
A Comparison of Data Mapping Algorithms for Parallel Iterative PDE

Solvers

Nikos Chrisochoides,� Nashat Mansour,y� and Geo�rey Fox�

�
Northeast Parallel Architectures Center, Syracuse University

111 College Place, Syracuse, NY, 13244-4100

y
Computer Science, Lebanese American University, Lebanon

corresponding author: Nikos Chrisochoides (nikos@npac.syr.edu)

SUMMARY

We review and evaluate the performances of six data mapping algorithms used for parallel

single-phase iterative PDE solvers with irregular 2-dimensional meshes on multicomputers.

We provide a table that compares the six algorithms for eight measures covering load balance,

interprocessor communication, 
exibility, ease of use and speed. Based on the comparison

results, we recommend the use of the simplest and fastest (P�Q) of the six algorithms

considered for sequential compile-time mapping of 2-dimensional meshes.

1. INTRODUCTION

The data-parallel single-phase iterative Partial Di�erential Equation (PDE) solvers con-

sidered in this paper are based on mapping the discrete PDE operator (i.e., a linear system

of algebraic equations, Ax=b) and the associated computations onto the P processors of a

multicomputer. With the (most commonly used) single program multiple data programming

model, processors execute the same program independently on parts of the linear system

mapped on to them. That is, processor Pi computes the unknowns xi of the sub-system

Aixi = bi and communicates with other processors when nonlocal or global data are needed.

Thus, the execution time of the data-parallel solver is given by

Tsolver = max
1�i�P

fT i
compute + T i

communicate + T i
synchronizeg (1)

assuming that computation and communication do not overlap. Equation (1) is particularly

relevant for the loosely synchronous class of iterative solvers considered in this work. In the



2

loosely synchronous model, computations are carried out in phases. Each phase consists of

computations on the local subproblem followed by interprocessor communication for nonlocal

data [FJL88], [Fox91].

For parallel iterative PDE solvers, the data mapping problem can be formulated at two

levels : (i) the discrete geometrical data structures (element-meshes or tensor-grids) associ-

ated with the PDE domain and (ii) the linear system of algebraic equations associated with

some discretization of the PDE equations. In this paper we evaluate data mapping strategies

based on geometrical data structures [Chr93]. These strategies are based on partitioning the

mesh Dh representing the PDE domain and allocating the resultant submeshes to the multi-

computer processors. The partitioning results in splitting the discrete equations associated

with the mesh nodes and their interfaces. Figure 1 describes such a partitioning.

Interface points

Interior Point

Submesh

=

=

A x b

A x b

Local Unknowns

Non Local
(interface)

Unknowns

Figure 1: The components of the partitioned discrete PDE problem based on the splitting

of the mesh Dh used numerically.

The minimization of the execution time, Tsolver, of data-parallel iterative solvers requires

equal distribution of the computation workload and minimization of overheads due to com-

munication of nonlocal unknowns, update of global parameters, and test of convergence

(synchronization). The problem of mapping data for minimizing Tsolver is an intractable

optimization problem. Thus, several algorithms have been proposed for �nding good subop-



3

timal mapping solutions. Some algorithms are based on greedy schemes, divide-and-conquer,

or block partitioning. Examples are nearest neighbor mapping, P�Q partitioning, recursive

coordinate bisection, recursive graph bisection, recursive spectral bisection, CM Clustering,

and scattered decomposition [BB87], [CHENHR89], [Chr93], [KR91], [DG89], [Erc88], [1]

[SE87], [SE87], [Far88], [Fox86a], [Fox86b], [MO87], [Sim90], [Wal90].

Other algorithms are based on deterministic optimization, where local search techniques

are used to minimize cost functions related to Tsolver; examples are Kernighan-Lin algorithm

and geometry graph partitioning [KL70] and [CHENHR89]. Yet, another class of mapping

algorithms are based on physical optimization that employs techniques from natural sci-

ences [Fox91b]; examples are neural networks, simulated annealing, and genetic algorithms

[HKB90], [FOS88], [FF88] [MF91], [Wil91].

Although a good deal of work has been published on data mapping, only a few attempts

have been made at comparing some algorithms using aggregate or a limited number of per-

formance measures [CHENHR89], [Chr93], [Sim90], [MF92], [Wil91], [S92]. In this paper,

we use several measures to evaluate and compare the performances of six data mapping

algorithms for irregular iterative PDE computations. The algorithms considered are: (1) the

P�Q partitioning, (2) the recursive spectral bisection, (3) the geometry graph partitioning,

(4) a neural network algorithm, (5) a simulated annealing, and (6) a genetic algorithm. These

algorithms have been chosen since they are among the best known data mapping algorithms

in the literature. We report experimental machine-dependent and machine-independent re-

sults, obtained using DecTool [CHENH+91] and Parallel ELLPACK, [HRC+90], for the eval-

uation of their performance. The experimental results and the operation of the algorithms

are employed to produce a table that compares the algorithms on eight measures: (a) load

balance, (b) submesh connectivity, (c) splitting of submeshes, (d) message size, (e) interpro-

cessor distance traveled by messages, (f) 
exibility, (g) dependence on parameters, and (h)

execution time. The comparison leads us to recommend the use of the P�Q algorithm for

sequential mapping of 2-dimensional meshes for iterative PDE solvers.

This paper is organized as follows. Section 2 brie
y describes the communication require-

ments of a class of parallel iterative PDE solver employed in this work. Section 3 presents



4

objective functions based on the and communication requirements outlined in Section 2 and

identi�es two approaches for the data mapping problem. Section 4 gives a review of the six

mapping algorithms. Section 5 presents and discusses the experimental results. Section 6

presents a summary of the �ndings. Section 7 concludes the paper.

2. COMMUNICATION REQUIREMENTS FOR PARALLEL ITERATIVE PDE

SOLVERS

The iterative PDE solvers for the solution of a discrete linear system of algebraic equa-

tions can be reduced to matrix-vector multiplication operations (see [HY81] and [KRYG82]).

The parallel processing and implementation of matrix-vector multiplication operations con-

sists of two steps : (a) the local communication and (b) the local computation (see [FJL88],

[CAHH92]). A high level description of the steps of an iterative solver (that preserves the

ordering of the corresponding sequential computation) pertinent to the data mapping is the

following : (i) Local Communication, (ii) Local Computation, and (iii) Global Synchroniza-

tion. The local communication consists of an exchange of messages between the processors

of the parallel machine; the messages transfer some of the local data (i.e., interface un-

knowns) required by the neighbor subdomains. The local computation mainly consists of

matrix-vector and vector-vector operations. Finally, the global synchronization consist of re-

duction operations that are required for the acceleration of convergence and for the checking

of stopping criteria [CHK+92].

3. DATA MAPPING

In this section, we present objective functions and criteria for data mapping and describe

two approaches in addressing the mapping problem.

An objective function that re
ects the cost of mapping a mesh Dh (with jDh
j = N) onto

a multicomputer can typically be formulated as:

OFtyp = max
1�i�P

f W (m(Dh
i )) +

X
Dh
j
2�

Dh
i

C(m(Dh
i );m(Dh

j )) g (2)

where m : fDh
i g
P
i=1 ! fPig

P
i=1 is a function that maps the nodes of submesh Dh

i to the pro-

cessors; W (m(Dh
i )) is the computational load of the processor m(Dh

i ) per iteration, which



5

is proportional to the number of nodes in Dh
i ; C(m(Dh

i );m(Dh
j )) is the cost of the commu-

nication required (per iteration) between the processors m(Dh
i ) and m(Dh

j ); �nally, �Dh
i
is

the set of submeshes that are adjacent to Dh
i and its cardinality j�Dh

i
j is henceforth referred

to as the submesh connectivity.

The formulation of OFtyp assumes that computation and communication do not overlap.

OFtyp approaches its minimum if the computation load W (Pi) is near-evenly distributed

among the processors and the communication cost of the processors is minimum. Clearly,

such conditions are also necessary for minimizing Tsolver (equation 1). However, the syn-

chronization term in Tsolver is not explicitly re
ected in OFtyp because synchronization cost

is a nonlinear function of communication, computation, and communication-computation

overlapping. Thus, it is di�cult to express quantitatively. Nevertheless, OFtyp is considered

a reasonable measure for the quality of data mapping solutions and two approaches can be

identi�ed in the mapping literature for its minimization.

The �rst mapping approach is based on the expansion of the components of OFtyp and

the use of explicit machine-dependent and algorithm-dependent parameters. This approach

is adopted in the physical optimization methods which are guided by an objective function.

However, OFtyp is not a smooth function and its minimization gives rise to a minimax

criterion which is computationally expensive. To avoid these two shortcomings, the following

approximate objective function is used:

OFappr = �2
PX
i=1

jDh
i j
2 + �

PX
i=1

X
Dh
j
2�

Dh
i

C(m(Dh
i );m(Dh

j )) (3)

where � is a scaling factor expressing the relative importance of the communication term

with respect to the computation term, and � is dependent on the solver and is equal to the

number of computation operations per mesh node per iteration.

Although OFappr is not equivalent to OFtyp, it still represents a good approximation to the

cost of a mapping con�guration. Its �rst term is quadratic in the deviation of computation

loads from the average computation load and is minimal when all deviations are zero. A

minimum of the second term occurs when the sum of all interprocessor communication costs

is minimized. Further, OFappr enjoys smoothness and computational locality (i.e., a change



6

�OF due to remapping node v from Pi to Pj is determined by information about v, Pi and

Pj only). Also, we note that OFappr shares with OFtyp the ability to allow a tradeo� between

the computation workload and the communication cost for the purpose of minimizing their

total sum.

The cost of interprocessor communication, C(m(Dh
i );m(Dh

j )), is di�cult to express ac-

curately. It depends on several hardware and software components of a multicomputer,

some of which might be impossible to quantify. In this work , we use two expressions for

C(m(Dh
i );m(Dh

j )). One expression has been proposed for modern multicomputers [Bok90],

[Hey90]:

Cp(m(Dh
i );m(Dh

j )) = � + � I(Dh
i ;D

h
j ) + � H(m(Dh

i );m(Dh
j )) (4)

where � is the message start-up time (latency); � is the machine time for communicating one

byte; � is the communication time per unit distance; I(Dh
i ;D

h
j ) is the number of interface

nodes of the submeshes Dh
i and Dh

j that determines the message size; H(Dh
i ;D

h
j ) is the

physical (e.g. Hamming) distance between m(Dh
i ) and m(Dh

j ). Note that the inclusion of �

in equation (4) accounts for the cost of the connectivity of the submeshes.

The second expression for the communication cost between the processors m(Di) and

m(Dj) is based only on the physical distance between processors and the message size:

Cd(m(Dh
i );m(Dh

j )) = � I(Dh
i ;D

h
j ) H(m(Dh

i );m(Dh
j )) (5)

Cd(m(Dh
i );m(Dh

j )) appeared in the literature in mid 80's and is relevant only for early mul-

ticomputer machines [Hey90]. Nevertheless, its advantage is that computing its incremental

change, �Cd, is faster than computing �Cp. Since the physical optimization algorithms

considered in this work employ incremental changes as a basic step, e�cient computation of

such a change becomes important for the e�ciency of the physical algorithms.

The second mapping approach uses criteria that are qualitatively derived from the map-

ping requirements and addresses them in stages. It is based on splitting the optimization

problem into two distinct phases that accomplish the partitioning and the allocation of the

mesh [CHENHR89], [CHH90], [Chr92] and [Sim90]. In the partitioning phase we decompose

the mesh into P submeshes such that the following criteria are approximately satis�ed:



7

(i) the maximum di�erence in the number of nodes of the submeshes is minimum,

(ii) the ratio of the number of interface nodes to the number of interior nodes for each

submesh is minimum,

(iii) the number of submeshes that are adjacent to a given submesh is minimum,

(iv) each submesh is a connected mesh.

In the allocation phase these submeshes are allocated to the processors such that the following

criterion is satis�ed:

(v) the communication requirements of the underlying computation between the processors

of a given architecture are minimum.

For a given mesh Dh with N nodes, the merit of a partition into P non-overlapping

submeshes fDh
i g
P
i=1 is characterized in terms of the set of geometrically adjacent submeshes

�Dh
i
to submesh Dh

i and the number of interface mesh nodes, I(Dh
i ;D

h
j ), shared by the

submeshes Dh
i and Dh

j . Then, the optimal partitioning, as de�ned by criteria (i) to (iv),

can be viewed as the one which simultaneously minimizes :

max
1�i;j�P

j jDh
i j � jDh

j j j (6)

max
1�i�P

f

(
P

Dh
j 2�Dh

i

I(Dh
i ;D

h
j ))

jDh
i j

g (7)

max
1�i�P

j�Dh
i
j (8)

3. COMMUNICATION REQUIREMENTS FOR PARALLEL ITERATIVE PDE

SOLVERS

The iterative PDE solvers for the solution of a discrete linear system of algebraic equa-

tions can be reduced to matrix-vector multiplication operations (see [HY81] and [KRYG82]).

The parallel processing and implementation of matrix-vector multiplication operations con-

sists of two steps : (a) the local communication and (b) the local computation (see [FJL88],

[CAHH92]). A high level description of the steps of an iterative solver (that preserves the



8

ordering of the corresponding sequential computation) pertinent to the data mapping is the

following : (i) Local Communication, (ii) Local Computation, and (iii) Global Synchroniza-

tion. The local communication consists of an exchange of messages between the processors

of the parallel machine; the messages transfer some of the local data (i.e., interface un-

knowns) required by the neighbor subdomains. The local computation mainly consists of

matrix-vector and vector-vector operations. Finally, the global synchronization consist of re-

duction operations that are required for the acceleration of convergence and for the checking

of stopping criteria [CHK+92].

4. DATA MAPPING ALGORITHMS

In this section we brie
y review six algorithms for the solution of the data mapping problem,

namely : (1) the P�Q algorithm, (2) the recursive spectral bisection algorithm, (3) the

geometry graph partitioning algorithm, (4) a neural network algorithm, (5) a simulated

annealing algorithm, and (6) a genetic algorithm. The last three algorithms, which are

physical optimization algorithms, are based on the �rst mapping approach described in

Section 2. But, the �rst three algorithms adopt the second approach.

4.1 P�Q Partitioning Algorithm

A simple and attractive mapping method considered by many researchers (see [Bok81],

[SE87], [FOS88], [PAF90] and [Chr92]) is the so-called data strip or block partitioning heuris-

tic. This heuristic is referred under di�erent names, some of them are : one-dimensional (1D)

strip partitioning, two-dimensional (2D) strip partitioning, multilevel load balanced method,

median splitting, and sector splitting. Throughout this paper, we are referring to this clus-

tering algorithm as P�Q [Chr93], where P is the number of sub-meshes (blocks or strips)

along the x-axis, Q is the number of sub-meshes (blocks or strips) along the y-axis, and P�Q

= P (for 2D domains). A description of the P�Q algorithm for a 2D mesh (with N = k P)

points is given below.

P�Q Algorithm



9

Sort the mesh points along the x-coordinate axis;

for i = 1 to P do

Assign the ith set of N/P points to the l = gray code 1d(i) sub-mesh

endfor

Sort the mesh points along the y-coordinate axis;

for i = 1 to P do

for j = 1 to Q do

Assign the jth set of N/P points of the l sub-mesh to the

k = gray code 2d(i,j) sub-mesh

endfor

The P�Q algorithm often produces submeshes with more than one connected component

when partitioning non-convex 2D meshes. To avoid the splitting of the sub-meshes for

star-shaped non-convex 2D domains Chrisochoides et. al. in [CR92] present the boundary

conforming P�Q algorithm which uses boundary-conforming curvilinear coordinate systems.

instead of Cartesian coordinate systems.

4.2 Spectral Bisection

Recursive spectral bisection (RSB) utilizes the spectral properties of the Laplacian ma-

trix, L(M), associated with the mesh M [PSL90],[Sim90]. It recursively bisects log2P times

and allocates the generated 2-dimensional submeshes to the processors of the multicom-

puter. The submeshes are allocated to the processors using allocation methods presented in

[CHH90].

The Laplacian matrix L(M) is de�ned as:

Li;j(M) =

8>>>>><
>>>>>:

+1 if vertex i and j are joined by an edge (i,j)

�degree( of vertex i ) if i = j

0 otherwise

In each bisection step the eigenvector corresponding to the second largest eigenvalue of the

Laplacian matrix is computed -the components of this vector provide distance information

about the nodes of the mesh. Then, the nodes are sorted according to the values of the

eigenvector's components. Using the sorted list, the nodes are split to form two equal-size

submeshes. An outline of RSB is given below.

Recursive Spectral Bisection



10

Compute second (Fiedler) eigenvector of the Laplacian matrix

Sort nodes according to the values of Fiedler components;

Assign each half of the nodes to a subdomain; Repeat recursively for each submeshes;

4.3 Geometry Graph Partitioning Algorithm

Local optimization algorithms [PS82], for a given initial solution search a set of �nite

perturbation of the initial solution until a perturbation with lower cost function is found.

Examples of such perturbations, for the graph partitioning problem, appear in the literature

(see [KL70], [Got81], and [PK89]�). Two feasible solutions t and t
0

are called neighbors i� t
0

is the result of a �nite number of consecutive perturbations on t. The set of all neighbors of t

is called neighborhood structure. The simplest neighborhood structure, for the partitioning

of the graph G and an initial 2-way partitioning (A, B), is given by the following set :

Ns(A;B) = f all partitionings A�; B� that can be obtained from the partitioning A, B by a

single swap operation g where the swap operation (i.e., perturbation) of forming A�; B� is

de�ned as : A� = (A n fag) [ fbg, and B� = (B n fbg) [ fag with a 2 A and b 2 B.

A local optimization algorithm for given initial solution t and neighborhood structure

N(t) performs local search of the the neighborhood N(t) and replaces the current solution t

with a neighbor solution u of t that optimizes (minimizes or maximizes) the cost function f .

This process is repeated until no such better solution exists. At this point a \locally optimal"

solution has been identi�ed. An outline of a local optimization algorithm is described below.

Local Optimization Algorithm

begin

t := some initial solution;

while improve(t) 6= null do

t := improve(t);

return t;

endwhile

end

�These algorithms have a longer history, some were discussed in the elementary text Introduction to

Computer Science, John R. Rice, 1969 and were analyzed mathematically in the early 1960's by Stanley

Reiter.



11

improve(t) =

(
u where u 2 N(t) with cost(u) � cost(t)

null otherwise.

The geometry graph partitioning (GGP) heuristic [CHENHR89] is a local optimization al-

gorithm. The GGP heuristic uses the geometrical properties of the mesh graph (Euclidean

graph) in order to deliver deliver quasi-uniform partitionings with the minimal diameter.

The cost function that GGP algorithm minimizes is given by :

PX
k;`=1

X
ei2Dk

X
ej2D`

�(ei; ej) (9)

where

�(ei; ej) =

8><
>:

1 if ei and ej are adjacent and in di�erent subdomains

0 otherwise.

The criteria (ii) and (iv) (see Section 2) are imposed implicitly during the minimization of

the cost function (9) by seeking solutions that optimize certain function known as pro�t

function : X
i

(!1f(ai; bi) + !2g(ai; bi)) (10)

where

f(ai; bi) = 2
X
e2cai

�(ai; e)� jcaij+ 2
X
u2cbi

�(u; bi)� jcbi j � 2�(ai; bi) (11)

and

g(ai; bi) = (
dai;cA
rA

� 1)� (
dbi;cA
rA

� 1) + (
dai;cB
rB

� 1)� (
dbi;cB
rB

� 1) (12)

ce denotes the set of adjacent nodes to the node e whereas jcej is the number of nodes adjacent

to the node e, with e = ai 2 A or bi 2 B. cA, cB are the mass center of the subdomains A,

B (see Figure 2). dai;cA and dbi;cB are the distances between the nodes ai, bi and the mass

centers cA, cB of the subdomains A, B respectively. rA, rB are the \ideal" radius of the

subdomains A, B, and !1 and !2 are positive weights.

The GGP algorithm's pro�t function is a weighted combination of the KL algorithm's pro�t

function f and of the function g which is used in selecting pairs of node points whose swapping

reduces the diameter of the subdomains. The GGP algorithm climbs out of local minima



12

a

C
AC

B

b

AB

r
B r

A

b
1

b
2

a
1

a
2

0.0 200.0 400.0 600.0
Number of swaps

0.0

100.0

200.0

300.0

400.0

Nu
mb

er 
of 

int
erf

ac
es

Interface Nodes
Distance of Centers

(a) (b)

Figure 2: (a) Illustration of the points mass centers cA and cB, distances dai;cA and dbi;cB and

radii rA and rB of quadrilateral sub-meshes A and B. (b) The values of the cost function

and of the distance between the mass centers cA and cB of the two subdomains for the 2-way

partition using the GGP algorithm.

of the cost function (9) by swapping points that might increase temporarily the value of

the cost function but will decrease the diameter of the subdomains by bringing their mass

centers far apart.

4.4 Allocation Phase

In the allocation phase the submeshes generated by RSB and GGP can be assigned to

processors using heuristics described in [CHH90]. In this work the allocation of the submeshes

generated by RSB is based on the identity mapping (i.e., the submesh with ID i is assigned

to the processor i. In the case of the GGP algorithm we use a Geometry Based Allocation

(GBA) algorithm presented in [CHH90].

The GBA algorithm represents the partitioning graph (i.e., graph whose vertices are the

submeshes and edges are de�ned by the connectivity of the submeshes) and the processors

interconnection graph into a simpler space, such as the 2D Euclidean space (eg. [0, 1]x[0,

1]). Thus, the allocation problem is simpli�ed into a planar assignment problem. The



13

planar assignment problem can be solved either using spectral methods (see [FYK87]) or

local optimization algorithms. GBA uses a local optimization algorithm that optimizes

objective functions like the Rectilinear (or Manhattan ) distance between the communicating

processors, the L2 norm of distance of the centers of the subdomains and representation

points of the processors 2D Euclidean space. The minimization of these objective functions

results in the allocation of neighbor subdomains onto neighbor processors.

4.5 Genetic Algorithms

In genetic algorithms a population of candidate solutions, called individuals, evolve over

successive generations, starting with random solutions. In every generation, individuals are

selected for reproduction according to their �tness, then genetic operators are applied to

the selected mates, and o�spring replace their parents. In this process, �tness is gradually

increased and optimal solutions evolve by the propagation and the combination of high-

performance �t building blocks [Gol89].

An outline of a genetic algorithm (GA) is given below.



14

Genetic Algorithm

Random generation of initial population;

repeat

Evaluate the �tness of individuals;

Allocate reproduction trials;

for i = 1 to population size step 2 do

Select 2 parents from the list of trials;

Apply crossover and mutation;

Hill climbing by o�spring;

endfor

until convergence

Solution = Fittest.

The genetic algorithm for data mapping encodes an individual as a string of N integers,

where an integer refers to a processor and its position in the string represents the mapped

mesh node. The �tness of an individual is the reciprocal of the value of the objective function,

so that maximizing the �tness would correspond to minimizing the objective function. The

objective function used is OFappr involving the communication cost function Cp (equation 4).

The reproduction scheme determines which individuals survive and selects pairs of surviving

individuals for reproduction. This scheme involves sorting individuals in ascending order.

These individuals are assigned a survival probabilities according to a uniform scale of values

between 0.8 and 1.2. Then, the number of reproduction trials (copies) for each individual

is determined according to these probabilities. Obviously, zero trials means death and two

trials allow polygamy. Match-making between individuals is done by random choice from

the list of reproduction trials. This reproduction scheme is illustrated by a simple example

shown in Figure 3.

O�springs are generated by applying genetic operators to the selected parents. The

genetic operators employed in GA are two-point crossover and mutation. Crossover is ac-

complished by randomly selecting equal-length substrings in the two parents and swapping

them. Mutation refers to randomly remapping a randomly chosen mesh node. Crossover is

applied to 70% of the individuals in the population and the rate of mutation used is 0.3%.

The last step in creating a new generation is a greedy hill-climbing procedure applied to all

o�spring solutions for improving their structure. The procedure considers all interface mesh



Figure 3: Reproduction scheme for the Genetic Algorithm.

nodes in a candidate solution and allows remapping of interface nodes only from overloaded

to underloaded processors. That is, remapping is invoked only if �OF is negative.

4.6 Simulated Annealing

An outline of a simulated annealing algorithm (SA) for data mapping is given below.

Simulated Annealing Algorithm

Initial con�guration = random data mapping;

Determine initial temperature �0;

Determine freezing temperature �f ;

while (�i > �f and Not converged) do

repeat

Perturb(mapping solution);

if (�OF � 0) then

Update mapping soln; /* accept perturbation */

else

if (random(0,1) < e��OF=�i) then

Update mapping soln;

else

Reject perturbation;

until equilibrium

�i+1 = 0.95 �i; /* cooling schedule */

endwhile



16

The SA starts with an initial random mapping solution which corresponds to a system in a

high energy/temperature state, where the energy is given by the objective function OFappr.

The SA algorithm then reduces the temperature of the system gradually to a freezing point

according to a cooling schedule. At each temperature, regions in the solution space are

searched by the Metropolis algorithm [KGV83]. An iteration of the Metropolis algorithm

starts with proposing a random perturbation and evaluating the resultant change in OFappr.

A perturbation, or a move, is accomplished by a random remapping of a randomly chosen

mesh node. A remapping that leads to a lower objective function value corresponds to a

downhill move in the energy landscape and is always accepted. An increase in objective

function (uphill move) may be accepted only with a temperature-dependent probability,

e��OF=�.

Perturbations are repeated at each temperature until thermal equilibrium. Equilibrium is

reached when the number of attempted or accepted perturbations is equal to predetermined

maximumnumbers. The maximumnumber of attempts allowed is P per mesh node, whereas

the maximum number of accepted moves is 0.75P. The initial temperature is determined

such that the probability o� accepting uphill moves is initially 0.85. The freezing point is the

temperature at which this probability is very small (2�30). The cooling schedule determines

the next temperature as a fraction, 0.95, of the present one.

Perturbations followed by the computation of �OF occur in every inner iteration of

the SA algorithm. Hence, it is important to compute �OF as e�ciently as possible. We

have chosen to use Cd(Pi; Pj) (equation 5) for the communication component of OFappr since

computing �Cd is faster than computing �Cp. This choice improves SA's execution time,

but also a�ects the quality of its mapping solutions as will be discussed below.

4.7 Neural Network Algorithm

A Hop�eld-type Neural Network for data mapping, described in [FF88] and [MF92], aims

at quickly �nding low minima for the objective function. The network is represented by a

matrix of neurons. Each row corresponds to a mesh node v. The number of neurons per row

is equal to log2P. Each neuron is associated with a neural variable n(v; i), where i refers to

column i in the network. An outline of the neural network algorithm (NN) is given below.



17

Neural network algorithm

for i = 0 to (log2P-1) do

Generate random spins s(v; i; 0);

repeat

for all spins do

Pick a spin randomly;

Compute s(v; i; t+ 1); /* equation (13) */

endfor

until convergence

Determine bit i in the neurons;

endfor

The NN starts with initial random neural values and converges to a �xed point, after

a number of sweeps. The �xed point of the network is associated with a minimum of the

energy function, OFappr. The NN repeats this procedure log2P times, each time determining

the bits in column i in the network and, hence, the subcubes to which the mesh nodes are

mapped. After the last iteration, the mesh will be partitioned into submeshes mapped to

the P processors.

To derive the network equation, the neural variables are replaced by magnetic spin vari-

ables, s(v; i; t) = -1 or +1, in the energy expression. That is, for a given i we associate a

spin s with every mesh node v. Then, a mean �eld approximation technique, from physics,

is used to derive the spin update equation:

s(v; i; t+ 1) = tanhf ��s(v; i; t) + �
X
s0

G(s; s0) �



j�i�1j

X
s2�i�1 ;s0 6=s

s0(v; i; t)g (13)

where �, � and 
 are appropriate scaling factors [MF92]; G is the spin coupling matrix given

by the mesh graph; �i�1 refers to the current submesh (to be further bisected) to which v

belongs. The second term can be interpreted as the ferromagnetic interaction that aligns

neighboring spins. The third term can be interpreted as the long-range paramagnetic force

responsible for the global up/down spin balance. The �rst term in the NN equation is the

noise term that tries to 
ip the current spin and, thus, helps the system avoid local minima.

Note that the message latency information is missing from equation (13); this equation has

been derived assuming that the communication cost function is given by Cd [FF88].



18

4.8 Graph Contraction

Previous work has shown that physical optimization algorithms are slow in mapping large

problems [MF92]. Their execution time is unacceptable when compared with typical time

for solving the problems being mapped. To make these physical optimization algorithms

practical we have suggested the use of graph (or mesh) contraction for reducing the size

of the problem with parameter �, where the size of the contracted mesh is approximately

N=2�. Then the contracted mesh can be mapped and the mapping solution can next be

interpolated. A simple and e�cient graph contraction heuristic algorithm has been developed

and its description can be found in [MPCF93].

5. PERFORMANCE EVALUATION

In this section, we present and discus the machine-independent and machine-dependent

performance analysis for the two data mapping approaches and the following algorithms :

P�Q : Block partitioning along the x and y direction (Section 4.1).

RSB : Recursive Spectral Bisection (Section 4.2).

GGP : Geometry Graph Partitioning (Section 4.3).

GA : Genetic Algorithm (Section 4.4).

SA : Simulated Annealing (Section 4.5).

NN : Neural Network (Section 4.6).

The performance of these algorithms strongly depends on the test cases (i.e, geometry

of the domain and mesh). For this reason we compare the above algorithms using a Model

Problem de�ned on a general non-convex domain, D, with two holes. This domain includes

many geometric characteristics that appear in real applications. Also, it provides a fair

test-case for the comparison of the above algorithms because it does not possesss properties

like convexity and simply-connectivity that allow algorithms like P�Q and RSB to perform

much better than the most general local search optimization algorithms??????????. For the

Model Problem we use a Poisson PDE operator and Dirichlet boundary conditions (the data

mapping is independent of the PDE operator). The mesh of the domain D, M13K, consists

of 24,202 elements and 12,724 nodes and the PDE is approximated by a linear system with

11,676 number of equations. The PDE is discretized by a bilinear �nite element method and

the linear system is solved using a Jacobi Semi Iterative (Jacobi-SI) method [CHK+92].



19

Figure 4: Model Problem.

In the experimental results described below, the physical optimization algorithms use the

following problem-dependent parameter values: � = 5, � = 325, � = 15, and � = 100, which

have been normalized with respect to the machine time for a 
oating point operation. The

last three communication parameters are relevant to the target machine, nCUBE II [nCU91].

Aslo, suitable values for the contraction parameter � are chosen for every mapping instance.

5.1 Machine-Independent Analysis

The machine-independentmeasures considered are : (i) the submesh connectivity, (ii) the

number of interface nodes , (iii) the splitting of the submeshes, (iv) the Hamming distance

among communicating processors, and (v) the load balance. The analysis is based on the

solutions for mapping M13K to nCUBE II with 8 to 128 processors. From these solutions

the average and maximum values for the di�erent measures are computed and plotted.

Figure 5 shows the average and maximum number of the total submesh interface nodes;

the length of the interfaces is proportional to the the message size term of the communication

cost (equation 4). Figure 5 shows that GGP and RSB yield the smallest number of interface

nodes. RSB minimizes node separators in the mesh while GGP at the same time maximizes

the inter-center distance of submeshes, and thus reduces the size of node separators even

more. GA, SA and P�Q also yield good number of interfaces, whereas NN yields the

largest number of interfaces. The number of interfaces appears as a weighted term in the

communication cost component of the objective function of GA and SA and is implicitly

incorporated in the NN update equation (13). However, the graph contraction pre-mapping



20

step used for speeding-up the three physical optimization algorithms does increase the length

of the submesh interfaces due to the ill-shaped (contracted) super-nodes it produces.

8 16 32 64
Number of Processors

30.0

50.0

70.0

90.0

110.0

Av
er

ag
e 

Nu
m

be
r o

f I
nt

er
fa

ce
s

GA
NN
SA
RSB
PxQ
GGP

8 16 32 64 128
Number of Processors

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

220.0

M
ax

im
um

 In
te

rfa
ce

s

GA
NN
SA
RSB
PxQ
GGP

Figure 5: Average and maximum number of interface nodes for the mapping solution of

M13K.

Figure 6 shows the average and maximum submesh connectivity; the total message la-

tency is proportional to the submesh connectivity. Figure 6 indicates that GA, GGP and

RSB yield very good connectivities. This is expected for GA since its objective function ex-

plicitly includes a signi�cant message latency cost (equation 4) The minimumnode separator

requirement sought by GGP and RSB seems to help in minimizing submesh connectivity for

2-D meshes. Figure 6 also shows that the connectivity values of NN are worse since NN does

not account for connectivity in its update equation. P�Q and SA yield good connectivity

values.

Figure 7 shows the average and maximum distances for messages among communicating

processors; longer distances for messages in circuit-switching machines increase the proba-

bility of link-contention and thus increase the communication time [Bok90]. SA nad NN

show very good distances since interprocessor distances are included in their objective func-

tions with a large weight (see equation 5). P�Q, RSB, and GGP also show good distances,



21

8 16 32 64 128
Number of Processors

2.0

3.0

4.0

5.0

6.0

Av
er

ag
e 

Co
nn

ec
tiv

ity

GA
NN
SA
RSB
PxQ
GGP

8 16 32 64 128
Number of Processors

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

M
ax

im
um

 C
on

ne
ct

ivi
ty

GA
NN
SA
RSB
PxQ
GGP

Figure 6: Average and maximum connectivity of the submeshes for the mapping solution of

M13K.

whereas GA's distances are acceptable. Note that interprocessor distances are included in

the communication cost (equation 4) for GA with a reasonable weight.

Figure 8 gives the standard deviation of the number of nodes per submesh ofM13K;M13K

is partitioned into 8 submeshes. The deviation values illustrate how well-balanced is the

computational load. Clearly, P�Q, RSB and GGP produce mapping that are perfectly load

balanced since these algorithms �rst optimize this criterion. The three physical algorithms do

not insist on perfect load balance. Instead, their aim is to minimize the total sum of both the

computational load and communication cost. Although they do not produce mapping with

large imbalances they o�er a tradeo� between the computation load and the communication

cost of the individual processors for the aim of minimizing the total workload of the slower

processors.

Figure 9 shows two bar charts (for GA and RSB) for the four components of the total

workload in each of the 8 processors to which the M13K mesh is mapped. Figure 9 clearly

shows that RSB produces perfect load balance regardless of the communication cost of

the individual processors. However, GA often reduces the computational load when the



22

8 16 32 64 128
Number of Processors

0.5

1.5

2.5

3.5

4.5

5.5

Av
er

ag
e 

Di
st

an
ce

GA
NN
SA
RSB
PxQ
GGP

8 16 32 64 128
Number of Processors

1.5

2.5

3.5

4.5

5.5

6.5

7.5

M
ax

im
um

 D
ist

an
ce

GA
NN
SA
RSB
PxQ
GGP

Figure 7: Average and maximum distances among the communicating processors for the

mapping solution of M13K.

0.0 2.0 4.0 6.0
0.0

5.0

10.0

15.0

20.0

25.0
64 Processors
32 Processors

GA        NN       SA        RSB      PxQ      GGP

Figure 8: Standard deviation of the number of nodes per submesh for P = 32 and 64.



23

-0.8 1.2 3.2 5.2 7.2
Subdomains

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Connectivity
Avr Distance
# of Interfaces
# of mesh points

-0.8 1.2 3.2 5.2 7.2
Subdomains

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

Connectivity
Avr Distance
# of Interfaces
# of mesh points

Figure 9: Bar charts for the connectivity, average distance, number of interfaces (divided by

25), and number of node (divided by 250) for GA (left) and RSB (right).

communication cost is large (eg. processors 2 and 3) and increases it when the communication

cost is small (eg. processors 1 and 6). The SA and NN algorithms also involve such a tradeo�.

On the other hand, P�Q and GGP have similar behavior to RSB.

Figures 10, and 11 show the submeshes produced by the six data mapping algorithms.

These solutions show disconnected subdomains for NN, SA GA and P�Q, but not for GGP

and RSB. GGP uses pro�t functions that try to prevent disconnectedness.

5.2 Machine-Dependent Analysis

The machine-dependent measures are : the total elapsed execution time of the PDE

solver (Tsolver) and the interprocessor communication time (Tcommunicate). We have run the

solver for M13K using the mapping solutions on 32 and 64 processors.

Tables 1 and 2 present the maximum, average, standart deviation values for Tsolver and

Tcommunicate. The tables also show the IDs of the processors (in parenthesis) that have

maximum Tsolver and Tcommunicate. From these tables we observe the following : (1) The

di�erence in maximum Tsolver between the best and worst values is 15%, except for the NN



24

Figure 10: 16 submeshes produced by the P�Q (top left) RSB (top right), GGP algorithm

(bottom left) and the GA (bottom right) for the mesh M13K.



25

Figure 11: 16 submeshes produced by the NN (left) and SA (right) for the mesh M13K.

value on 64 processors (25%). (2) The processor with maximumTcommunicate is not always the

processor with maximumTsolver even for the algorithms with perfect load balance. According

to the model (see equation 2) that is usually adopted in the literature, the processor with the

maximum Tcommunicate is the slowest processor. In our experiments we see a deviation from

this logic because of overheads due to imperfect work load (computation & communication)

balance and synchronization.

The �rst observation, the machine-independent analysis, and the fact that the P�Q's

execution time is only few seconds, while all the other algorithms' execution time is between

several minutes to several hours indicate that the P�Q is the most suitable algorithm for

the sequential compile-time data mapping of 2-dimensional irregular meshes for the solu-

tion of PDE problems on distributed memory MIMD machines. The second observation

indicates that the model (see equation 2) that is usually adopted in the literature is not

complete. This model ignores the e�ects of link-contention as well as blocking (idle) time

due to synchronization.



26

Table 1: Elapsed & Communication Time for the the Model Problem on 32 processors.

Elapsed Time P�Q RSB GGP NN SA GA

MAXIMUM 3.433(29) 3.421(28) 3.403(14) 3.839( 0) 3.697(24) 3.610( 0)

MEAN-VAL 3.428 3.415 3.398 3.760 3.687 3.550

STRD-DEV. 0.003 0.004 0.004 0.014 0.006 0.021

Comm. Time P�Q RSB GGP NN SA GA

MAXIMUM 0.606(20) 0.844(28) 0.826(3) 1.289(29) 1.347(7) 1.169(22)

MEAN-VAL 0.511 0.517 0.499 0.819 0.778 0.657

STRD-DEV. 0.105 0.160 0.162 0.230 0.294 0.279

Table 2: Elapsed & Communication Time for the the Model Problem on 64 processors.

Elapsed Time P�Q RSB GGP NN SA GA

MAXIMUM 2.13(42) 1.94(56) 1.90(15) 2.37(0) 1.95(47) 2.18(60)

MEAN-VAL 1.95 1.93 1.89 2.17 1.94 2.05

STRD-DEV. 0.044 0.002 0.002 0.034 0.002 0.027

Comm. Time P�Q RSB GGP NN SA GA

MAXIMUM 0.777(42) 0.734(48) 0.669(44) 0.958(19) 0.755(56) 0.993(33)

AVERAGE 0.470 0.465 0.423 0.657 0.473 0.582

STRD-DEV. 0.080 0.101 0.108 0.109 0.104 0.164



27

6. SUMMARY OF RESULTS

Based on the results described in Section 5, Table 3 summarizes the major properties

of the six mapping algorithms. Note that the table re
ects the quality and timings of the

contracted graphs for NN, SA and GA.

7. CONCLUSIONS

We have presented performance evaluation results for six mapping algorithms used for

PDE computations on irregular 2-dimensional meshes. The experiment results are concerned

with the performance s of the algorithms for eight measures. The properties of the algorithms

are summarized in table 3 which can be used for selecting a mapping algorithm that suits

di�erent application requirements. For example, for applications where the same mesh is

used many times, mapping algorithms with slower execution time and better solution quality

can be chosen.

However, we have found that the machine-dependent performances of the algorithms

do not di�er by a great amount. Further, Table 3 shows that the algorithms that satisfy

the mapping criteria to a better degree are slow (eg. GGP, RSB) and involve intricate

parameter-dependence (eg. GA, SA). These �ndings, for sequential ab initio mapping of

2-dimensional meshes, together with comparisons of the P�Q with greedy algorithms based

on Cuthill-McKee ordering schemes [Chr93], [Far88] let us recomment that the very fast and

simple P�Q mapping algorithm.

7. ACKNOWLEDGMENTS

The authors thank Horst Simon for providing the RSB code. Also, they thank Pelayia

Varodoglu and Elaine ..... for her comments and proofreading of the manuscript. The

�rst author is grateful to John Rice and Elias Housis for their helpful discussions on the

data mapping problem. The 64 processor nCUBE II at Purdue University was used for the

performance evaluation.



28

Table 3: Summary of Results



29

References

[BB87] M. Berger, S. Bokhari. A partitioning strategy for nonuniform problems on multi-

processors. IEEE Trans. Computers, C-36, 5 (May), pp. 570{580, 1987.

[Bok81] Shahid H. Bokhari. On the mapping problem. IEEE Transactions on Computers,

(3):207 { 213, 1981.

[Bok90] Shahid Bokhari. Communication overhead on the Intel iPSC-860 hypercube. Tech-

nical Report NAS1-18605, NASA, 1990.

[CHENHR89] N. P. Chrisochoides, C. E. Houstis, S. K. Kortesis E. N. Houstis, and J. R.

Rice. Automatic load balanced partitioning strategies for PDE computations. In E. N.

Houstis and D. Gannon, editors, Proceedings of International Conference on Supercom-

puting, pages 99{107. ACM Press, 1989.

[CHH90] N. P. Chrisochoides, C. E. Houstis, and E. N. Houstis. Geometry based mapping

strategies for PDE computation. In E. N. Houstis and D. Gannon, editors, Proceedings of

International Conference on Supercomputing, pages 115-127. ACM Press, 1961.

[CHENH+91] N. P. Chrisochoides, C. E. Houstis, P. N. Papachiou E. N. Houstis, S. K.

Kortesis, and J. R. Rice. Domain decomposer: A software tool for mapping PDE compu-

tations to parallel architectures. In R. Glowinski et al., editors, Domain Decomposition

Methods for Partial Di�erential Equations IV, pages 341{357, SIAM Publications, 1991.

[CHK+92] N. P. Chrisochoides, E.N. Houstis, S.B. Kim, M.K. Samartzis, and J.R. Rice.

Parallel iterative methods. In Advances in Computer Methods for Partial Di�erential

Equations VII, (R. Vichnevetsky. D. Knight and G. Richter, eds) IMACS, New Brunswick,

NJ, pages 134-141, 1992.

[CAHH92] N. P. Chrisochoides, M. Aboelaze, E. N. Houstis, and C. E. Houstis. The par-

allelization of some level 2 and 3 BLAS operations on distributed memory machines. In

Advances in Computer Methods for Partial Di�erential Equations VII, (R. Vichnevetsky.

D. Knight and G. Richter, eds) IMACS, New Brunswick, NJ, pages 119-126, 1992.

[CR92] N. P. Chrisochoides, J. R. Rice. Partitioning heuristics for PDE computations based

on parallel hardware and geometry characteristics. In Advances in Computer Methods

for Partial Di�erential Equations VII, (R. Vichnevetsky. D. Knight and G. Richter, eds)

IMACS, New Brunswick, NJ, pages 127-133, 1992.

[Chr92] N. P. Chrisochoides. On the Mapping of PDE Computations to Distributed Memory

MIMD Machines. CSD-TR-92-101, Computer Science Department, Purdue University,

W. Lafayette IN, 1992.

[Chr93] N. P. Chrisochoides, Elias Houstis and John Rice.Mapping Algorithms and Software

Environment for Data Parallel PDE Iterative Solvers Special Issue of the Journal of

Parallel and Distributed Computing on Data-Parallel Algorithms and Programming, Vol

21, No 1, pp 75{95, April, 1994.



30

[KR91] J. De Keyser, D. Roose. A software tool for load balanced adaptive multiple grids on

distributed memory computers. Sixth Distributed Memory Computing Conference, April

1991, pp. 22{128.

[DG89] K. Dragon, J. Gustafson. A low cost hypercube load-balance algorithm. 4th Conf.

Hypercube Concurrent Computers, and Applications, 583{590, 1989.

[Erc88] F. Ercal. Heuristic Approaches To Task Allocation For Parallel Computing. Ph.D.

thesis, Ohio State University, 1988.

[Far88] C. Farhat. A simple and e�cient automatic fem domain decomposer. Computers

and Structures, 28:579{602, 1988.

[FOS88] J. Flower, S. Otto, and M. Salana. Optimal mapping of irregular �nite element do-

mains to parallel processors. Parallel Computers and Their Impact on Mechanics, 86:239{

250, 1988.

[FF88] G. C. Fox, W. Furmanski. Load balancing loosely synchronous problems with a

neural network. 3rd Conf. Hypercube Concurrent Computers, and Applications, 241{278,

1988.

[Fox91b] G. C. Fox. Physical computation. Concurrency Practice and Experience, Dec.,

627{654. 1991b.

[FJL88] G. C. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon and D. Walker Solving

problems on concurrent processors. Prentice Hall, New Jersey, 1988.

[Fox86a] G. C. Fox. A graphical approach to load balancing and sparse matrix vector mul-

tiplication on the hypercube. In Proceedings of IMA Institute (M. Schultz, editor), pages

37{51. Springer{Verlag, 1986.

[Fox86b] G. C. Fox. A review of automatic load balancing and decomposition methods for

the hypercube. In Proceedings of the IMA Institute (M. Schultz, editor), pages 63{76.

Springer{Verlag, 1986.

[Fox91] G. C. Fox. The architecture of problems and portable parallel software systems.

Technical Report SCCS-134, NPAC, Syracuse University, 1991.

[FYK87] Kunio Fukunaga, Shoichiro Yamada, and Tamotsu Kasai. Assignment of job mod-

ules onto array processors. IEEE Transactions on Circuits and Systems, C{36(7):888{891,

1987.

[GJ79] Michael R. Gary and David S. Johnson. Computers and Intractability, A Guide to

the Theory of NP-Completeness. W. H. Freeman and Company, San Francisco, 1979.

[Gol89] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley. 1989.



31

[Got81] Satoshi Goto. An e�cient algorithm for the two-dimensional placement problem

in electrical circuit layout. IEEE Transactions on Circuits and Systems, CAS{28:12{18,

1981.

[S92] W. S. Hammond Mapping Unstructured Grid Computations to Massively Parallel

Computers. PhD thesis, Computer Science Department, Rensselaer Polytechnic Institute,

Troy, NY, 1992.

[Hey90] A. J. G. Hey. Concurrent supercomputing in Europe. 5th Distributed Memory

Computing Conf., 639-646. 1990.

[HRC+90] E. N. Houstis, J. R. Rice, N. P. Chrisochoides, H. C. Karathanasis, P. N. Papa-

chiou, M. K. Samartzis, E. A. Vavalis, Ko-Yang Wang, and S. Weerawarana. //ELLPACK:

A numerical simulation programming environment for parallel MIMD machines. In Pro-

ceedings of Supercomputing '90 (J. Sopka, editor), pages 97{107. ACM Press, 1990.

[HKB90] E. N. Houstis, S. K. Kortesis, and H. Byun. A workload partitioning strategy for

PDEs by a generalized neural network. Technical Report CSD{TR{934, Department of

Computer Sciences, Purdue University, 1990.

[Hop82] J. J. Hop�eld. Neural networks and physical systems with emergent collective

computational abilities. Proceedings of the National Academy of Sciences,

[HY81] L.A. Hageman and D.M. Young. Applied Iterative Methods. New York, 1981.

[KGV83] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing.

Science, 220:671{680, 1983.

[KL70] B. W. Kernighan and S. Lin. An e�cient heuristic procedure for partitioning graphs.

The Bell System Technical Journal, Feb., 291 { 307, 1970.

[KRYG82] D.R. Kincaid, J.R. Respess, D.M. Young, and R.G. Grimes. ITPACK 2C: a

Fortran package for solving large sparse linear systems by adaptive accelerated iterative

methods. ACM Transactions on Mathematical Software, 6:302{322, 1982.

[1] S-Y Lee, J. K. Aggarwal. A mapping strategy for parallel processing. IEEE Trans. on

Computers, Vol. C-36, No.4, April, 433{442. 1987.

[MF91] Nashat Mansour and Geo�rey Fox. A Hybrid Genetic Algorithm for Task Allocation

in Multicomputers. International Conference on Genetic Algorithms, pp 466-473, July

1991, Morgan Kaufmann Publishers.

[MF92] Nashat Mansour and Geo�rey Fox. Allocating Data to Multicomputer Nodes by

Physical Optimization Algorithms for Loosely Synchronous Computations. Concurrency:

Practice and Experience, Vol. 4, Number 7, pp 557-574, October 1992.

[MPCF93] N. Mansour, R. Ponnusamy, A. Choudhary, and G. Fox. Graph Contraction for

Physical Optimization Methods: A Quality-Cost Tradeo� for Mapping Data on Parallel

Computers. International Supercomputing Conference, Japan, July 1993, ACM Press.



32

[MO87] R. Morrison and S. Otto. The scattered decomposition for �nite elements. Journal

of Scienti�c Computing, 2:59{76, 1987.

[nCU91] nCUBE Corporation, nCUBE 2 Supercomputers, 1991.

[PAF90] C. Pommerell,M. Annaratone, and W. Fichtner. A set of new mapping and coloring

heuristics for distributed-memory parallel processors. In , Proceedings of Copper Mountain

Conference on Iterative Methods (T. M. Manteu�el editor), volume 4, pages 1{27, 1990.

[PSL90] A. Pothen, H. Simon, K-P Liou. Partitioning sparse matrices with eigenvectors of

graphs. SIAM J. Matrix Anal. Appl., 11, 3 (July), 430{452. 1990.

[PK89] C.-H. Lee, C.-I. Park and M. Kim. E�cient algorithm for graph-partitioning problem

using a problem transformation method. Computer-Aided Design, 21(10):611 { 618, 1989.

[PS82] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization Al-

gorithms and Complexity. Prentice-Hall, Englewood Cli�s, NJ 07632, 1982.

[SE87] P. Sadayappan and F. Ercal. Cluster-partitioning approaches to mapping parallel

programs onto a hypercube. In Proceedings of Supercomputing '87 (E. N. Houstis, T. S.

Papatheodorou, and C. Polychronopoulos, editors), pages 476{497. Springer{Verlag, 1987.

[SE87] P. Sadayappan, F. Ercal. Nearest-neighbor mapping of �nite element graphs onto

processor meshes. IEEE Trans. on Computers, vol. C-36, no. 12, Dec., 1408-1424. 1987.

[SBW91] J. Saltz, H. Berryman, J. Wu. Multiprocessors and run-time compilation. Con-

currency Practice and Experience, 3(6), 573-592. 1991.

[Sim90] D. Horst Simon. Partitioning of unstructured problems for parallel processing. Tech-

nical Report RNR-91-008, NASA Ames Research Center, Mo�et Field, CA, 94035, 1990.

[SS89] Y. Saad and M. H. Schultz. Data communication in parallel architectures. Parallel

Computing, 11:131{150, 1989.

[SW90] Quintin Stout and Bruce Wagar. Intensive hypercube communication. Journal of

Parallel and Distributed Computing, 10:167{181, 1990.

[TWM85] Thompson, F. Joe, Z. U. A. Warsi and C. Wayne Mastin. Numerical Grid gener-

ation. North-Holland, New York, 1985.

[Wal90] D. Walker. Characterizing the parallel performance of a large-scale, particle-in-cell

plasma simulation code. Concurrency Practice and Experience, Dec., 257-288. 1990.

[Wil91] R. D. Williams. Performance of dynamic load balancing algorithms for unstructured

mesh calculations. Concurrency Practice and Experience, 3(5), 457-481. 1991.


