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Abstract

We simulate single and multiple Ising models coupled to 2{d gravity using both the

Swendsen-Wang and Wol� algorithms to update the spins. We study the integrated

autocorrelation time and �nd that there is considerable critical slowing down, partic-

ularly in the magnetization. We argue that this is primarily due to the local nature of

the dynamical triangulation algorithm and to the generation of a distribution of baby

universes which inhibits cluster growth.
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Considerable work has been devoted to the study of the performance of cluster algorithms

in reducing the critical slowing down of many statistical models. The Swendsen-Wang [1] and

the Wol� [2] algorithms have proven very e�ective in beating the critical slowing down (CSD)

exhibited by these models when simulated with a standard Metropolis [3] update. Reviews

on cluster algorithms and CSD may be found on refs. [4]. In recent years, the numerical

study of Potts models coupled to 2{d gravity has received much attention [5, 6, 7, 8], aided

as well by increased analytical understanding of these models [9]. Cluster algorithms have

proved useful in saving computational e�ort on the update of the Potts variables. The

present study is motivated by the fact that there is little understanding of the actual extent

of the improvement achieved in these simulations. It is worthwhile, therefore, to measure

CSD in the case of simple Ising spins coupled to a dynamical lattice in order to quantify the

performance of cluster algorithms. We �nd that there is considerable CSD, especially in the

magnetization, and we relate this to the dynamics of cluster formation on a random lattice.

We shall consider a model in which ns Ising spins are attached to the vertices of trian-

gulations. The triangulations are characterized by their adjacency matrix Cij, which equals

1 if i and j are neighbors and vanishes otherwise. Cij is the discrete analogue of the world-

sheet metric gij. We shall restrict ourselves to the set of triangulations with N vertices TN

containing only loops of length 3 or greater and vertices of coordination number of at least

3. The triangulation has a �xed toroidal topology. We simulate a theory determined by the

partition function

ZN =
X
T2TN

X
�i=�1

exp

0
@��

nsX
�=1

NX
i,j=1

Cij(T )�
�
i
�
�
j

1
A ; (1)

where � labels the spin species. In refs. [10, 11] we investigated in detail this model for

the cases ns = 1 and 2. We measured spin susceptibility and percolation critical exponents

using �nite-size scaling and showed that logarithmic corrections to scaling were essential for

agreement between the measured and theoretical exponents. In this paper, we deal with the

cases ns = 1, 2 and 3, concentrating on the issue of CSD and its origin.

The standard way of implementing the partition function (1) via a Monte Carlo simulation

is to use the Swendsen-Wang (SW) or Wol� cluster algorithm to update the spin variables

and to use the \link ip" [12] to simulate the sum over all triangulations. To implement a

SW update one �rst divides all of the spins into Fortuin-Kasteleyn (FK) clusters [13]. These
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clusters of bonded spins are created by introducing bonds between same sign spins with

probability p = 1 � exp(�2�). Then, one ips all clusters with probability one-half. The

Wol� algorithm consists of randomly choosing a spin, constructing a FK cluster around it

and ipping the cluster with probability one. To compare the autocorrelation times of the

SW and Wol� algorithms one should de�ne the Wol� update so that both algorithms require

comparable CPU time. For this reason we choose a Wol� update to consist of consecutive

ips of FK clusters that reverse the sign of at least 40% of the spins. One alternative to this

would be to scale the correlation times using the average cluster size [14]. Each spin update

precedes a mesh update, in which we attempt to ip 3N randomly chosen links, N being

the number of vertices of the triangulation. Our implementation ensures that the relative

number of mesh and spin updates is roughly equivalent.

The observables that we analyzed are the energy density, the magnetization density, the

susceptibility (namely the magnetization squared) and the average value of jq � 6j, where q

is the coordination number of a vertex of the triangulation. In some of the simulations that

employed SW updates, we also measured the mean size of pure percolation and FK clusters.

The mean FK cluster size SFK is given by the quantities hsiWol� and hs
2iSW=hsiSW; s denotes

the number of sites constituting a cluster and averages are taken over the distribution of

clusters built in the Wol� and SW algorithms respectively. The magnetic Ising observables

are directly related to the structure of these clusters [15]. In particular, for � � �c, SFK is

equal to the susceptibility, de�ned as

� =
�

N
hM2i; (2)

where M denotes the average magnetization density. Actually, this alternative de�nition of

� is used as a reduced variance estimator [16].

Before moving on to present our results, we discuss how we estimated the autocorrelation

times. It is known [17] that the following relation holds between the estimators of the naive

and true variance of an observable O;

Var(O)true ' 2 �int Var(O)naive: (3)

For a subset of our data, we also directly measured the autocorrelation function and through

standard methods [17] computed �int. We veri�ed (see also [18]) that both of the above

techniques gave consistent values of �int. The variances of the observables were extracted
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from the raw data using the binning method. To extract the dynamic exponent, we �t the

data according to the scaling ansatz

�int / N
z=dH : (4)

It is di�cult to estimate the linear size of random triangulations. Therefore, we shall leave

explicit the dependence of the exponent upon the intrinsic Hausdor� dimension dH of the

triangulation and �t our data using the total area N . The values of z=dH were extracted

from the auto-correlation data using a log-log regression �t, excluding from the �t the results

for the smaller volumes, since they are a�ected the most by �nite-size e�ects. The values of

�
2 per degree of freedom were always of order one. In the case of the magnetization for the

ns = 2 and 3 models, Wol� algorithm, we extracted the exponent using only the two largest

lattices, since there are larger �nite-size e�ects.

z=dH

Model Metropolis SW Wol�

ns = 1 :85� :06 :58 � :05 :54� :05

ns = 2(�) :95� :05 :62 � :06 :58� :09

ns = 3(�) :9� :1 :49 � :08 :55� :1

Table 1: Critical exponent z=dH for the Magnetization from �ts. (*) These numbers are not

reliable; we discuss this point in the text.

We present results for three di�erent models, ns = 1, 2 and 3. Each model was simulated

with the SW, Wol� and Metropolis algorithms. The ns = 1 model was simulated at the

critical value of �, which is known analytically [10]. For the other models we chose the

� value by looking at the peak of the susceptibility and the intersection of the Binder's

cumulant [19] curves [10]. Each simulation (model and algorithm) was run at four or �ve

values of N (512, 1024, 2048, 4096 and 8192 in the ns = 1 model) and each consisted of 105

thermalization sweeps and 3{5�105 measurement sweeps. Measurements were taken every

sweep.

From the analysis presented in �gures 1, 2, 3 and 4 and tables 1 and 2, we deduce the

following:
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z=dH

Model Metropolis SW Wol�

ns = 1 :62� :03 :057 � :005 :04� :03

ns = 2 :35 � :1 :08� :02 :17� :08

ns = 3 :5� :1 :05� :04 :37� :08

Table 2: Critical exponent z=dH for the Energy from �ts.

1. There is considerable critical slowing down in these models. Figure 1 shows the im-

provement gained by the use of cluster algorithms|the autocorrelation times and the

dynamic exponent are signi�cantly lower than the corresponding Metropolis values.

2. In all cases, the magnetization is the observable that su�ers most from critical slowing

down. This behavior is quite di�erent from that of the Ising model on a regular lattice,

where the energy exhibits CSD equal to or greater than that of the magnetization [20].

In our simulations the observable jq � 6j did not show any signi�cant CSD.

3. The SW and Wol� algorithms have similar performance within the statistical accuracy

of our data. On the smaller lattices the Wol� algorithm is somewhat more e�cient

than SW, but this advantage is a �nite size artifact since it disappears on the larger

lattices. For 2{d Ising models on at and Poissonian lattices these algorithms exhibit

roughly comparable performance [18, 20]. In the 3{d case, the Wol� algorithm is much

more e�cient. It seems that the relative performance of SW and Wol� algorithms

depends on the dimensionality of the lattice.

4. It is hard to determine di�erences in the degree of CSD between one and two Ising

models coupled to gravity, given our statistics. In [10] we found, in fact, that the

numerically measured behavior of the one and two species models is very similar. This,

however, is a consequence of logarithmic corrections [21] in the two-species model. One

might suspect that the scaling law for � in this model incorporates logarithms as well.

On much larger lattices where logarithmic behavior is distinguishable from small power

law scaling, the e�ective CSD might be considerably di�erent in the two generation, as

compared to one generation, case. This situation is similar to that of the 2{d 4{state

Potts model. Here, Li and Sokal [22] have shown that measurements of z, obtained
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using the ansatz (4), violate rigorous bounds. They suggest that these measurements of

z are not correct because the �ts to � fail to take into account logarithmic corrections.

For the ns = 3 model the situation is worse; the corrections to scaling of (4) may be

even larger. In this case, there are no theoretical arguments that predict the form of

these corrections. Therefore, we anticipate that the numbers we have quoted for z=dH

di�er considerably from the correct asymptotic values in the ns = 2 and 3 cases. To

give a sense of the magnitude of the corrections to scaling we note that on similar size

lattices, the estimate of =�dH di�ers by about 3% from its asymptotic value in the

ns = 1 case and by almost 50% in the ns = 2 case [10].

The presence of CSD in these models should not be a surprise, since the triangulation

is updated locally. In this context, it is relevant to briey recall the results of a similar

analysis [11] in which percolation clusters were studied on random triangulations without

matter (pure gravity). The meshes were updated locally; all link ips that did not lead to

degenerate triangulations were allowed. It has been shown that these random triangulations

are characterized by a scaling distribution of baby universes [23]. The formation of clusters

is quite sensitive to the presence of the bottlenecks (see �g. 5), which inhibit cluster growth

into and out of baby universes. Since this structure of baby universes is slow to decorrelate

under the local link-ip updates, we expect that the mean percolation cluster sizes will be

a�icted by critical slowing down. In the case of pure gravity, the mean size of percolation

clusters built on these triangulations in fact exhibits critical slowing down of magnitude

z=dH = :70(2). We also constructed percolation clusters in the Ising simulations that used

SW spin updates. We observed, in this case, a similar CSD of the world-sheet geometry;

z=dH for the mean size of pure percolation clusters was measured to be :74(6).

We now argue that the critical slowing down in the gravity sector should lead to consid-

erable CSD for magnetic observables. For one would expect that baby universes should trap

FK clusters as well as pure percolation clusters. As said before, for an Ising model simulated

on an arbitrary random triangulation, the mean FK cluster size equals the average magnetic

susceptibility. The value of the magnetization is thus clearly sensitive to those features of

the geometry that strongly a�ect the FK cluster size. This coupling transfers critical slow-

ing down to the magnetic sector. Some evidence in support of this argument follows from

our measurements of the mean size of the FK clusters built to perform SW updates. This

observable exhibited a value of z=dH of .52(6).
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The e�ciency of cluster algorithms is also typically a�ected by the distribution of cluster

sizes. If the clusters are too small, ipping them will fail to decorrelate distant spins. If one

cluster �lls most of the lattice, successive ips will essentially cancel each other out. Indeed

FK clusters, on average, are much smaller in the dynamical case than in the case of a �xed

at lattice. Their mean size is determined by the exponent =�dH ; SFK � N
=�dH . For at

lattices, =�dH = 7=8. It is 2=3 for the ns = 1 Ising model, which is quite close to the value

for the 3{d Ising model1.

It is di�cult to determine directly whether the autocorrelation times are inuenced pri-

marily by the slow decorrelation of the world-sheet geometry or the e�ects of the smaller

cluster sizes. The argument, however, that CSD arises from updates of the geometry applies

only to magnetic observables, and not to the energy density. Since the CSD we observe is

greater for the magnetization, it seems likely that the slow decorrelation of the world-sheet

geometry is the primary mechanism responsible for CSD.
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Figure Captions

Figure 1: Comparison of the integrated autocorrelation times for the magnetization in the ns = 1

model. The dashed lines are log-log regression �ts.

Figure 2: Comparison of the integrated autocorrelation times for the energy in the ns = 1 model.

Figure 3: Comparison of the integrated autocorrelation times for the magnetization in the ns = 2

model. We excluded smaller volume points from the �ts.

Figure 4: Comparison of the integrated autocorrelation times for the energy in the ns = 2 model.

Figure 5: Schematic representation of a baby universe.
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