
Design and Evaluation of Primitives for Parallel I/0 �

Rajesh Bordawekar Juan Miguel del Rosario Alok Choudharyy

Northeast Parallel Architectures Center, 3-201 CST, Syracuse Univ., Syracuse, NY 13244

Abstract

In this paper, we show that the performance of par-

allel �le systems can vary greatly as a function of the

selected data distributions, and that some data distri-

butions can not be supported.

We have devised an alternative scheme for conduct-

ing parallel I/O - the Two-Phase Access Strategy -

which guarantees higher and more consistent perfor-

mance over a wider spectrum of data distributions.

We have designed and implemented runtime primitives

that make use of the two-phase access strategy to con-

duct parallel I/O, and facilitate the programming of

parallel I/O operations. We describe these primitives

in detail and provide performance results which show

that I/O access rates are improved by up to several

orders of magnitude. Further, we show that the vari-

ation in performance over various data distributions

is restricted to within a factor of 2 of the best access

rate.

1 Introduction

Parallel computers have become the preferred com-

putational instrument of the scienti�c community due

to their immense processing capacities. Some of the

commercially available parallel computers include In-

tel Paragon [10], nCUBE [13], CM-5 [15].

As scientists expand their models to describe phys-

ical phenomena of increasingly large extent, the mem-

ory capacity of parallel machines, although immense,

become insu�cient to contain all the required compu-

tational data, and I/O becomes important [1]. Thus,

a system with limited I/O capacity can severely limit

�This work was sponsored by ARPA under contract #
DABT63-91-C-0028. Alok Choudhary's research is also sup-
ported by an NSF Young Investigator Award CCR-9357840.
The content of the information does not necessarily reect the
position or the policy of the Governmentand no o�cial endorse-
ment should be inferred. This research was performed in part
using the Intel Touchstone Delta System operated by Caltech
on behalf of the Concurrent Supercomputing Consortium. Ac-

cess to this facility was provided by the Center for Research on
Parallel Computation (CRPC).

yAlso with ECE Dept.

the performance of the entire program - this is known

as the I/O bottleneck problem. This problem has be-

come critical, and the need for high I/O bandwidth has

become signi�cant enough that most parallel comput-

ers such as the Intel iPSC/2 [8], Intel iPSC/860 [14],

Intel Touchstone Delta [9, 4], and the nCUBE [11] now

provide some measure of support for parallel I/O.

The goal of parallel I/O is to provide a bottleneck

free communication pathway between the processors

and I/O devices. This is made possible in hardware

by the scalability of the hardware architecture design.

For example, as shown in �gure 1, the I/O connec-

tions between the processor array and the I/O de-

vices, which are a scalable collection of multiple phys-

ical paths of �xed bandwidth, are viewed as a single

channel of higher bandwidth. In software, a parallel

�le system provides increased performance by declus-

tering data across the disk array (a technique called

striping) thereby distributing the access workload over

multiple servers.

Parallel �le systems vary in their level of support for

data distribution mappings; some provide no support

whatsoever. The inconvenience of having to explicitly

specify and control �le access for a given data distribu-

tion has prompted recent proposals for the inclusion of

parallel I/O support primitives into parallel program-

ming languages such us HPF Fortran [7] and Vienna

Fortran [2]. These primitives could then be imple-

mented as library routines which accept a description

of the desired data distribution from the user, and

manage data access based upon the correspondence

between the user mapping, and the mapping de�ned

by the parallel �le system (i.e., the distribution of data

across the disks).

1.1 Contributions of the paper

For experiments presented in this paper we limit

overselves to the Intel Touchstone Delta �le system

called Concurrent File System (CFS). We show that

the performance of the CFS can vary greatly as a

function of the data distribution. Further, that paral-

lel I/O for certain common data decompositions can

Figure 1: Scalability in computation and I/O

not be supported by CFS (i.e., access for these is se-

quentialized). Based upon these observations, we have

devised an alternative scheme for conducting parallel

I/O - the two-phase access strategy - which guarantees

more consistent performance over a wider spectrum of

data distributions [11].

In order to facilitate the programming of parallel

I/O operations, we have designed a set of primitives

which we have implemented in a runtime library that

makes use of the two-phase access strategy. This run-

time system supports a number of parallel �le systems,

thus providing a common I/O interface for parallel

programs.

1.2 Organization

The purpose of this paper is to describe the I/O

primitives interface design and to present some per-

formance results. The paper has the following or-

ganization. In section 2, we overview current paral-

lel language support for data distribution. In section

3, we consider several data decomposition strategies,

present performance results for the CFS based upon

direct access (i.e., the access strategy used by a typical

parallel program on the basis of programmer speci�ed

data distribution), and analyze the costs associated

with this type of access. Performance results were ob-

tained on the Intel Touchstone Delta [9, 3]. In section

4, we describe the design and implementation of the

runtime system employing the two-phase strategy. In

section 5, we present experimental performance results

for the runtime primitives. Finally, we summarize in

section 6.

Block-BlockCyclic-Cyclic

Row Block Column Block

0 1 2 3

0 2 0 2
1 3 1 3
0 2 0 2
1 3 1

0

3

1

2
3

0
1
2
3

Figure 2: Data Distributions in Fortran 90D/ HPF

2 Languages Supporting Data Distri-

bution

We concentrate on parallel programs which use

the Single Program Multiple Data (SPMD) program-

ming paradigm for MIMD machines. This is the most

widely used model for large-scale scienti�c and engi-

neering applications. In such applications, parallelism

is exploited by a decomposition of the data domain.

To achieve load-balance, express locality of access, re-

duce communication, and other optimizations, sev-

eral decompositions and data alignment strategies are

often used (e.g., block, cyclic, along rows, columns,

etc.) (�gure 2). To enable such decompositions to

be expressed in a parallel program, several parallel

programming languages or language extensions have

emerged. These languages provide intrinsics that per-

mit the expression of mappings from the problem do-

main to the processing domain, allow a user to de-

compose, distribute and align arrays in the most ap-

propriate fashion for the underlying computation. An

example of parallel languages which support data dis-

tribution includes Vienna Fortran [2], Fortran D [5]

and High Performance Fortran or (HPF) [7, 6].

In order to address the I/O bottleneck problem,

these languages propose to provide some support for

parallel I/O operations. Important examples include

Vienna Fortran [2] and High Performance Fortran [7,

6].

3 Analysis of Data Distributions for

Parallel I/O

In this section, we will analyze the data mapping

from the disks (distributed �les) to the compute nodes.

We discuss the I/O costs associated with various data

distributions and present experimental results.

3.1 Mapping Problem

In order to perform a mapping from distributed �le

to processor array, we note that two mappings have

to be considered. The organization of the �le data

over the set of disks represents the �rst mapping, M1.

The second mapping, M2, involves the (more familiar)

mapping of data over the set of processing elements.

For parallel I/O to take place e�ciently, both these

mappings must be resolved into a data transfer strat-

egy. Current parallel �le systems on the nCUBE/2 [11]

and the Intel Touchstone Delta resolve these mappings

into a single data transfer mapping which is used to

compute proper source and destination addresses dur-

ing �le data access - we call this direct access. Prob-

lems arise from this approach in cases where the �rst

and second mappings resolve into a data transfer map-

ping (representing an access strategy) that performs

poorly. In succeeding sections, we will show that such

problematic mapping pairs are quite common.

The enormous costs associated with such a direct

access strategy mapping is illustrated in �gure 3. In

section 3.3, using the experimental results, we show

that this type of access strategy gives very poor per-

formance.

To illustrate a mapping that can not be supported

by existing systems, consider a program that has to

read data into a distributed array in a Block-Block de-

composition (see Figure 2). Suppose that the data is

stored over the distributed disks in column-major or-

der. The current Intel CFS (Concurrent File System)

could not support this requirement because it does

not allow any processor to read data while others idle,

this is illustrated in �gure 4. The exception to this

is mode 0 (independent �le pointers to a shared �le);

this mode would require the programmer to manage

�le pointer adjustment throughout the program.

3.2 Direct Access Cost Analysis

Since the cost of data access is dominated by per

message startup latency, and seek time, the cost of

data movement can be evaluated on the basis of the

total number of requests needed to complete a trans-

action (e.g., process of reading in a 4Kx4K matrix into

the computational array). Figure 3 illustrates the de-

pendence of the number of requests on data distribu-

tion; we see that a Row-Cyclic distribution generates

many more requests than a Row-Block distribution.

0

1 3

0

1

5

6

4

2

2 4

 3

6

5

Disks

P0

P1

P2

P3

P Processing Elements
N Blocks

Block-Block Distribution

Figure 4: CFS Access for Block-Block Distribution

with Column-major Disk Storage Pattern

Table 1: Number of I/O Requests as a Function of

Data Distributions for 2-D Arrays.(Rdist)

Distr. Type Rdist Sdist

Block-Block N �
p
P Np

P

Block-Cyclic N �
p
P Np

P

Cyclic-Block N2 1

Cyclic-Cyclic N2 1

Table 1 shows Rdist and Sdist for an N*N array

distributed over P processors, where Rdist is the num-

ber of requests per transaction when considering only

the data distribution and ignoring contributions from

the stripe size; and Sdist is the size of the largest con-

tiguous block of data that can be transferred between

a processor and an I/O device per request(i.e., request

size). In generating the table, it is assumed that the

data is stored in a column-major one-dimensional map

over the disks.

Thus, the total number of requests for a given trans-

action, Rtrans, as a function of both data distribution

and stripe size Sstripe, can be expressed as

Rtrans = Rdist �
Sdist

min(Sdist; Sstripe)
(1)

Note that the assumption that Sstripe equals Sdist
is equivalent to ignoring stripe size contributions (i.e.,

assumption in table 1) and that we do obtain the

Figure 3: E�ects of Distribution upon Number of Requests (M2 Map)

results in the table.

For the following discussion, it is assumed for sim-

plicity that the either Sstripe divides Sdist or vice versa

(i.e., GCD(Sstripe, Sdist) = MIN(Sstripe, Sdist)).

3.3 Direct Access Performance

In this section we present performance results for

direct access using various data distributions. The

experiments were conducted on an Intel Touchstone

Delta. The Delta is a 16x32 mesh structured, 512

processor multicomputer with two disks connected on

either side of each row; thus, it has 64 disks.

In these experiments, the mesh size was varied

from 4 processors to 512 processors and all 64 disks

were used. For each mesh size the data array size

was varied; a square two-dimensional array was dis-

tributed across the processors. The smallest ar-

ray used was 1Kx1K (1MByte), and the largest was

20Kx20K (400 MBytes). For each mesh size, the ar-

ray was distributed in four ways: Row-Block, Row-

Cyclic, Column-Block, Column-Cyclic. The larger ar-

rays were distributed over larger mesh sizes such as

256 and 512.

An input �le was distributed over 64 disks in a

round-robin fashion (32 I/O nodes, 2 disks per I/O

node) with a stripe size of 4 Kbytes in column major

fashion.

The Concurrent File System (CFS) on the Delta

supports several modes of operation, each one deter-

mining a degree of synchronization and sharing of �le

pointers.

For our experiments, we restrict ourselves exclu-

sively to mode 3 (shared �le pointer, synchronized ac-

cess) since this gives the best performance for direct

access [4].

3.3.1 Column-Block Distribution

This distribution conforms with the column-major

data distribution over the disks. It requires a single

application level I/O request per processor and each

processor node can read the entire distributed data in

one I/O access.

Table 2 shows the performance for the Column-

Block array distribution. The table shows the size

of the array (�le on disks), the number of processors

participating in the read, the transaction completion

time, and the observed bandwidth. For small arrays

and number of nodes, the bandwidth of the I/O sys-

tem is under-utilized. As the data size and number

of processors increase, the I/O bandwidth is more ef-

fectively utilized. However, beyond a certain point,

the I/O system becomes a bottleneck due to the large

number of processors performing I/O.

The read rate increased quickly in proportion to the

processor grid size, but plateaued at about 64 proces-

sors. Degradation in the performance was observed

after 256 processors due to a large synchronization

overhead.

3.3.2 Column-Cyclic Distribution

Table 3 shows the read access times for the same pa-

rameters but with a Column-Cyclic data distribution.

Even though the degree of parallelism in the data ac-

cess remains the same, the number of I/O requests

increases because each processor must make an indi-

Table 2: Column Block Distribution (Time in msec)

Array Size No. of Procs. Time

1K*1K 4 431

4K*4K 4 2277

5K*5K 16 3357

5K*5K 64 3324

10K*10K 256 13707

20K*20K 512 70953

Table 3: Column Cyclic Distribution (Time in msec)

Array Size No. of Procs. Time

1K*1K 4 4353

4K*4K 16 5233

5K*5K 64 11407

10K*10K 256 116763

20K*20K 512 252980

vidual request for each column. This increases the

access time as illustrated in table 3. The drop in

performance versus the Column-Block distribution is

consistent for all con�gurations and it ranges between

a factor of 2 to 10.

3.3.3 Row-Block Distributions

Table 4 shows the performance for a Row-Block dis-

tribution. This read operation essentially involves a

transposition of the data as it is being read from the

disks. Table 1 shows that the number of logical re-

quests is NxP for this decomposition. We observe from

table 4 that the performance degradation due to the

decomposition is almost two orders of magnitude when

compared to that of the Column-Block distribution.

We do not present performance �gures for larger

con�gurations (i.e., large array and system sizes) since

the time to complete these experiments exceeded prac-

tical limits.

Table 4: Row Block Distribution (Time in msec)

Array Size No. of Procs. Time

1K*1K 4 17051

2K*2K 4 25966

4K*4K 16 71205

5K*5K 16 91536

5K*5K 64 38018

3.3.4 Row-Cyclic Distribution

The Row-Cyclic distribution involved the largest num-

ber of I/O requests. Also the request size was the

smallest. It took approximately 15 minutes to dis-

tribute a 1Kx1K character array in Row-Cyclic order

versus the 467 msec. it would require in Column-Block

form. This shows that the direct row distribution of

an array is very slow, hence, not possible in practice.

The large variation in performance observed above

motivated the design of the two-phase access strategy

for the parallel I/O primitives as described in the fol-

lowing section.

4 Runtime Primitives for Parallel I/O

A number of high level programming languages

have recently introduced intrinsics that support par-

allel I/O through a runtime library. By using these

primitives, I/O operation instructions within applica-

tions become portable across various parallel �le sys-

tems. Further, the primitives are convenient to use;

the instructions for carrying out parallel I/O opera-

tions don't involve much more than a declaration of

the data decomposition mapping and the use of open,

close, read, and write routines

Yet, these language supported I/O primitives su�er

from a serious drawback. Because they use a direct

access mechanism to perform the I/O, the user data

distribution mapping remains tightly linked to the �le

mapping to disks. Thus, they are susceptible to the

same performance uctuations and limitations (e.g.,

unsupported data distributions) that are observed of

the parallel �le systems.

Motivated by these facts we have implemented a

runtime system for parallel I/O. This system will pro-

vide the portability and convenience of language sup-

ported I/O primitives. In addition, because it makes

use of the two-phase access strategy (discussed below)

to carry out I/O, it e�ectively decouples user map-

pings from the �le mappings of the parallel �le system,

and provides consistently high performance indepen-

dent of the data decompositions used.

Advantages of Runtime I/O Primitives:

1. The runtime system can be easily ported on

various machines which provide parallel �le

systems.

2. Complex data distributions (Block-Block or

Block-Cyclic) are made available to the user.

3. Primitives allow the user to control the data

mapping over the disks. This is a signi�-

cant advantage since the user can vary the

number of disks to optimize the data access

time.

4. The primitives allow the programmer can

change the data distribution on the proces-

sors dynamically.

5. The data access time is signi�cantly im-

proved and is mademore consistent since the

primitives use two-phase access strategy.

4.1 Approach

Our I/O strategy involves a division of the parallel

I/O task into two separate phases. In the �rst phase,

we perform the parallel data access using a data distri-

bution, stripe size, and set of reading nodes (possibly

a subset of the computational array) which conforms

with the distribution of data over the disks (i.e, we

introduce an intermediate mapping M20, and access

data with M20 = M1). On Touchstone Delta, the

column-block distribution is the conformal mapping.

Hence we access (read/write) the data from the disks

using this mapping. Subsequently, in phase two, we

redistribute the data at run-time to match the appli-

cation's desired data distribution (i.e., from M20 to

M2).

By employing the two-phase redistribution strat-

egy, the costs inherent in many of the I/O con�gura-

tions are avoided. The redistribution phase improves

performance because it can exploit the higher band-

widths made available by the higher degree of connec-

tivity present within the interconnection network of

the computational array.

In the subsection that follows, we discuss the run-

time I/O primitives. A brief description of the pur-

pose of each primitive, its functional ow, and syntax

is provided followed by some performance results.

4.2 General Description

The runtime primitives library provides a set

of simple I/O routines. These include popen,

pclose, array map, proc map, pread and pwrite.

Though the exact syntax of these routines varies from

C to Fortran, the basic data structures remain the

same. This section presents a brief overview of each

primitives. Syntax description and implementation

details are presented in [3].

4.2.1 popen

The popen primitive concurrently opens a �le using

a speci�ed number of processors P 0 (P 0 2 P , where P

Table 5: The File Descriptor Array (FDA): Fortran

Version

Unit Access Form Status No. of No. of

disks procs

3 0 0 1 64 4

is the number of processors on which the program is

executing). The choice of P 0 is important in the sys-

tems like Intel Paragon [10] which provide I/O ded-

icated compute nodes.That is, often the number of

processors involved in generating I/O requests must

be smaller than the number of processors requiring

the data to achieve better performance [4].

The user passes �le information to the popen prim-

itive which is then stored in a two dimensional array

called File Descriptor Array(FDA) using the �le unit

number as a key. The �le information includes �le

name, �le status, �le form, access pattern and the

number of disks on which the �le will be distributed.

For a statement

call popen(3,'TEST','SEQUENTIAL,

'UNFORMATTED','NEW',-1,4)

opens a �le called TEST over 4 processors. The

corresponding FDA is shown in table 5. The �le will

be distributed over all the disks (number of disks =

-1). If the number of processors is -1, the �le will be

opened by default number of processors (P).

4.2.2 pclose

The pclose primitive performs concurrent closing of

the parallel �les. The pclose primitive gets the unit

number of the �le as an input. Using this as a key,

the primitive obtains the number of processors (P 0).

Using the �le unit number, these processors close the

�le.

4.2.3 array map

This primitive is semantically similar to the compiler

directives in HPF or VF. A Fortran D or HPF com-

piler would directly extract this information from the

distribution directives.

The array map primitive returns an integer called

array descriptor which will be used by pread and

pwrite routines for acquiring the necessary array in-

formation. A table called the Array Description Ta-

ble or (ADT) is used to store the array information.

The user provides the global size of the array, the dis-

tribution type, the processor distribution along each

Table 6: The Array Description Table (ADT)

Info 1 2 3 4 5 6 7

Global Size 64 64 -1 -1 -1 -1 -1

Distr. Code 1 1 -1 -1 -1 -1 -1

Block Size -1 -1 -1 -1 -1 -1 -1

nprocs 2 2 -1 -1 -1 -1 -1

dimension and the block size (for CYCLIC distribu-

tions).

For example, consider array A(64,64) distributed

in BLOCK-BLOCK form over 4 processor arranged

in 2*2 mesh. The corresponding Array Description

Table is shown in table 6. The value -1 is used to

denote don't-care entries.

4.2.4 proc map

The proc map primitive is used for mapping the

processors from the physical to the logical domain.

The proc map initializes the logical processor grid ac-

cording to the user speci�cations. The dimension

of the logical processor grid can vary from 1 to 7.

The proc map routine allows two kinds of mappings,

one is the system-de�ned mapping and the second is

the user-de�ned mapping. The user has to pass the

number of processors in each dimension, the map-

ping mode and (or) processor mapping information.

proc map initializes a global data structure called

P INFO array, which is used by pread and pwrite

routines. Using the proc map primitive the pro-

grammer can change the logical processor con�gura-

tion during the execution of the program.

4.2.5 pread

The pread primitive reads a distributed array from

the corresponding �le. The pread primitive reads the

data from the �le using P 0 processors and distributes

the data over P processors (P 0 2 P). The pread

primitive uses the unit number as a key to access the

�le information from the FDA. The global array in-

formation is obtained using the array descriptor. In

general, the runtime system would use a distribution

for intermediate access which performs the best, given

a speci�c �le distribution. For our experiments, we use

column-block distribution for I/O access because we

assume that the �les are stored in the column-major

fashion on the disk arrays. The two-phase access is

used by pread to read the data from the �le using

P 0 processors. Then the data is redistributed over the

1. Read the input parameters.

2. Get the global array information using ADT.

3. Obtain the logical mapping of the processors

(P) participating in array distribution from proc map.

4. Use the unit number to acquire information

on the �le such as the number of disks,

number of processors (P 0).

5. If the target data distribution is same as the

conformal access distribution and P 0 = P then read

the data using the same distribution, go to 10.

6. If the two-phase data access is used, then read the

data using the conforming distribution. The reading is

performed by P 0 processors.

7. From the global array distribution, calculate the

data that needs to be communicated.

8. Compute the communication schedule for data

redistribution.

9. Distribute the data over P processors to obtain the

target data distribution.

10. Stop.

Figure 5: pread Algorithm

P processors to obtain the target data distribution.

Figure 5 shows the pread algorithm.

4.2.6 pwrite

The pwrite primitive is used to write a distributed

array using P 0 processors to the �le that was opened

(created) by popen. The pwrite uses the ar-

ray descriptor to get the array information, the unit

number to get the �le information and proc map to

obtain the logical grid information. The runtime prim-

itive will choose a distribution for intermediate access

which performs the best for a speci�c �le distribution.

If the processor distribution and the conformal distri-

bution don't match, data is �rst distributed from P to

P 0 processors. After the distribution, data is written

by P 0 processors using the conforming distribution.

Figure 6 shows the pwrite algorithm.

4.3 A Sample Program

This section provides a sample Touchstone Delta

Fortran program using the I/O primitives (Figure 7).

The programmer wants to read and write an array in

the column-cyclic fashion. The two dimensional array

A(64,64) is distributed over 4 processors. Thus the

size of the local array is A(64,16). The ADT and the

FDA are initiated as the arrays A INFO and F INFO

respectively. The �le TEST is opened by 4 processors

1. Read the input parameters.

2. Get the global array information using ADT.

3. Obtain proc map to obtain the logical mapping of the

processors (P) participating in array distribution.

4. Use the unit number to acquire information

on the �le such as number of disks,

number of processors (P 0).

5. If the target data distribution is same as the

conformal access distribution and P 0 = P then write

the data using the same access distribution, go to 11.

6. If the two-phase data access is used, then redistribute

the data over P 0 processors using 7,8,9.

7. From the global array information, calculate the

data that needs to be communicated.

8. Compute the communication schedule for

data distribution.

9. Distribute the data over P 0 processors in

conforming access fashion.

10. Write the data on the disks using the conforming

access distribution.

11. Stop.

Figure 6: pwrite Algorithm

using the popen primitive. The �le TEST will be dis-

tributed over the default number of disks (number of

disks = -1). The programmer then initializes the pro-

cessor grid using the proc map primitive. The user

passes 0 as the map-mode, thus initiating the system

mapping. In this case, the user supplied map (using

the mymap array) will be ignored. The array map

primitive will be used to obtain the global array infor-

mation. The array map returns the array-descriptor

\ad" which is used in the pread and pwrite primi-

tives. The pread primitive will read the array A from

the �le associated with the unit 3 using the confor-

mal access distribution. (e.g. for Touchstone Delta

column-block distribution). Since the resultant distri-

bution is column-cyclic, the data will be redistributed

over 4 processors to obtain the resultant column-cyclic

distribution. Note the convenience o�ered to the pro-

grammer by the primitive because the user no longer

needs to worry about pointer manipulations, �le dis-

tribution, bu�ering etc. After computation, the array

A will be written into the �le associated with the unit

3 using pwrite. Since the processor distribution is not

same as the conformal distribution, pwrite will redis-

tribute the data from column-cyclic to corresponding

conformal distribution (column-block) and then write

the array to the �le using the column-block distribu-

tion (conformal distribution for Touchstone Delta).

PROGRAM EXAMPLE

size info(7),distr info(7),block size(7),proc info(7)

A(64,16),ad,array map,mybu�er

TEMP(1024),mymap(1536)

COMMON /INFO/ F INFO,P INFO,A INFO

size info(1)=64 size info(2)=64

distr info(1)=0 distr info(2)=2

block size(1)=-1 block size(2)=-1

proc info(1)=1 proc info(2)=4

call proc map(proc info,0,mymap)

call popen(3,'TEST',0,0,0,-1,-1) !Old File

ad = array map('A',size info,distr info,

block size,proc info)

call pread(A,64,16,ad,3,TEMP,iobu�er)

Use a temporary bu�er called TEMP of size iobu�er.

Computation Starts here

..................

call pwrite(A,64,16,ad,3,TEMP,iobu�er)

call pclose(3)

END

Figure 7: A Sample Program For Performing Parallel

I/O

5 Experimental Results

In this section we present performance results for

the runtime primitives when used in conjunction with

a variety of data distributions. The tables below con-

tain Best Read, Redistribute, Total Read, and Direct

Read times for the four 1-dimensional distributions

considered in this paper.

For a given array size, the Best Read time repre-

sents the minimum of the read times of the four dis-

tributions; the Best Read time is derived from the dis-

tribution that most closely conforms to the disk stor-

age distribution for the given �le. The Redistribution

time is the time it takes to redistribute data from the

conforming distribution to the one desired by the ap-

plication. The Total Read time is the sum of the Best

Read and Redistribution times; it denotes the time it

takes for the data to be read using the optimal Read

access and then be redistributed (two-phase access).

The Direct Read time is the time it takes to read the

data with the selected distribution using direct access.

The last row of each table shows the speedup obtained

from using the two-phase access strategy over the di-

rect access strategy. Note that the Block-Block distri-

bution is not supported by CFS, hence tables 11 and

12 do not present any performance numbers for direct

access. (1 denotes Column Block access, 2 column

Table 7: Comparing Direct Access with Two-phase

Access (16 Processors, 5K*5K Array, time in msec)

Distr Best Re Total Direct Speedup

Mode Read Distr. Read Read

1 3357 - 3357 3357 1

2 3357 1805 5162 9890 1.92

3 3357 673 4030 69939 17.36

4 3357 2603 5960 * > 604

Table 8: Comparing Direct Access with Two-phase

Access (16 Processors, 10K*10K Array, time in msec)

Distr. Best Re Total Direct Speedup

Mode Read Distr. Read Read

1 10376 - 10376 10376 1

2 10376 7105 17481 19271 1.10

3 10376 2772 13148 84683 6.44

4 10376 10320 20696 * > 173

cyclic access, 3 denotes Row Block and 4 represents

Row cyclic access.)

Tables 7 and 8 show access times for 5Kx5K and

10Kx10K arrays, read and distributed over 16 proces-

sors respectively. The Best Read time occurs for the

Column-Block distribution. For all cases below, the

`*' symbol denotes a read time on the order of hours.

The following observations are made by comparing the

direct access read times with run-time data redistri-

butions. For all cases, the performance improvement

range from a factor of 2 up to several orders of magni-

tude. For example, in table 7 the amount of overhead

avoided by using the redistribution strategy (i.e., the

di�erence between the Total Read Time and Direct

Read Time) ranges from 1.7 secs, to well over 60 min-

utes for the 5K Row-Cyclic case. More importantly,

the deviation in Total Read time is at most a factor of

1.9 as opposed to the widely varying results produced

by the direct access approach.

Tables 9 and 10 shows access times for 5Kx5K and

10Kx10K arrays, read and distributed over 64 proces-

sors. The reduction in cost ranged from 7.4 secs, to

over 60 minutes for the 5Kx5K Row-Cyclic case. Note

that the variation in Total Read time is again very

small (at most a factor of 1.27). However, for all the

four types of distribution, the total read time is nearly

consistent (of the same order). Thus using the two-

phase access we are able to get the data distribution

performance which is independent of both the disk

distribution and the processor distribution.

Table 9: Comparing Direct Access with Two-phase

Access (64 Processors, 5K*5K Array, time in msec)

Distr. Best Re Total Direct Speedup

Mode Read Distr. Read Read

1 3324 - 3324 3357 1

2 3324 703 4027 11407 2.83

3 3324 246 3570 38018 10.65

4 3324 768 4092 * > 879

Table 10: Comparing Direct Access with Two-phase

Access (64 Processors, 10K*10K Array, time in msec)

Distr. Best Re Total Direct Speedup

Mode Read Distr. Read Read

1 11395 - 11395 11395 1

2 11395 2478 13873 63400 4.57

3 11395 1028 11623 78767 6.78

4 11395 3092 14487 * > 248

Tables 11 and 12 show access times for arrays

distributed in the Block-Block fashion over 16 and 64

processors respectively. Again, note that the read time

is consistent with the times obtained for other distri-

butions.

5.1 Discussion

The results above show that for every case, regard-

less of the desired data distribution, performance is

improved to within a factor of 2 of the Best Read Time

performance for all distributions. Further, the cost of

redistribution is small compared with the Total Read

Times. This indicates an e�ective exploitation of the

additional degree of connectivity available within the

interconnection network of the computational array.

Further, the results also show that by using the run-

time primitives, the data can be distributed in Block-

Block fashion e�ectively.

Table 11: Block-Block Distribution over 16 Processors

using the Runtime Primitives (time in msec)

Size Best Redistr. Total

Read Read

1K*1K 467 112 579

2K*2K 717 416 1133

4K*4K 2328 1253 3181

Table 12: Block-Block Distribution over 64 Processors

using the Runtime Primitives(time in msec)

Size Best Redistr. Total

Read Read

1K*1K 350 82 432

2K*2K 1100 186 1286

4K*4K 2462 577 3039

6 Conclusions

The need for high performance parallel I/O has be-

come critical enough that most manufacturer's have

provided some support for parallel I/O within their

�le systems. Recently, several high performance lan-

guages have proposed the inclusion of primitives to

support parallel I/O.

We have shown that, using the direct access ap-

proach made available by production �le systems, per-

formance of existing �le systems are inconsistent and

depends upon both the data distribution and the �le

mapping to disk. We provide an example of how sup-

port for some of the more complex data distributions

may not be provided. Also, we describe how pro-

gramming language extensions, although simplifying

the programming, do not alleviate the problems that

exist within the �le system.

We presented a set of runtime primitives which

make use of the two-phase access strategy, and showed

that the runtime primitives achieve consistent perfor-

mance across a variety of data distributions, and al-

lows the user to avail of complex data distributions

such as Block-Block and Block-Cyclic. Further, the

primitives allow the user to choose a subset of proces-

sors for performing I/O in order to optimize access on

the basis of the selected data distribution.

References

[1] Alok Choudhary, Parallel I/O Systems, Jour-

nal of Parallel and Distributed Computing, Jan-

uary/February 1993.

[2] P. Brezany, M. Gerndt, P. Mehrotra, and H.

Zima. Concurrent File Operations in a High Per-

formance Fortran. Supercomputing'92, pages 230-

238, November 1992.

[3] Rajesh Bordawekar. Issues in Software Support for

Parallel I/O. Master's Thesis, ECE. Dept., Syra-

cuse University, May 1993.

[4] Rajesh Bordawekar, Juan Miguel del Rosario, and

Alok Choudhary. An Experimental Performance

Evaluation of Touchstone Delta Concurrent File

System. ICS'93, pages 367-377, July 1993.

[5] Geo�rey Fox, Seema Hiranandani, Ken Kennedy,

Uli Kremer, and Chau-Wen Tseng. Fortran D Lan-

guage Speci�cation. Technical Report Rice COMP

TR90-141. Rice University, December 1990.

[6] Zeki Bozkus, Alok Choudhary, Geo�rey Fox,

Tomasz Haupt, and Sanjay Ranka. Fortran

90D/HPF Compiler for Distributed Memory

MIMD Computers: Design, Implementation, and

Performance Results. Supercomputing'93 (to ap-

pear), November 1993.

[7] High Performance Fortran Forum. High Perfor-

mance Fortran Language Speci�cation Version 1.0.

Technical Report CRPC-TR92225. CRPC, Rice

University, January 1993.

[8] James C. French, Terrence W. Pratt, and Mrig-

anka Das. Performance Measurement of the Con-

current File System of the Intel iPSC/2 Hyper-

cube. Journal of Parallel and Distributed Comput-

ing, January/February 1993.

[9] Intel. Touchstone Delta System Description. Intel

Advanced Information, Intel Corporation, 1991.

[10] Intel. Paragon XP/S System Description. Intel

Advanced Information, Intel Corporation, 1992.

[11] Juan Miguel del Rosario. High Performance Par-

allel I/O System. Institute of Electronics, Informa-

tion and Communication Engineers Transactions,

Japan, August 1992.

[12] Juan Miguel del Rosario, Rajesh Bordawekar,

and Alok Choudhary. A Two-Phase Strategy for

Achieving High-Performance Parallel I/O. Techni-

cal Report, SCCS-408, NPAC, December 1992.

[13] nCUBE. nCUBE-2 Systems: Technical Overview.

Technical Report, nCUBE Corporation, 1992.

[14] Paul Pierce. A Concurrent File System for a

Highly Parallel Mass Storage System. Fourth Con-

ference on Hypercube Concurrent Computers and

Applications, pages 155-160, 1989.

[15] Thinking Machines Corp. CM-5 System Descrip-

tion. Technical Report, Thinking Machines Corpo-

ration, 1991.

