and last block */

for l = 1 to (Nblocks � 1) /* for all independent blocks */

for each j 2 [(n(l�1) + 1); nl] such that Li;j 6= 0

bi  bi � (yj � Li;j)

endfor

for each j 2 [(n(Nblocks�1) + 1); (i� 1)] such that Li;j 6= 0

bi  bi � (yj � Li;j)

endfor

yi  (bi=Li;i)

endfor

endfor

Figure 25: Sequential Sparse Forward Substitution
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/* substitute in the last block */

for i = nNblocks
to (n(Nblocks�1) + 1) /* for all rows in the last block */

for each j 2 [(i+ 1); (nNblocks
] such that Ui;j 6= 0

yi  yi � (xj �Ui;j)

endfor

xi  yi

endfor

/* reduce the independent blocks and the border*/

for l = 1 to (Nblocks � 1) /* for all independent blocks */

for i = nl to (n(l�1) + 1) /* for all rows in block l */

for each j 2 [(n(Nblocks�1) + 1); nNblocks
] such that Ui;j 6= 0

yi  yi � (xj � Ui;j)

endfor

for each j 2 [(i+ 1); nl] such that Ui;j 6= 0

yi  yi � (xj � Ui;j)

endfor

xi  yi

endfor

endfor

Figure 26: Sequential Sparse Backward Substitution
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/* factor the independent blocks and corresponding borders */

for those independent blocks assigned to this processor l 2 f1; : : : ; (Nblocks � 1)g

for k = (n(l�1) + 1) to nl /* for all elements along the diagonal in block l */

for each i 2 [k; nl]

for each j 2 [(n(l�1) + 1); k� 1] such that Ai;j 6= 0 and Aj;k 6= 0

Ai;k  Ai;k � (Ai;j �Aj;k)

endfor

endfor

for each i 2 [(n(Nblocks�1) + 1); nNblocks
]

for each j 2 [(n(l�1) + 1); k� 1] such that Ai;j 6= 0 and Aj;k 6= 0

Ai;k  Ai;k � (Ai;j �Aj;k)

endfor

endfor

for each j 2 [(k+ 1); nl]

for each i 2 [(n(l�1) + 1); k� 1] such that Ai;j 6= 0 and Ak;i 6= 0

Ak;j  Ak;j � (Ak;i �Ai;j)

endfor

Ak;j  (Ak;j=Ak;k)

endfor

for each j 2 [(n(Nblocks�1) + 1); nNblocks
]

for each i 2 [(n(l�1) + 1); k� 1] such that Ak;i 6= 0 and Ai;j 6= 0

Ak;j  Ak;j � (Ak;i �Ai;j)

endfor

Ak;j  (Ak;j=Ak;k)

endfor

endfor

endfor

/* update the last block */

for all non-zero elements m in the vector of partial sums m = 1; : : : ; nvps

for each k such that Li;k and Uk;j 6= 0

�m  �m + (Li;k � Uk;j) where m! (i; j)

endfor

endfor

Send the sparse vector of partial sums to the host processor

Figure 27: Parallel Sparse LU Factorization - Node Program

57



/* Update values in the last block using partial sums calculated by nodes from the border */

for all processors p = 1; : : : ; Nprocs

Receive the next available vector of partial sums

for all elements m in the vector of partial sums m = 1; : : : ; nvps

Ai;j  Ai;j � �m where m! (i; j)

endfor

endfor

/* factor the last block */

for k = (n(Nblocks�1) + 1) to nNblocks
/* for all elements along the diagonal in the last block */

for each i 2 [k; nNblocks
] /* lower diagonal block */

for each j 2 [(n(Nblocks�1) + 1); k� 1] such that Ai;j 6= 0 and Aj;k 6= 0

Ai;k  Ai;k � (Ai;j �Aj;k)

endfor

endfor

for each j 2 [k + 1; nNblocks
] /* upper diagonal block */

for each i 2 [(n(Nblocks�1) + 1); k� 1] such that Ak;i 6= 0 and Ai;j 6= 0

Ak;j  Ak;j � (Ak;i �Ai;j)

endfor

Ak;j  (Ak;j=Ak;k)

endfor

endfor

Figure 28: Parallel Sparse LU Factorization - Host Program
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/* reduce the independent blocks */

for those independent blocks assigned to this processor l 2 f1; : : : ; (Nblocks � 1)g

for i = (n(l�1) + 1) to nl /* for all rows in block l */

for each j 2 [(n(l�1) + 1); (i� 1)] such that Li;j 6= 0

bi  bi � (yj � Li;j)

endfor

yi  (bi=Li;i)

endfor

endfor

/* update the last block */

for all independent blocks l = 1; : : : ; (Nblocks � 1)

for all rows i in the last block i 2 [(n(Nblocks�1) + 1); nNblocks
]

if row i has any non-zero Li;j

m! i

for each j such that Li;j 6= 0

�m  �m + (yi �Li;j)

endfor

endif

endfor

endfor

Send the sparse vector of partial sums to the host processor

Figure 29: Parallel Sparse Forward Reduction - Node Program
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/* Update bi values using partial sums from the borders */

for all processors p = 1; : : : ; Nprocs

Receive the next available vector of partial sums

for all elements m in the vector of partial sums m = 1; : : : ; nvps

bi  bi � �m where m! i

endfor

endfor

/* reduce the last block */

for i = (n(Nblocks�1)
+ 1) to nNblocks

/* for all rows in the last block */

for l = 1 to (Nblocks � 1) /* for all independent blocks */

for each j 2 [(n(l�1) + 1); nl] such that Li;j 6= 0

bi  bi � (yj � Li;j)

endfor

for each j 2 [(n(Nblocks�1)
+ 1); (i� 1)] such that Li;j 6= 0

bi  bi � (yj � Li;j)

endfor

yi  (bi=Li;i)

endfor

endfor

Figure 30: Parallel Sparse Forward Reduction - Host Program
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Host Program

/* substitute in the last block */

for i = nNblocks
to (n(Nblocks�1)

+ 1) /* for all rows in the last block */

for each j 2 [(i+ 1); nNblocks
] such that Ui;j 6= 0

yi  yi � (xj �Ui;j)

endfor

xi  yi

endfor

Broadcast the x-values to the node processors

Node Program

/* substitute in the independent blocks and the border*/

Receive the x-values

for those independent blocks assigned to this processor l 2 f1; : : : ; (Nblocks � 1)g

for i = (n(l�1) + 1) to nl /* for all rows in block b */

for each j 2 [(n(Nblocks�1)
+ 1); nNblocks

] such that Ui;j 6= 0

yi  yi � (xj � Ui;j)

endfor

for each j 2 [(i+ 1); nl] such that Ui;j 6= 0

yi  yi � (xj � Ui;j)

endfor

xi  yi

endfor

endfor

Figure 31: Parallel Sparse Backward Substitution
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