Concurrent DASSL: A Second-Generation, DAE Solver Library

Alvin Leung

Northeast Parallel Architectures Center
Syracuse University

Syracuse, NY 13244

Abstract

The goal of the most recent revision of Concurrent
DASSL code s to recast it to conform to the Tool-
box’s object-oriented destgn philosophy and to enhance
its performance. In this report, we will describe n
detail improvements in three categories: error han-
dling, performance enhancement and uniform inter-
faces. Through these improvements, we are able to
achieve our goals.

1 Introduction

Concurrent DASSL (Cdassl) implements the well-
known algorithms by Petzold incorporated in the For-
tran codes DASSL [1] and DASPK [2]. Since the For-
tran code DASPK is an functionally enhanced version
of DASSL, we will refer to both the Fortran codes
DASSL and DASPK as DASPK. Concurrent DASSL
dates back to 1989, and we have reworked Concurrent
DASSL to reflect improvements in our understanding
of needs for concurrent, scalable DAE solvers.

The goals of this revision are to remold Cdassl into
an object-oriented library and to enhance its perfor-
mance. In this report, we will describe three recent
important improvements that we have make to achieve
our goals.

2 Error Handling

In this version of Cdassl, we have made compro-
mises on error handling to present Cdassl in an object-
oriented programming style and to be a more user
friendly library. The original DASPK code reports
three major categories of runtime error, for proper
data storage, for programming error and data con-
sistency and for numerical error.

Anthony Skjellumf

Geoffrey Fox

TNSF Engineering Research Center
Mississippi State University
Mississippi State, MS 39762

The DASPK code provides these comprehensive
data and storage integrity tests both during initial
startup and continuation call. This is necessary be-
cause DASPK’s data storage is provided by the user
through multiple large arrays. These arrays are then
used to store DASPK’s initial state and the state for
continuation calls. The users can determine the state
of DASPK by indexing the information stored in the
arrays. In addition, the performance of DASPK can
be adjusted by modifying certain variables, for exam-
ple, RTOL and ATOL, where threshold of relative er-
ror and absolute error is stored. Consequently, a mi-
nor programming mistake can wipe out an important
piece of DASPK’s state information.

The tests on data and storage integrity are still con-
ducted in the first version of Concurrent DASSL be-
cause 1t requires the user to provide memory storage
and the C language does not provide data protection.
However, the safety of data in Cdassl is much im-
proved over DASPK because pointers are used to bind
symbolic names to the subsets of data. Consequently,
the risk of programming error is reduced, since more
descriptive names are used instead of index number.

In an object-oriented programming environment,
an object 1s created by a constructor function and is
destroyed by a destructor function. In addition, the
information within a class structure is protected by ac-
cess permission. The access permission is set at com-
pile time. Furthermore, the protected data can only
be manipulated through member and friend functions.
As aresult, runtime data storage and sanity checks are
no longer necessary.

In the new version of Cdassl, a constructor and a de-
structor function is provided for the creation of Cdassl
data structures. This not only eliminates part of the
mentioned tests, but also simplifies the set-up proce-
dure for using Cdassl. Since the risk of programming
error is reduced by the use of symbolic names, data in-
tegrity checks are eliminated. As a result, the Cdassl’s
code complexity and sequential overhead is reduced.

D Work done for column combine communication

=

Work Done

Processor Column

Processor Row

Processor before column combine
communication.

Processor after global combine
communication.

Figure 1:

D Work donefor column combine communication

=

N

Work Done

Processor Column

Processor Row

Processor before column combine Processor after column combine
communication. communication.

Figure 2:

The issue of numerical error reporting, and clean
exit from a concurrent library has not been exam-
ined in detail. Each error reporting requires additional
communication to the system. Hence, special atten-
tion is required to balance the benefit of accurate error
reporting and the penalty on performance.

To post a warning and error flag successfully, Cdassl
uses a global combine function to provide communica-
tion among all processes. However, a global combine
communication synchronizes all processes involved as
shown in figure 1. In other words, every error report-
ing call will reduce Cdassl’s performance by a certain
amount. Consequently, a trade-off has to be made to
minimize the cost of the warning and error reporting.
This is accomplished by reducing the number of error
posting points and by communicating status flags af-
ter the existing synchronization points, such as, norm
or tolerance computation. During these calculations,
column or row combine functions are already used to
communicate and to compute results. As a result, all
processors has already been row-wise or column-wise
synchronized as shown in figure 2, the added synchro-

D Work done for global combine communication
D Work done for column combine communication

=

Work Done

‘ Processor Column

\

Processor Row

Processor before column combine
communication.

Processor after column and global
combine communication,

Figure 3:

nization (figure 3) over the processors grid will have
reduced impact on Cdassl’s performance. In addition,
numerical error condition is most likely detected just
after the norm or tolerance computation because most
of these calculations are used to detect numerical in-
stability of the Cdassl’s computation. Furthermore,
these calculations happen regularly during the course
of Cdassl’s operation, so the warning and error sta-
tus i1s reported with reasonable reliability compared
to the original, sequential code. As a result, Cdassl’s
runtime warning and error handling provides a rea-
sonably accurate picture of Cdassl’s operation without
significant performance penalty.

3 Performance Enhancement

In the new version of Cdassl, we have rewritten the
code so that it conforms to an object-oriented pro-
gramming style. This opens the way for Cdassl to tap
into high performance numerical subroutines.

The first generation Cdassl code processes concur-
rent vectors (Cvectors) by using in-line loops over
the private data of Cvector. By manipulating Cvec-
tor in this fashion, the implementation of Cdassl’s
function depends on the implementation of Cvector.
This 1mplies that Cdassl and Cvector cooperate to
get Cdassl’s task done. In C programming environ-
ment, this is acceptable and highly efficient. How-
ever, this approach foregoes the portability of Cdassl
because whenever Cvector’s implementation changes,
Cdassl’s code has to change accordingly. Since Cvec-
tor is one of the Toolbox’s basic data storage classes,
Cvector’s implementation will be updated to reflect
the latest enhancement offered by technology. On

double tbx_min_fabs_Cvector(Cvector *X);
double tbx_max_fabs_Cvector(Cvector *X);

Figure 4: Two of the Cvector functions most fre-
quently used by Cdassl. Both of these functions use
row or column combine communication function.

the other hand, if we change the relationship between
Cdassl and Cvector from partnership to master-slave,
then Cdassl can be implemented independent from the
Cvector classes with the exception of a few minor op-
erations, which we can easily implemented as friend
functions of Cvector.

The Second generation Cdassl code uses Cvector’s
member and friend functions to manipulate a Cvec-
tor structure as an object. These member and friend
functions are categorized into four types.

1. Cdassl specific friend function

2. Initiation member function

3. Communication intensive friend function
4. Numerically intensive friend function

The first and second categories provide nothing
more than Cdassl specific and general purpose ini-
tiation operation. The next two function types,
however, provide significant performance impact for
Cdassl and/or other Toolbox libraries. We will give
a brief description for the communication intensive
friend function and the numerically intensive friend
function.

The communication intensive friend functions,
which are shown in figure 4, are newly implemented
by using Zipcode row or column combine functions.
After the use of these functions, the processor grid
is partially synchronized. However, these functions
send only short messages. So the special short mes-
sage communication facility can be used, if it exists.
Typically, these functions are used in norm and toler-
ance calculation in Cdassl.

The numerical computation intensive friend func-
tions, which are shown in figure 5, are implemented
by using level 1 Concurrent BLAS (CBLAS) [3].
CBLAS are highly optimized Cvector operators and
may exploit special machine hardware, such as vec-
tor processors. Consequently, Cdassl will have a
significant performance increase, whenever high per-
formance CBLAS are available. On many systems,
portable level-1 CBLAS, defined in terms of BLAS,

will be sufficient to attain such high performance.

By using these member and friend functions, not
only the complexity of maintaining Cdassl code is re-
duced, but Cdassl is also provided a way to exploit the
high performance computation subroutines.

4 Uniform interfaces

In the original Cdassl, the Newton and the lin-
ear system solver are tightly integrated into Cdassl’s
code and data structure. This proves to be the major
obstruction when incorporating DASPK’s functional-
ities into Cdassl. As a result, we reorganized and re-
designed the Cdassl code before DASPK’s functional-
ities are incorporated.

We first reorganized Cdassl’s data structure. In
the first version of Cdassl, a multi-layer structure,
Cdassl_matrix, is designed and used to keep track of
which solver is being used and the solver’s specific pa-
rameters. In other words, Cdassl_matrix is designed
for the sole convenience of resolving function pointers
at run time. This i1s a property that Cdassl inherited
from its sequential parent. The complexity of original
Cdassl code is high because many pointers are needed
to maintain the structure and to dereference the in-
formation. The runtime code efficiency also decreases
because of the multiple indirect reference. However,
this complex data structure design can be avoided, if
the user is encouraged to resolve function pointers at
compile time.

In most cases, the Cdassl user has a clear idea which
solver to use to solve the problem. Hence, we elimi-
nated the Cdassl_matrix structure. We were imme-
diately rewarded by a more clear global view of how
Cdassl’s data should be organized. Under the new
organization, Cdassl is freed from the binding of the
linear system’s matrix structure. Only the Jacobian
computation function needs to manipulate the linear
system’s matrix structure, but the Jacobian function
is now bundled with the Newton solver. As a result,
we force Cdassl to conform to the object-oriented de-
sign philosophy.

We then redesigned Cdassl’s code to eliminate the
state machine of Newton and linear system solver. In
place of the old Newton and linear system solver, we
installed our new uniform calling interfaces. Hence,
Cdassl no longer depends on a particular implemen-
tation of Newton solver and it has no knowledge of
the linear system solver. This increases the flexibility
of the Cdassl code tremendously. For example, Cdassl
can be easily adapted to use a block-diagonal-bordered
direct solver [4] by using the appropriate Jacobian
computation function and a Newton solver, which uses

void tbx_mult_Cvector(Cvector *D, Cvector *X);

void tbx_div_Cvector(Cvector *D, Cvector *X);

void tbx_cblas_cdscale(int N, double alpha, Cvector *X, int Xs, int Xinc);
Cvector *tbx_cblas_ccdcopy(int N, Cvector *Y, int Ys, int Yinc, Cvector #X, int Xs,

int Xinc);

Cvector *tbx_cblas_ccdaxpy(int N, double alpha, Cvector *Y, int Ys, int Yinc, Cvector *X,

int Xs, int Xinc);

Figure 5: Five of the most frequently used level-1 Cblas functions by Cdassl. Most of these functions do not

require any communication.

the direct solver. As a result of these changes, Cdassl
has been reorganized and redesigned better to con-
form to Multicomputer Toolbox’s object-oriented de-
sign philosophy.

The uniform calling interface [5] consists of a struc-
ture, which bundles the information needed by a class
of functions, a constructor and a destructor of the
structure. All the information which is included in the
interface structure, is referenced by a pointer of type
void. In addition, no memory or function is associated
with the structure during its creation. Therefore, the
uniform calling interfaces provide a pure virtual class.
If a derived class “public inherit” the uniform calling
interface class, then the derived class is provided a
uniform interface. Combining this interface class with
the derived classes, which conform to the function in-
put and output characteristic, the user is furnished the
flexibility for “part-swapping.” In figure 6, a outline
of changing Cdassl’s linear solver form a dense direct
solver to a sparse direct solver. This uniform calling
interface will also available for DAE and ODE solver.

5 Summary

In this paper, we have described three major types
of changes that we made to the Cdassl code. These
new changes bring the Cdassl library up to the Mul-
ticomputer Toolbox’s design standard. In addition,
the new code opens the way for Cdassl to exploit the
high performance computing library and an easy way
for Cdassl users to experiment using different Newton
solver and linear solvers to solve their problem. Conse-
quently, the second generation Cdassl library has been
significant improved over the first generation both in
code design, in the simplicity of use and in the perfor-
mance.

Acknowledgments

This work has been supported in part by Niagara
Mohawk Power Corporation, the New York State Sci-
ence and Technology Foundation, the NSF under co-
operative agreement No. CCR-9120008, and ARPA
under contract No. DABT63-91-K-0005.

Special thanks to D. P. Koester and Paul Codding-
ton for proof reading this paper.

References

[1] Linda Petzold, “ddassl.for - differential /algebraic
solver,” Computing and Mathematics Research Di-
vision, Lawrence Livermore National Laboratory,

June, 1991.

[2] Linda R. Petzold, Peter N. Brown, Alan C. Hind-
marsh, and Clement W. Ulrich, “ddaspk.for - dif-
ferential /algebraic solver,” Computing and Math-
ematics Research Division, Lawrence Livermore
National Laboratory, Sept., 1990.

[3] Robert D. Falgout, Anthony Skjellum, Steven
G. Smith and Charles H. Still, “The Multicom-
puter Toolbox Approach to Concurrent BLAS and
LACS,” Numerical Mathematics Group, Lawrence
Lwermore National Laboratory, Feb., 1992,

[4] D. P. Koester, S. Ranka and G. C. Fox, “Parallel
Block-Diagonal-Bordered Sparse Linear Solvers for
Electrical Power System Applications,” The Scal-
able Parallel Libraries Conference, Oct., 1993.

[5] Anthony Skjellum, Alvin P. Leung, Steven G.
Smith, Robert D. Falgout, Charles H. Still, Chuck
H. Baldwin, “The Multicomputer Toolbox - First-
Generation Scalable Libraries,” 27th Hawait In-
ternational Conference on Systems Sciences, June,

1993.

Dense matrix solver

Matrix_LU_info = new_Clu_info(\ldots); /* Creates the LU info. */
linear_solver = new_method(Clu_solver, \ldots); /* bundle the dense solver */
Jacobian_fn = new_method(cdassl_ffdjac, \ldots); /* bundle the dense Jac. fun. */

Sparse matrix solver

Matrix_LU_info = new_Dlu_info(\ldots); /* Creates the LU info. */
linear_solver = new_method(Dlu_solver, \ldots);/* bundle the sparse solver */
Jacobian_fn = new_method(cdassl_vsfdjac, \ldots); /* bundle the sparse Jac. fun. */

Figure 6: The major code differences between Cdassl using dense and sparse LU solver

[6] Scott Meyers, FEffective C++, Addison-Wesley,
1992.

[7] Bryan Flamig, Practical Data Structures in C++,
Wiley, 1993.

[8] James O. Coplien, Advanced C++, Addison-
Wesley, 1992.

