
Parallel Block-Diagonal-Bordered Sparse Linear Solvers for

Electrical Power System Applications

D. P. Koester, S. Ranka, and G. C. Fox
School of Computer and Information Science and

The Northeast Parallel Architectures Center (NPAC)
Syracuse University

Syracuse, NY 13244-4100
dpk@npac.syr.edu, ranka@top.cis.syr.edu, gcf@npac.syr.edu

NPAC Technical Report | SCCS-552

Presented at
The Scalable Parallel Libaries Conference

Mississippi State University, Mississippi
6-8 October 1993

Abstract

Research is on-going that examines parallel direct

block-diagonal-bordered sparse linear solvers for irreg-

ular sparse matrix problems derived from electrical

power system applications. Parallel block-diagonal-

bordered sparse linear solvers exhibit distinct advan-

tages when compared to current general parallel direct

sparse matrix solvers. Our research shows that ac-

tual power system matrices can be readily ordered into

block-diagonal-bordered form, although load imbalance

becomes excessive beyond 16 processors, limiting scala-

bility for a single parallel linear solver within an appli-

cation. Nevertheless, other dimensions exist in elec-

trical power system applications that can be exploited

to e�ciently make use of large-scale multi-processors.

1 Introduction

Solving sparse linear systems practically dominates
scienti�c computing, but the performance of direct
sparse matrix solvers have tended to trail behind their
dense matrix counterparts [7]. Parallel sparse matrix
solver performance generally is less than similar dense
matrix solvers even though there is more inherent par-
allelism in sparse matrix algorithms than dense matrix
algorithms. Parallel sparse linear solvers can simulta-
neously factor entire groups of mutually independent

contiguous columns or rows without communications;
meanwhile, dense linear solvers can only update blocks
of contiguous columns or rows each communication cy-
cle. The limited success with e�cient sparse matrix
solvers is not surprising, because general sparse lin-
ear solvers require more complicated data structures
and algorithms that must contend with irregular mem-
ory reference patterns. The irregular nature of these
problems has aggravated the problems of implement-
ing scalable sparse matrix solvers on vector or paral-
lel architectures: e�cient scalable algorithms for these
classes of machines require regularity in available data
vector lengths and in interprocessor communications
patterns [2]. Parallel block-diagonal-bordered sparse
linear solvers o�er the potential for regularity often
absent from other parallel sparse solvers. Neverthe-
less, when scalability of sparse linear solvers is exam-
ined using real irregular sparse matrices, the available
parallelism in the sparse matrix can be as much the
reason for poor scalability as the parallel algorithm or
implementation.

Research is being performed to examine the ap-
plicability of parallel direct block-diagonal-bordered
sparse solvers for electrical power system sparse ma-
trix problems. This research focuses on real power sys-
tem applications, consequently, matrix sizes are lim-
ited and available parallelism is also limited because
the matrix structure de�nes the available parallelism
for a single parallel sparse linear solver. For power



system applications, however, the limited size of the
matrices and load imbalance due to limited parallelism
in the matrix structure signi�cantly limits scalability
for a single parallel linear solver. Our research into
specialized ordering techniques has shown that it is
possible to order actual power system matrices readily
into block-diagonal-bordered form, but load imbalance
becomes excessive beyond 16 processors, limiting scal-
ability for a single parallel linear solver within an ap-
plication. Nevertheless, other dimensions exist in elec-
trical power system applications that can be exploited
to e�ciently make use of large-scale multi-processors.
We believe that this research also has utility for other
irregular sparse matrix applications where the data
is hierarchical. Other sources of hierarchical matrices
exist, for example, electrical circuits, that have the
potential for larger numbers of equations than power
system matrices.

In this paper we examine the potential for scal-
ability in block-diagonal-bordered direct sparse lin-
ear solvers to be incorporated within electrical power
system applications. We focus on techniques to or-
der sparse power system matrices into block-diagonal-
bordered form, and examine scalability of the sparse
linear solver as a function of the available parallelism
in the power system network matrix. In section 2, we
introduce the electrical power system applications that
are the basis for this work. In section 3 we describe the
advantages of parallel block-diagonal-bordered sparse
matrix solvers. Paramount to exploiting the advan-
tages of this parallel linear solver is ordering the irreg-
ular sparse power systemmatrices into this form. Min-
imum degree ordering, recursive spectral bisection-
based ordering, and node-tearing-based ordering tech-
niques are discussed in section 4. Analysis of the per-

formance of these ordering techniques for actual power
system load ow matrices from the Boeing-Harwell se-
ries are presented. Lastly, in section 5, we discuss our
conclusions concerning these ordering techniques and
our conclusions concerning the scalability of block-
diagonal-bordered sparse linear solvers for power sys-

tem applications.

2 Power System Applications

The underlying impetuous for our research is to
improve the performance of electrical power system
applications to provide real-time power system con-
trol and real-time support for proactive decision mak-
ing. Our research has focused on load-ow and tran-
sient stability applications [1, 10]. Sparse linear solvers
are employed in both of these applications and linear

solvers are responsible for the majority of the oating
point operations. Scalability is desired in these appli-
cations because they have the potential to be utilized
across di�erent sized geographical areas, from single
electrical power utilities to regional power authorities.

Load-ow analysis examines steady-state equations
based on the network admittance matrix that repre-
sents the power system distribution network. Load-
ow analysis is used for identifying potential net-
work problems in contingency analyses, for examin-
ing steady-state operations in network planning and
optimization, and also for determining initial system
state in transient stability calculations [10]. Load ow
analysis entails the solution of non-linear systems of
simultaneous equations, which are performed by re-
peatedly solving sparse linear equations. Load ow
is calculated using the network admittance matrices,
which are symmetric positive de�nite and have spar-
sity de�ned by the power system network. The size of
these matrices is limited because there are generally
less than 2,000 sparse complex equations in the net-
work matrices for individual power systems, while re-
gional power authorities would be limited to less than
10,000 sparse complex equations in the network ma-
trices.

Transient stability analysis is a detailed simulation
of the power system, that models the dynamic behav-
ior of the electrical distribution networks, electrical

loads, and the electro-mechanical equations of motion
of the interconnected generators [1]. Transient stabil-
ity analysis can be used to perform selective detailed
analyses of generator commitment stability, and to
support crisis decision making during network recov-
ery. The transient stability problem is modeled by dif-
ferential algebraic equations (DAEs) with di�erential
equations representing the generators and non-linear
algebraic equations representing the power system net-
work that interconnects the generators. The DAEs
are in natural non-symmetric block-diagonal-bordered
form, with diagonal blocks of generator equations cou-
pled by the power system distribution network. In this
representation, there are as many coupling equations
as the entire sparse admittance matrix. However, it

it possible to order the admittance matrix to block-
diagonal-bordered form to order to increase available
parallelism. The size of the sparse matrices repre-
senting the DAEs have as many as 10,000 complex
equations for an individual power system, while re-
gional power authorities could have as many as 50,000
sparse complex equations in the matrix formed from
the DAEs.



3 Block-Diagonal-Bordered Sparse

Linear Solvers

Research is in progress to examine e�cient parallel
algorithms for the direct solution of sparse systems of
equations

Ax = b; (1)

where the ordered sparse matrix PAPT is in
block-diagonal-bordered form. Direct block-diagonal-
bordered sparse linear solvers exhibit distinct advan-
tages when compared to current general parallel direct
sparse linear solvers. All processors can be busy all of
the time. Task assignments for numerical factorization
on distributed-memory multi-processors depend only
on the assignment of mutually independent diagonal
blocks to processors and the processor assignments of
data in the last diagonal block. In addition, data com-
munications are signi�cantly reduced and those re-
maining communications are uniform and structured.
Figure 1 illustrates the factorization steps for a block-
diagonal-bordered sparse matrix with four mutually
independent sub-matrices. The mapping of data for
the independent sub-matrices to the four processors is
included in this �gure. Each step involves highly par-
allel operations on data in the mutually independent
diagonal blocks, operations on data in the last block,
and operations that couple the data in the mutually
independent blocks to data in the last block. This step
involves data communications for distributed-memory
multi-processor algorithms.

When A is a sparse symmetric positive de�nite lin-
ear system, then a specialized form of LU factoriza-
tion, Choleski factorization, can be used to determine
L such that PAPT = LLT . All features of paral-

lel block-diagonal-bordered sparse linear solvers are
applicable to parallel Choleski factorization, with the
only modi�cation to the algorithm requiring limiting
calculations to the lower triangular portion of the sym-
metric matrix and calculating only L, instead of both
L and U .

Parallel block-diagonal-bordered sparse linear
solvers require modi�cation to the traditional sparse
matrix preprocessing phase for parallel Choleski fac-
torization of ordering the matrix to minimize the num-
ber of calculations and symbolic factorization to iden-
tify the location of all �llin in order to use static
data structures [7]. Parallel block-diagonal-bordered
sparse linear solvers must include a specialized order-
ing step coupled to an explicit load balancing step in
order to place the original matrix in block-diagonal-
bordered form in such a manner as to minimize ad-
ditional calculations due to �llin during factorization

(1) FACTOR INDEPENDENT BLOCKS

LAST

BLOCK

(2) UPDATE LAST BLOCK USING
DATA FROM THE BORDERS

(3) FACTOR

P1

P2

P3

P1

P2

P3

P4

Σ Σ Σ Σ
ACCUMULATE

P4

0
0

0

0

0

0

P1 P2 P3 P4

P1

P2

P3

P4

Figure 1: Block Diagonal Bordered Sparse Matrix Fac-
torization for 4 Processors, P1 - P4

and to distribute the workload uniformly throughout
a distributed-memory multi-processor. Our research
has shown that the lower right-hand diagonal block in
a block-diagonal-bordered ordered power system ma-
trix is not extremely sparse, so it should be solved
using dense techniques to take advantage of memory
access regularity.

4 Ordering Sparse Matrices

Ordering symmetric sparse matrices is simply
renumbering the nodes in the graph to modify char-
acteristics of the corresponding matrix [3]. The com-
putational expense of sparse matrix ordering is not
unique to block-diagonal-bordered linear solvers, be-
cause all sparse linear solvers must consider ordering
to minimize �llin [3].

Our research is examining ordering techniques that:

� generate block-diagonal-bordered form matrices

� minimize calculations by minimizing �llin

� minimize the number of coupling equations

� distribute processor workloads uniformly

Unfortunately, it may not be possible to optimize on
all of the aforementioned constraints with irregular



matrices, but orderings of sparse power system ma-
trices do well at meeting these criteria because of the
unique hierarchical structure and limited number of
average network edges to nodes in power system net-
works. Minimum �llin does not imply optimum par-
allel performance, because parallel sparse linear solver
performance is dependent on load balance and inter-
processor communications. Minimizing the number of
coupling equations minimizes the number of calcula-
tions and also minimizes the size of the nearly dense
last block in a parallel block-diagonal-bordered sparse
matrix solver; however, the amount of potential scal-
ability may su�er if the workload for factoring the
independent blocks cannot be distributed uniformly
throughout a multi-processor. A parallel algorithm
cannot be scalable if excessive load-imbalance is en-
countered. When determining the optimal ordering
for a sparse matrix, the minimum total number of cal-
culations may be traded for the optimal ordering that
yields the most parallelism. While optimal ordering
algorithms are NP-complete [5, 7, 9], numerous heuris-
tics exist that can be used to identify network struc-
ture to generate block-diagonal-bordered form matri-
ces.

To transform a sparse matrix into block-diagonal-
bordered form requires ordering techniques that ef-
�ciently identify mutually independent sub-matrices
and coupling equations while also minimizing �llin.
Fillin are values that become non-zero when fac-
toring the matrix. For symmetric matrices, like
power systems network admittance matrices, a
graph-theoretical interpretation for independent sub-
matrices exists: independent sub-matrices simply have
no directly shared edges in their undirected graph.
A simple example with four independent portions of
the graph connected by nodes that form the couplings
equations is presented in �gure 2. No subgraph el-
ement has edges to any portion of the graph other
than within the local subgraph or connecting to the
coupling equations.

In addition to ordering the matrix into block-
diagonal-bordered form, load balancing is required in
the preprocessing phase. Due to the poor correla-
tion of the size of independent sparse diagonal blocks
with the workload, the actual number of calculations
in each independent block must be determined in a
pseudo factorization step during preprocessing. It is
possible to load balance nearly all steps in the fac-
torization of block-diagonal-bordered sparse matrices,
except the communications step. Communications are
regular with long messages, however, the length of
these messages and the corresponding updates within

SUBMATRIX 1

SUBMATRIX 2

SUBMATRIX 4

SUBMATRIX 3

COUPLING EQUATIONS

Figure 2: Graph with Four Independent Sub-Matrices

the last block, may vary between processors.
The preprocessing phase required for e�cient fac-

torization of block-diagonal-bordered form will be
more computationally intensive than the simple al-
gorithms required to prepare a matrix for numerical
factorization presented in the recent literature. In the
two techniques presented below that order sparse ma-
trices into block-diagonal-bordered form, each has two
phases. First, the independent sub-matrices are iden-
ti�ed and then the matrix is ordered with this addi-
tional constraint to minimize resulting �llin. The ad-
ditional processing requirements for these steps limit
the applicability of this technique to repetitive solu-
tions of static network structures, where the additional
e�ort can be amortized over multiple solutions of sim-
ilar linear systems. Because the sparse matrices from
power system applications are representative of actual
physical power distribution networks, the sparse ma-
trices in load-ow analysis and power system transient
stability analysis remain static over time periods sig-
ni�cantly greater than required to recalculate new or-
derings. The computational expense of each ordering
can be amortized over many applications of the block-
diagonal-bordered linear solver.

4.1 Minimum Degree Ordering

Minimum-degree ordering has been used in our re-
search in a two-fold manner:

1. to order symmetric power system admittance ma-
trices to provide baseline orderings with which to



compare the performance of other ordering tech-
niques

2. to order the independent sub-matrices in recur-
sive spectral bisection and node-tearing ordering
techniques

Minimum degree ordering is a greedy algorithm that
selects a node with a minimum number of connected
edges in the graph for factoring next, or the row to
be factored next is that row with a minimum num-
ber of variables [5]. This algorithm is not optimal
because truly e�cient techniques do not exist to re-
solve ties and numerous rows have equal numbers of
elements. Various versions of minimum degree order-
ing exist, with some versions employing heuristics to

minimize the number of calculations. Examples of
recursive spectral bisection-based ordering and node-

tearing-based ordering are presented below. To con-
trast the performance of those ordering techniques,
�gure 3 illustrates a minimum degree ordering of the
BCSPWR09.PSA matrix from the Boeing-Harwell se-
ries [4]. This matrix represents an actual 1723 bus
western US power network, and will be used for all or-
dering comparisons. Note that the matrix is the most
sparse in the upper left-hand corner, while the matrix
is less sparse in the lower right-hand corner. When
factoring this matrix, the number of zero values that
become non-zero while factoring the matrix, is 2,168.
Original nonzero values are represented in this �gure
in black, �llin locations are represented in gray, and
all remaining zero values are white. A bounding box
has been placed around the sparse matrix.

4.2 Recursive Spectral Bisection-Based
Ordering

Recursive spectral bisection can be used to pro-
duce block-diagonal-bordered matrices for the parallel
sparse matrix solvers. The recursive spectral bisection
algorithm has been developed to balance computa-
tional load in a manner that minimizes interprocessor
communications. While this goal is similar to gen-
erating block-diagonal-bordered sparse matrices with
independent blocks, the ordering technique based on
recursive spectral bisection requires two steps to gen-
erate matrices in this form. The �rst step in this order-
ing technique is to employ a multilevel version of the
recursive spectral bisection method for partitioning
unstructured graphs [8]. This technique computes the
smallest non-trivial eigenvector of the Laplacian ma-
trix associated with a graph to partition a sparse ma-
trix into a predetermined number of subgraphs where

Figure 3: Minimum Degree Ordering

the number of edges connecting subgraphs is mini-
mized.

The second step in this ordering technique requires

the extraction of the coupling equations to form the
block-diagonal-bordered matrix. Those edges that in-
terconnect multiple sub-matrices must be identi�ed
and moved to the set of coupling equations. The ini-
tial recursive spectral bisection partitioning method
yields approximately equal sized sub-blocks, and the
algorithm for this second step also considers the re-
quirement to balance the size of the sub-blocks as the
coupling equations are removed. Meanwhile, the num-
ber of coupling equations must be minimized to en-
sure good performance of the parallel block-bordered-
diagonal sparse matrix solver. A greedy heuristic al-
gorithm has been developed to perform this task while
addressing both optimization goals.

The heuristic developed to extract the coupling
equations from a graph ordered by recursive spectral
bisection is based on repetitively removing all nodes
with edges in multiple partitions and placing these

nodes in a separate set. To minimize the number of
coupling equations, nodes are removed in order of the
largest number of inter-partition connections. More-
over, when there is more than one node with the same
number of inter-partition connections, these ties are
broken by selecting nodes from partitions with the
largest number of remaining nodes. This maintains
equal numbers of nodes per independent partition, a



Figure 4: RSB-Based Ordering | 8 Processors

criteria of the �rst step in the algorithm.

Examples of recursive spectral bisection-based or-
dering are presented in �gures 4 and 5 respectively for

eight and sixteen partitions/processors, again using
the BCSPWR09.PSA matrix from the Boeing-Harwell
series [4]. Each partition could be assigned to a sep-
arate processor, with work proceeding independently
until communications is required to send data to the
last block before factoring the non sparse last block.
Note that mutually independent partitions are equal
sized, although the number of variables in each equa-
tion can vary. The number of �llin for these exam-
ples is 3,386 and 4,809 respectively, with a substantial
portion of the �llin occurring in the lower right-hand
corner.

The general performance of recursive spectral
bisection-based ordering is dependent on the number
of graph partitions, which is equal to the number of
independent partitions. The number of coupling equa-
tions and the size of the last block is dependent on the
number of processors, which is illustrated in �gure 6.

As the number of processors increases, so does both
the size of the last block and load imbalance. Load
imbalance is de�ned as the ratio of the di�erence of
the maximumand minimumnumbers of oating point
operations divided by the maximum number of oat-
ing point operations per processor and illustrates the
percentage of time that the processor with the least
amount of work is inactive. Load imbalance for recur-

Figure 5: RSB-Based Ordering | 16 Processors

sive spectral bisection-based ordering as a function of
the number of processors is presented in �gure 7. Even
for only two partitions of the matrix, there is load im-
balance. Load imbalance is approximately 20% for
two processors and nearly 90% for greater than eight
processors. While this ordering technique attempts to
maintain equal numbers of elements in the graph par-
titions, the actual number of oating point operations
is dependent on the sub-matrix structure.

0

100

200

300

400

4 8 16 32 64

N
O

D
E

S
 IN

 L
A

S
T

 B
LO

C
K

NUMBER OF PROCESSORS

Figure 6: RSB | Nodes in Last Block



0

20

40

60

80

100

4 8 16 32 64

LO
A

D
 IM

B
A

LA
N

C
E

NUMBER OF PROCESSORS

Figure 7: RSB | Load Imbalance

4.3 Node-Tearing-Based Ordering

The node-tearing-based ordering is designed to iso-
late both independent blocks and coupling equations
within a sparse matrix while minimizing the number
of coupling equations by examining the natural struc-
ture in the matrix. Tearing here refers to breaking
the original problem into smaller sub-problems, whose
partial solutions can be combined to give the solution
of the original problem. Node-tearing nodal analysis
is a specialized form of diakoptic analysis [6] that has
been developed especially for power system network
analysis [9]. Examples in reference [9] illustrate that
this technique also has validity for general structural
analysis.

The basic goal of node-tearing analysis is to parti-
tion a graph into two arbitrary subsets that contain
mutually independent sub-blocks and coupling equa-
tions. The tearing optimization problem attempts
to minimize the number of elements in the coupling
equations over all distinct partitions of sub-matrices
and coupling equations while also meeting a constraint
that limits the size of any sub-matrix. By modifying
this parameter, control can be exercised over the shape
of the ordered sparse matrix. When the maximum
size of the diagonal blocks is small, then the matrix
is nearly in diagonal-bordered form. However, when

this value is large, the number of coupling equations
decreases as some of these equations are moved into
diagonal blocks as smaller diagonal blocks are concate-
nated. Moreover, this technique can be applied recur-
sively to reduce the bandwidth of the diagonal, except
for controlled sized sub-borders. Because both the size
of the major and minor blocks are user-selectable, the
size of these blocks can be chosen to maximize perfor-

Figure 8: Node-Tearing-Based Ordering | Maximum
Blocksize of 64

mance for vector processor implementations.
This graph optimization problem belongs to the

family of NP-complete problems, so an e�cient heuris-
tic algorithm has been developed, based on examining
the contour of the graph [9]. The computational com-
plexity of this algorithm is

O(max
8 i

jAij � n) (2)

due to the fact that all nodes in the graph must be ex-
amined and for each element in the contour tableau,
all elements of the adjacency set, Ai, must be exam-
ined for the next node. Because the matrix is sparse,
the maximumnumber in the adjacency set will be sub-
stantially less than n. Examples of node-tearing-based
ordering are presented in �gures 8 and 9 respectively
for maximumdiagonal block sizes of 64 and 128 nodes.
Figure 10 illustrates a recursive application of node-
tearing with maximumblock size of 128 nodes for the
larger blocks and maximum size of 16 for the diagonal
sub-blocks within the larger blocks. These examples

also use the BCSPWR09.PSA matrix of the Boeing-
Harwell series [4]. The number of �llin for these or-
dered matrices is 3,248, 3,486, and 3,838 respectively,
with a substantial portion of the �llin occurring in the
lower right-hand corner.

The general performance of node-tearing-based or-
dering is dependent on the maximumnumber of nodes
in a diagonal block, and the number of processors that



Figure 9: Node-Tearing-Based Ordering | Maximum
Blocksize of 128

Figure 10: Recursive Node-Tearing-Based Ordering |
Maximum Blocksizes of 128 and 16

100

150

200

250

300

16 32 64 96 128 160

N
O

D
E

S
 IN

 L
A

S
T

 B
LO

C
K

MAXIMUM NODES IN A BLOCK

Figure 11: Node-Tearing | Nodes in Last Block

0

20

40

60

80

100

4 8 16 32

LO
A

D
 IM

B
A

LA
N

C
E

NUMBER OF PROCESSORS

16 NODES
32 NODES
64 NODES
96 NODES

128 NODES
160 NODES

Figure 12: Node-Tearing | Load Imbalance

the independent sub-matrices are spread over. The

number of coupling equations and the size of the last
block is dependent only on the maximum number of
nodes in a diagonal block, which is illustrated in �g-
ure 11. It is desirable to minimize the size of the last
block, but this can cause load imbalance as the number
of processors increases. Families of curves illustrating
load imbalance as a function of the number of proces-
sors is presented in �gure 12. For all ordering with
di�erent size diagonal blocks, there is perfect load-
balancing for four processors, however, as the number
of processors increases, so does load imbalance.

5 Conclusions

We have extensively examined ordering techniques
based on node-tearing and recursive spectral bisection.
The implementations of these ordering techniques



include simulated factorization of independent sub-
matrices to examine load-imbalance. Node-tearing-
based techniques produce numerous diagonal blocks,
and the workload assigned to separate processors is de-
termined in an explicit load balancing step. Recursive-
spectral bisection attempts to balance the workload by
assigning equal numbers of network nodes or matrix
rows/columns per processor. However, work in sparse
LU factorization is dependent on the number of non-
zero and �llin values in the partition rather than the
number of nodes.

Node-tearing-based ordering can vary the maxi-
mum size of the diagonal blocks by a user-selectable
parameter. Varying the size of the diagonal blocks af-
fects load imbalance within the diagonal blocks and
borders, while also a�ecting the size of the last block.
It is desirable to minimize the size of the last block,
because that portion of the matrix is not sparse and
traditional dense factorization techniques are used to
minimize indexing overhead. The computational com-
plexity of dense solvers is O(n3), so even a small re-
duction in the number of coupling equations can have
a signi�cant impact on parallel solver performance.

5.1 Conclusions on Scalability

Node-tearing-based ordering o�ers more scalability
than recursive spectral bisection-based ordering tech-
niques, although the structure in the electrical power
system matrices does not permit unlimited scalability.
Node-tearing-based ordering produces numerous diag-
onal blocks that contribute to e�ective load balancing
for four to sixteen processors, while o�ering the po-
tential to generate matrices in a form that could be
factored e�ciently by vector processors.

Our research into specialized ordering techniques
has shown that load imbalance becomes excessive be-
yond 16 processors, limiting scalability for a single par-
allel linear solver. Nevertheless, other dimensions exist
in electrical power system applications that can be ex-
ploited to e�ciently use large numbers of processors.
While a limited number of processors can be e�ciently
applied to a single power system simulation, multiple
events can be simulated simultaneously.

5.2 Research Status

This paper has reported on our research into net-
work ordering techniques for block-diagonal-bordered
sparse linear solvers. Implementations of parallel
block-diagonal-bordered sparse matrix solvers are in
progress, and these prototype solvers will be utilized
to verify multiprocessor performance. This research

is being closely coordinated with parallel di�erential
algebraic equation (DAE) research being performed
at Northeast Parallel Architectures Center (NPAC) at
Syracuse University.

Acknowledgments

We thank Alvin Leung, Kamala Anupindi, Nancy
McCracken, Paul Coddington, and Tony Skjellum for
their assistance in this research. This work has been
supported in part by Niagara Mohawk Power Cor-
poration, the New York State Science and Technol-
ogy Foundation, the NSF under co-operative agree-
ment No. CCR-9120008, and ARPA under contract
#DABT63-91-K-0005.

References

[1] A. R. Bergen. Power Systems Analysis. Prentice-
Hall, 1986.

[2] J. J. Dongarra, D. C. Sorensen I. S. Du�, and
H. A. van der Vorst. Solving Linear Systems on

Vector and Shared Memory Computers. SIAM,
Philadelphia, 1991.

[3] I. S. Du�, A. M. Erisman, and J. K. Reid. Direct
Methods for Sparse Matrices. Oxford University
Press, Oxford, 1990.

[4] I. S. Du�, R. G. Grimes, and J. G. Lewis.
Users' Guide for the Harwell-Boeing Sparse MA-
trix Collection (Release I). Technical Report
TR/PA/92/86, CERFACS, 1992.

[5] A. George and J. Liu. The Evolution of the Mini-
mumDegree Ordering Algorithm. SIAM Review,
31(1):1{19, March 1989.

[6] H. H. Happ. Diakoptics - The Solution of System
Problems by Tearing. Proceedings of the IEEE,
62(7):930{940, July 1974.

[7] M. T. Heath, E. Ng, and B. W. Peyton. Parallel
Algorithms for Sparse Linear Systems. In Parallel
Algorithms for Matrix Computations, pages 83{
124. SIAM, Philadelphia, 1991.

[8] A. Pothen, H. Simon, and K.. P. Liou. Partition-
ing Sparse Matrices with Eigenvalues of Graphs.
SIAM J. Mat. Anal. Appl., 11(3):pp. 430{452,
1990.



[9] A. Sangiovanni-Vincentelli, L. K. Chen, and L. O.
Chua. Node-Tearing Nodal Analysis. Technical
Reprot ERL-M582, Electronics Research Labora-
tory, College of Engineering, University of Cali-
fornia, Berkeley,, October 1976.

[10] Y.Wallach.Calculations and Programs for Power

System Networks. Prentice-Hall, 1986.


