ortheast Parallel Architectures Center

Issues in Parallel Computing

Gregor von Laszewski
gregor@nova.npac.syr.edu

Technical Report
SCCS 577

SYRACUSE

Science and Technology Center
111 College Place
Syracuse, NY 13244-4100
Tel.: (315) 443-1722, 1723; Fax: (315) 443-1973

UNIVERSITY
1 -8 7 0

Contents

1 Supercomputer
1.1 Introduction o . oL

1.2 Supercomputer e e

2 Computer Benchmarks
2.1 Benchmarks oL e
2.1.1 Performance Evaluation
2.2 Performance Metrics L L oo
2.2.1 Simple Metrics L oo
2.2.2 Normalized Metrics
2.2.3 Temporal Performance
2.3 Measurement Tools and Environments
2.4 Common Runtime Benchmarks
2.4.1 Linpack LU Decomposition
2.4.2 SPEC Benchmark
2.4.3 Parallel Benchmarks, ...
2.5 Ways to Fool the Masses with Benchmarks
2.6 Supercomputer Performance Lo

2.6.1 Some Machines,

3 Taxonomy of Computers

3.1 Flynn’s Classification
3.2 Parallel Random Access Machine
3.3 SPMD e e

(2N

Technical Report:

SCCS 57T

CONTENTS

4 Memory Access

5 Programming Models

6

7

5.1

5.2

5.3

5.4

Sequential Programming . . .
5.1.1 Problem Analysis .

5.1.2 Sequential Sorting

5.1.3 Coordinate Bisection

Data Parallel Programming

5.2.1 Radix Sort

Message Passing Programming
5.3.1 Message Passing Sort

5.3.2 Parallel Recursive Bisection

Vector Programming . . .

Performance Taxonomy and Analysis

6.1 Seed-Up
6.1.1 Amdahls Law
6.1.2 Linear and Superlinear Speed-Up .
6.2 FEfficiency
6.2.1 Iso-Efficiency
6.3 Overhead
6.3.1 Algorithmic Overhead
6.3.2 Software Overhead
6.3.3 Load Balancing
6.3.4 Communication Overhead
6.3.5 External Communication Overhead .
6.4 Computation and Communication Time
6.5 Message Passing Environments
6.6 Parallel IO
Applications
7.1 Numerical Integration
7.1.1 Dataparallel Program
7.1.2 Message Passing Program
7.2 Long Range Interactions

16

18
18
18
18
19
19
20
21
21
24
24

25
25
25
26
26
26
26
26
26
26
27
27
27
28
29

30
30
31
31
32

CONTENTS

Technical Report:

SCCS 57T

CONTENTS

11

7.3 Short Range Interactions .

7.4

7.5

7.6

7.7

7.8

7.3.1

Irregular Problems

The Simulated Annealing Approach

7.4.1
7.4.2
7.4.3

SA and GPP
Parameter scheduling for the Simulated annealing algorithm

Parallelization

Matrix Algorithms

7.5.1

Matrix Multiplication

LU factorization

7.6.1
7.6.2

Message Passing Algorithm
Data Parallel Algorithm

Solving Partial Differential Equations

7.7.1
7.7.2

Finite Element Method
Finite Difference Method

Laplace Equation

7.8.1
7.8.2
7.8.3
7.8.4
7.8.5

Jacobi iteration

Gauss Seidel iteration
Data Parallel Program .
Message Passing Program

Performance of the Parallel Program

32
33
33
34
35
36
37
37
38
38
43
44
44
44
44
44
45
45
46
48

CONTENTS

Chapter 1

Supercomputer

1.1 Introduction

Existing computational problems challenge current research in the design of
new computers and the development of new software technology to handle these
machines. We show some important issues connected with these machines and
their efficient programming.

To answer the question why one needs for example supercomputers we deal
with two problems: speed and size. With the help of parallel computers one can
for example increase the speed a job is executed or increase the problem while
maintaining the same speed.

For example[17]:

e speed —sorting 10 million 64 bit integers takes 200 seconds on a DEC5000/200

serial workstation and only 0.2 seconds on a CM-5 with 1024 processors.

e Size — a 1024 node CM-5 has 32 gigabytes of memory (32 megabytes per

note) so that larger problems can be solved.

First, we try to define the term Supercomputer and show problems in determin-
ing their performance. We give some simplistic performance measurements for
Supercomputers and up-to-date workstations.

Second, we introduce the taxonomy for the performance analysis.

Technical Report:

sces 517 CHAPTER 1. SUPERCOMPUTER 2

Than we use a simple but sufficiently complex problem, the graph bisection, in

order to show how we can design programs

o sequentially
e with message passing
e and in data parallel fashion.

Finally, we show some sample applications and the problems inherented with
their parallelization. Applications we are considering are embarrassingly parallel
problems, regular problems, long and short range problems, irregular problems,
and matrix problems.

We come to the conclusion that in certain cases it is easy to write a dataparallel
program but in other cases it is from advantage to use message passing. The
Algorithms and architectures designed for the future should therefore be able
to allow both strategies in such a fashion that part of the machine might run a
dataparallel program while others use message passing. This would enable the
algorithm designer to concentrate on the problem and use the language design

most suitable to solve this problem.

1.2 Supercomputer

There exists no precise definition of a Supercomputer. We define the class
of Supercomputers as the fastest most powerful computers available. Due to
the rapid progress in the VLSI design the performance of a supercomputers
available in the sixties is today out-performed by personal computers. Today’s

Supercomputer have one or more of the following characteristics[56]:
o fast central registers
e multiple CPU’s
e multi-staged (pipelined) functional units
o fast and large memories

e low communication latency between functional units

1.2. SUPERCOMPUTER

Technical Report:

sces 517 CHAPTER 1. SUPERCOMPUTER 3

e vector and/or an array of processors
e huge amount of software

e high performance

Of these characteristics the high performance is the most important one. Often
it is not clear how one can compare two different supercomputers with such
different characteristics. In the next section we show elementary definitions
used for benchmarking such machines. This is done in order to answer the

question if we can compare different machines with each other.

1.2. SUPERCOMPUTER

Chapter 2

Computer Benchmarks

2.1 Benchmarks

Many vendors provide simple numbers to convince their customers to purchase

a particular machine. To take all illusion immediately:

There exist no perfect and simple measurement of the perfor-

mance of a computer system.

Different companies and users evaluate the performance of a computer with
different criteria. While some select the machine which solves their problem the
fastest others include in their decision whether the system is cost efficient. Often
it is important that previous purchased and developed software runs on these
machines because of the cost efficiency. In this section we want to introduce
some of the main terms used in benchmarking.

First, we show what parts are involved in the performance evaluation. Sec-
ond, different performance metrics are introduced and problems inherented with
them are shown. Measuring tools are introduced in order to provide practical
help while gathering information about execution times and the number of times
a statement is executed. Next, we introduce Runtime benchmarks and make
the user aware who easy it is to “fool the masses” with benchmarks. Finally,

we provide some data gathered from different sources.

Technical Report:

sces 517 CHAPTER 2. COMPUTER BENCHMARKS 5

2.1.1 Performance Evaluation

The Evaluation of the performance of a computer consists of two parts (Fig-

ure 2.1):

e Performance Analysis

e and Performance Measurement

The Performance Analysis is similar to mathematical analysis. Here a model
theory is formulated to analyze the performance of the machine in order to
determine how to use the system efficiently.

The Performance Measurementis an empirical process of gathering data in order
to measure the performance of a real hardware system. Often it is difficult
to draw conclusions from one benchmark generated for a particular program
to another program. This means the benchmark is generally only valid for
the particular program. For other programs or other input parameters the

performance might look completely different.

Performance
'(Evaluation \‘
\J \J
Performance Performance
Analysis M easur ement
(model theory) (empirical)

Benchmarking:

optional | Test
Input Program

Figure 2.1: Performance Evaluation

Performance Evaluation

Technical Report:

sces 517 CHAPTER 2. COMPUTER BENCHMARKS 6

2.2 Performance Metrics

In mathematics a metric is a well defined term. Metrics allow us to measure
and order a quantity. In the theory of metrics a metric function d is defined on

a metric space X mapping its arguments to X. Let a,b € X, then

d(A, B) = d(B, 4) (2.1)
d(A + B) <= d(4) + d(B) (2.2)

Unfortunately, we cannot apply the same rules to performance metrics, since
mathematical inferences are not consistent. In addition, not all mathematical
operators are applicable. A benchmark for a problem size of n elements might
not be suited for problem sizes of n —1 or n+1. In practise this can be observed
especially when dealing with powers of two due to hardware properties or with
powers of ten due to software properties.

To develop a meaningful metric for benchmarking we should at least guarantee

the following properties:

1. Reproducibility
2. Accuracy

3. Detailed

To achieve this goal most benchmarks are run in in stand-alone conditions not
including problems occurring while using time sharing mode.

The Time is certainly the best measure because it fulfills all requirements men-
tioned above. All other measures are more or less inaccurate. The reader should
note that it is also important to know in which context the time is taken. It is
certainly unfair to claim that one machine is faster than the other, when one
machine a highly optimized machine code is executed and on the other a not
optimized Pascal code.

Often one finds the common view that a CPU determines the speed of a com-
putation. This is very often not the case since for example 10 slows down the
computation a lot. A system can only be as fast as it is hindered by its slowest

component (bottleneck).

2.2. PERFORMANCE METRICS

Technical Report:

sces 517 CHAPTER 2. COMPUTER BENCHMARKS 7

2.2.1 Simple Metrics

Under less reliable measures we find [59]:

MIPS, GIPS, TIPS : Million (Giga, billions; tera, trillion) Instructions Per
Second. This Measure is used for marketing but does not indicate the

performance of the machine.

Instruction : An instruction is an event, frequently a change in the state of a
CPU. Often, an instruction is synonymous with the clock rate of a machine

ignoring instructions requiring more than one clock pulse tick to execute.

MFLOPS, GFLOPS, TFLOPS : Million (Giga, billions; tera, trillion) Floating-

Point Operations Per Second it ignores non-floating-point instructions.
This measure is e.g. particular bad if one abstracts from 2 dimensional
arrays to 3 dimensional arrays due to additional amount in the address

calculation.

Packets Per Second : Unit of measure used by networking and communica-

tions community.

MHz, GHz, Bits per Second, Bytes per Second, Words per Second :
measures are often used to missmeasure the performance of computer net-
works like Ethernet (tm). It confuses the base band carrier frequency with

the data transfer rate.

2.2.2 Normalized Metrics

Under a normalized we understand a metric which uses some kind of test which
result is included in a weighted fashion into an overall metric measure. Many
tests on one problem might be done in order to obtain a particular point in the
metric space. Examples for this kind of metric is the SPEC benchmarking site

which we will describe later in more detail.

2.2.3 Temporal Performance

If one is interested to compare the performance of different algorithms for the

solution of the same problem the temporal performance is a useful measure.

Simple Metrics

These

Technical Report:

sces 517 CHAPTER 2. COMPUTER BENCHMARKS 8

It is defined as the inverse to the execution time. The units of the temporal
performance are given in solutions per second or timesteps per second.

The simulation performanceis a special case of the temporal performance mea-
suring the simulation of a certain time period of physical time. This perfor-
mance measure is useful in physical problems, e.g. climate modeling or weather

forecasting.

2.3 Measurement Tools and Environments

To use existing tools for benchmarking and performance evaluation one has to

understand the following terms [26]:

e User time
e System time
e CPU time

o FElapsed time

A computer runs generally in two modes, the user and the kernel mode. During
the user mode the instructions of the program are executed. Instructions which
invoke the kernel are executed in kernel mode. An example of such instructions
are I/O operations. The time spend in the two modes is kept separately in
user time and system time. The CPU time is the sum of system and user time.
Under elapsed time we understand the actual wallclock time that passed since
the calculation is in progress. Timesharing, I/O operations, paging, swapping,
and bottleneck in the memory bandwidth are reasons for larger elapsed times
in contrast to the CPU time.

On many machines program profiling tools are available. Most common are the
programs prof, gprof and tcov. Prof produces an execution profile of a program.
For each external symbol, the percentage of time spent executing between that
symbol and the next is printed, together with the number of times a routine
was called and the number of milliseconds per call. Due to the overhead of
the housekeeping functions the Numbers might not represent the actual run.

Tecov produces a test coverage analysis and statement-by-statement profile of a

2.3. MEASUREMENT TOOLS AND ENVIRONMENTS

Technical Report:

sces 517 CHAPTER 2. COMPUTER BENCHMARKS 9

program. This means that for each statement a counter is provided to determine
the number of executions of this statement while running the program.

On a Cray we find for example flowtrace, hpm, on an SGI/MIPS gr_osview,
hinv, pixie, and on a Convex syspic. For parallel machines like the CM-5 we
have PRISM and for the nCube and iPSC machines there exists also debuggers
and graphical profiles. Usefull tools are mentioned for example in in [20, 33, 34,
58, 57, 43, 69, 19, 15, 4]

2.4 Common Runtime Benchmarks

2.4.1 Linpack LU Decomposition

The LINPACK benchmark consists of a simple LU decomposition of a dense
linear system (Gaussian elimination) using the LINPACK library [23, 10, 9]. To
exclude the favor of some architectures for problems whose size is a multiple of
the power of 2 the problem sizes 100x100,300x300, and 1000x1000 are used.
The advantages of this benchmark is that it is

e a short benchmark written in simple fairly portable FORTRAN.
e updated quite often.
e without charge electronically available.

The disadvantages are also obvious. Because of the problem structure it is not
easily parallelizable, the parallelization is dependent on the machine so that the
portability is lost [78, 72]. Some numbers in the LINPACK report are produced
by unpublished assembly language or Fortran codings tuned for very specific

computer models.

2.4.2 SPEC Benchmark

SPEC, the Standard Performance Evaluation Corporation, is formed to “estab-
lish, maintain and endorse a standardized set of relevant benchmarks that can
be applied to the newest generation of high-performance computers” (SPEC’s
bylaws). The organization develops suites of benchmarks intended to measure

computer performance. The results are published in a report available quarterly.

2.4. COMMON RUNTIME BENCHMARKS

Technical Report:

sces 517 CHAPTER 2. COMPUTER BENCHMARKS 10

Since we already learned that no benchmark can fully characterize the overall
system performance, the group combines results of a variety of realistic bench-

marks to find the expected real performance.

CPU Benchmarks

“There are currently two suites for floating point and integer calculations, mea-
suring the performance of CPU, memory system, and compiler code generation.
They normally use UNIX as the implementation platform, but they have been
ported to other operating systems as well. The percentage of time spent in

operating system and I/O functions is generally negligible”.[5]

CINT92 The integer benchmark suite contains 6 benchmarks. All of them
are written in C from application areas such as Logic Design, Compiler,

Interpreter, Data Compression and Spreadsheet programs.

CFP92 The floating-point benchmark suite contains 14 programs, from which
12 are written in Fortran, 2 in C. The individual programs are from the
areas of Circuit Design, Simulation, Quantum Chemistry, Electromag-
netism, Geometric Translation, Optics, Robotics, Medical Simulation,
Quantum Chemistry, Simulation, Quantum Physics, Astrophysics, and
NASA Kernels.

The CPU benchmarks can be used to measure the speed and the throughput.

Speed Measurement

The speed measurements are normed in respect to the execution time on a VAX
11/780. This “SPEC Ratio” is available for each individual benchmark. They
are defined as the ratio of the wall clock time to execute one single copy of the
benchmark, compared to the execution time on a VAX 11/780.

Looking into the publications one will easily recognize that the different SPEC
ratios for a given machine can vary widely. Therefore, it is important to compare
the characteristics of the own application area with the individual SPEC bench-
marks to consider those benchmarks that best approximate the job. Sometimes
it might be useful just to argue with an average value, which is expressed in the

following numbers:

SPEC Benchmark

Technical Report:

sces 517 CHAPTER 2. COMPUTER BENCHMARKS 11

SPECint92 = geometric average of the 6 SPEC ratios from CINT92
SPEC{p92 = geometric average of the 14 SPEC ratios from CFP92

SPECint92 can be used to estimate a machine’s single-tasking performance on
integer code while SPEC{p 92 can be used to estimate a machine’s single-tasking

performance on floating-point code.

Throughput Measurement

With this measurement method, called the “homogeneous capacity method”,
several copies of a given benchmark are executed. This method is particularly
suitable for multiprocessor systems. The results, called SPEC rate tell how
many jobs of a particular type can be run in a given time which is in this case
a week. As before the execution times are normalized with respect to a VAX
11/780. Therefore, the SPEC rates characterize the capacity of a system for
compute-intensive jobs of similar characteristics.

Similar to the speed metric, the following average values are defined:

SPECrateint92 = geometric average of the 6 SPEC rates from
CINT92

SPECratefp92 = geometric average of the 14 SPEC rates from
CFP92

The integer SPECrate can be used to estimate a machine’s overall multi-tasking
throughput for integer code, while the Floating-Point SPECrate can be used to
estimate a machine’s overall multi-tasking throughput for floating-point code.
As an example, the Table 2.1 and the Figure 2.2 show some floating point and
integer SPEC marks published recently for different workstations.

2.4.3 Parallel Benchmarks

So far we introduced classical sequential benchmarks. These benchmarks are
important for evaluating the performance of a single processing node which
might be used in an MIMD machine. In order to evaluate other hardware
properties like the communication network not only the arithmetic speed is

measured but also the communication speed.

Parallel Benchmarks

Technical Report:

s0os 577 CHAPTER 2. COMPUTER BENCHMARKS 12
SPEC Marks
Workstations
200 — T T
®—@® Floating point SPEC92
O—0 Integer SPEC92
150 - 4
E
5 100 - -
i}
&
50 - i

12
251 \@Mg @,e&&qcp QON,@ o;a\g@cﬁ\,@,@\
6Q N\ Y ® a A L
w"‘ %éde S 59396 %S c}’“@ o NQ 4’3‘&9“ SN A

o« &
Figure 2.2: SPEC marks for dlfferent sequentleﬁ computers and workstations

One of the most popular communication benchmarks is the so called ping-pong
measure, the basic communication speed in an MIMD machine while sending a
message from one processor to the other and back.

Other benchmarks might be useful to determine the total saturation bandwidth
and the communication bottleneck as described in [46].

Beside this benchmarks for parallel computers the arithmetic benchmarks as
given by Linpackd, NAS benchmark, and other benchmarks from Livermore
National are often used.

The aim for a parallel benchmark suite is to provide benchmarks to evaluate
performance on a wide range of levels from simple machine parameters to com-
plex applications. In the applications memory , communications, IO and other

bottlenecks might become important.

Parallel Benchmarks

Technical Report:

sces 517 CHAPTER 2. COMPUTER BENCHMARKS 13

Table 2.1: SPEC mark ratings of Workstations

From Sterlin Report on Parallel Processing, Issue71, April 93 [70]

Machine fp SPEC int SPEC MHz
mark mark
Intel 468DX2 16 32.2 33
SUN MicroSparc 21 26.4 50
HP 710 48 33 50
RS6000-340 52 28 33
Intel Pentium 56.9 64.5 66
MIPS R4000 63 62 50
SUN SuperSparc 63.4 53.2 40
DEC Alpha 63.6 45.9 100
RS600-350 65 35 41
HP750 75 51 66
PowerPC 80 50 66
MIPS R4400 86 82 75
DEC ALpha 112.5 74.4 133
RS6000-980 124.8 59.2 62.5
DEA Alpha 127.7 84.4 150
HP PA7100 150.6 80.0 99
DEC Alpha 164.1 110.9 200

2.5 Ways to Fool the Masses with Benchmarks

To make us aware that benchmarks are often misused we give the 12 ways to

fool the masses without further comment, published by David Bailey et al. [13]:
1. “Quote only 32-bit performance results, not 64-bit results”.

2. “Present performance figures for an inner kernel as the performance of the

entire application”.
3. “Quietly employ assembly code and other low-level language constructs”.

4. “Scale up the problem size with the number of processors, but omit any

mention of this fact”.
5. “Quote performance results projected to a full system”.

6. “Compare your results against scalar, unoptimized code on Crays”.

2.5. WAYS TO FOOL THE MASSES WITH BENCHMARKS

Technical Report:

sces 517 CHAPTER 2. COMPUTER BENCHMARKS 14

7. “When direct run time comparisons are required, compare with an old

code on an obsolete system”.

8. “If megaFLOPS rates must be quoted, base the operation count on the

parallel implementation, not on the best sequential implementation”.

9. “Quote performance in terms of processor utilization, parallel speedup or
megaFLOPS per dollar”.

10. “Multilate the algorithm used in the parallel implementation to match the

architecture”.

11. “Measure parallel run times on a dedicated system, but measure conven-

tional run times in a busy environment”.

12. “If all else fails, show pretty pictures and animated videos, and don’t talk

about performance”.

2.6 Supercomputer Performance

In this section we summarize some data available for parallel computers.

The Performance is given for 64 bit floating point arithmetic, unless otherwise
stated. Values noted with (Dare either 32 or 36 bit. For the earlier machines,
the flop rate is taken from the average of an add and a multiply.

For parallel machines, values are listed for both the maximum size machine
which has been built, and for the size of a scaled up machine (scaled in powers
of 2) which is closest in price to $20M (i.e. supercomputer price), even though
it may not exist (this is demoted by a). TFor this virtual machine, the
performance figure given in brackets is the value scaled to an exactly $20M
machine. This is the point which appears in the plot.

For the vector machines, values in brackets in the “procs x pipes” column are
number of Flops per processor per clock cycle, if that is not equal to the number
of pipes. The performance is given by: Max Flops = Number of processors x
Flops per cycle x Cycles per second.

Best performance is a value that has been achieved by a real applications code
or benchmark (LP = LINPACK, MM = matrix multiplication).

The performance of sequential and supercomputers are displayed in Figure 2.3.

2.6. SUPERCOMPUTER PERFORMANCE

Technical Report:

sces 517 CHAPTER 2. COMPUTER BENCHMARKS 15

Table 2.2: Sequential Scalar Mainframes

Machine _ date _ price _ processor _ max perf _ refs
$M kflops
ACCOUNTING i1 eTectro- 0.002 T63, 68]
MACHINES mechanical
(Harvard-IBM)
ENIAC 16Q1 0.5 vac tubes 0.6 (1) 5 (add) (1) (63, 68, 16]
fixed pt | 0.35 (mult) (1)
SEAC 50027 vac tubes 77 77 | [68, 16]
UNIVAC 1 51Q2 0.47 vac tubes 0.7 (1) 2 (add) (1) | [63, 68, 16]
fixed pt | 0.45 (mult) (1)
MANIAC 52 vac tubes 77 77 (1) | [1g]
IBM 701 53Q2 vac tubes a5 (1) 16 (add) (1) | [63, 68]
22 kHz fixed pt 2 (munt) (1)
IBM 704 55 vac tubes 107 (1) 42 (add) (1) | (63, 68)
84 kHz fixed pt 67(mult) (1)
7 (1) 12 (add) (1) | [16]
floating pt 5 (muit) (1)
IBM 7090 59Q4 3 transistors 58 (1) 230 (add) [63, 68]
460 kHz floating pt 33 (mult)

Table 2.3: Multi-Unit Scalar or Pipelined Scalar Machines

Machine date | price | clock | scalar max perf | rtefs
$M MHz | Mflops Milops
TBM STRETCH 61 3 17 07 1.0 (add) [63, 68, 16]
(IBM 7030) 0.55 (mult)
CDC 6600 6204 10 15 3.3 (add) 3.07 | [47, 16]
1.0 (mult) (3)
CDC 7600 [36 5.077 1077 | [47]

(3)(2 mults and 3 adds every 10 cycles. In practice, about 2.5 flops/cycle)

2.6.1 Some Machines
The CM5

The CM5 can operate in both SIMD and MIMD mode. The available machine
has 32 nodes each with 32 megabyte of memory. Each node includes a RISC
processor as well as four vector units capable of 128 MFLOP peak performance.
The RISC processors are 33MHz SPARC processors. They use 64 KByte cache
for instructions and data together. The Processor is rated with 22 Mips and 5
MFLOPS.

The interconnection network between processing elements is given by a fattree
shown in Figure 2.4. The CMMD message passing library provides the above

mentioned sending and receiving commands.

Some Machines

Technical Report:

sces 517 CHAPTER 2. COMPUTER BENCHMARKS 16

Table 2.4: Modestly Parallel Pipelined Vector Machines

Machine date price procs clock | max perf | best perf | refs

_ | [| i [| ™ade | "o |
CRAY 15 76 57 Tx2 80 0.16 011 LP | [1, 2, 7]
CDC CYBER 205 51 Tx 2 (87) 50 0.40 020 LP_| [1, 2, 7]
CRAY XMP/2 53Q2 2x2 105 0.42 [T, 2, 71]
XMP/4 85 257 4x2 105 0.84

86Q3 22 4x2 118 0.94 0.82 LP 1,2, 3]

CRAY 25 §5Q2 20 Tx2 24% 2.0 17 MM T, 2]
FUJITSU VP200 53Q4 Tx3 (47 123 0.53 2]
HITACHI 5-810 53Q4 Tx 67 7T 0.437 2]
HITACHI 5-810 7 54 7 Tx6 143 084 1,2
FUJITSU VP400 7 85 1x3(8) 143 114 1,2
NEC sX-2 86 1Tx 16 (8) 167 1.3 1,2
TBM 2090VF 86 10 6 x 2 69 0.82 0.54 LP 1,2
HITACHI 5.820 87Q4 1x38 (12) 250 2.0 1,2, 3]
ETA 10E §8Q17 22 5 x 2 (9) 95 6.9 1,2, 3]
CRAY YMP 58Q4 23 8 x2 167 2.7 2.1 LP 1,2, 3]
NEC 5X-3 50Q4 24 % x 16 345 22 20.0 LP 1,3
FUJITSU VP2600 91Q1 15 27 x 2 (8)7 312 5.0 0 LP 1,2
CRAY C-90 92Q17 20 16 x 4 250 16 12.7 LP 1,3

[HITACHI 5-3800 [937] [ax?(16) | 500 | 32 | |]
FUJITSU VPP500 | 93Q47 19 19 x 2 500 20 1.6 per

_ _ _ 125 _ 222 x 2 _ _ 350 | processor

The iPSC\860

The iPSC\860 is a MIMD machine. The available machine has 16 nodes each
with 8 Mbyte of memory. Each node includes a 80860 processor and a direct-
connect module which controls eight bidirectional communication channels. The
channels are rated with a peak performance of 2.8 Mbyte per second. The
maximum size of a Hypercube can hold up to 128 nodes.

The interconnection network between processing elements is given by a Hyper-
cube shown in Figure 2.4. Libraries for the message passing provide routines

similarly to the above mentioned sending and receiving commands.

Intel Touchstone

The Intel Touchstone Delta system is a message-passing multicomputer, con-
sisting of an ensemble of individual and autonomous nodes that communicate
across a two-dimensional mesh interconnection network (Figure 2.4). Tt has 513
computational 1860 nodes, each with 16 Mbytes of memory and each node has a
peak speed of 60 double-precision Mflops, 80 single-precision Mflops at 40 MHz.
A Concurrent File System (CFS) is attached to the nodes with a total of 95
Gbytes of formatted disk space. The operating system is Intel’s Node Executive
for the mesh (NX/M).

Some Machines

Technical Report:

sces 517 CHAPTER 2. COMPUTER BENCHMARKS 17

Table 2.5: Massively Parallel Machines

Machine date price nodes lock max perf | best perf | refs
$M MHz Gflops Gflops
ICL DAP 80 2 4K bit 4 0.02 (1) 017 MM | [71, 47]
(1M+host) 0.005
17 (2) 64K bit 0.08 (0.1)
Goodyear MPP 7 | 83Q1 4 16K bit 10 0.3 (1) [47]
0.08
16 (2) 64K bit 0.3 (0.38)
Tntel iPSC/1T 35Q2 1 128 80286/7 7 0.008 12, 71, 3]
16 (2)2K so0286/7 0.13 (0.16)
nCUBE-1 36 17 1K 3 0.3 T2, 71]
05 (1
14 (2) gk 2.4 (3.4)
TMC CM-2 37Q2 10 2K Weitek T Tt 1, 71
28 (1) 10.4 LP
Tntel iPSC/2 VX 37Q4 1 128 Weitek 107 0.85 T2, 71]
2.56 (1
32 (2) 1K Weitek 6.8 (4.2)
Transputer 38 [200 T800 25 0.4 I, 2, 71]
0.6 (1
307 (2)3K Ts00 8.0 (5.3)
nCUBE-2 50 38 1K 20 2.4 ToLP | [, 71
2.4 (D
30 (2) gk 19 (12.5)
Maspar MP-1 5001 1 16K 25 058 42 LP | [1, 7L, 3]
13 (D)
30 (2)512K 19 (12.5)
TMC CM-5 5204 25 TK x 4 VUs 32 130
Tntel Paragon 52Q4 307 2K 860XP 50 150
300 (1)
Maspar MP-2 92Q4 17 16K 25 2.4 8]
6.4 (1
27 (2)356K 38 (29)
KSR-1 52 32 20 13
30 (2) 1088 43 (29)
Meiko 100
X nCUBE-2

Scalable Architecture

We call computer architecture scalable if it can be either used for the design
of an arbitrarily large machine or which increases its performance linear in the
amount of hardware investment.

Under FLOPS we do understand the number of floating point operations per

second.

Distributed (heterogeneous) Computer Architecture

In contrast to Supercomputers which are assumed to be one entity a distributed
computer consist of many independent computers. The are connected over a
network. A network of workstations is an example for distributed computer.

Since nearly every site has such resources available, it is a cost-effective al-

Some Machines

Technical Report:

sces 517 CHAPTER 2. COMPUTER BENCHMARKS 18

ternative approach to solve a problem with existing hardware. If the entities
are of different computational power we have a heterogeneous distributed com-
puter. In the tables shown previously we did not include performance data for

distributed systems.

Machine available Number

Cray Y-MP%/2-64, 128
Cray Y-MP8/2-64
Intel iPSC/860 128

7 | NEC SX-3

TMC CM-200/64K

7 | Intel Paragon XP/S-150 3Q93
MasPar-2208
TMC CM-5/32VU
Hitachi 5-820/60
Cray M94-256
Cray M98/4-1024
7 | Cray T3D/ACse4 3Qo4
? IBM GF-11

KSR1-48

7 | Babaian Elbrus-2

SRI MCS Supermacroneurocomputer
7 | Intel Paragon XP/S-10 3Q93
Fujitsu VP2400/20

Cray Y-MP4/3-32, 64

Cray Y-MP8/3-64

7 | Fujitsu AP1000/256
KSR1-56

Hitachi 5-820/80

7 | IBM sPP-64

KSR1-64

Fujitsu VPX240/20

Fujitsu VPX260/10
Siemens-Nixdorf $400/10
Siemens-Nixdorf VP-400/EX
nCUBE2/1024

7 | Cray 25/8-128

Cray Y-MP/4-32, 64

Cray Y-MP8/4-132, 64, 128
7 | Intel Paragon XP/L-15

© i o

o b b o o o iy o b O W
R IRy S o S
N

e
N - R

7 Cray 4/1 4Qo3
k4 Toshiba TS/1-64 2Q95
Cray C92A-128 4Q93
Cray C94/2-64 3Q93

TMC CM-5/64VU-32/256
DECmpp/SX 200/16K
MasPar-2216

7 | NEC SX-3/21R

Cray M98-4096

7 | 1BM RS/6000 3Qo3 | 256 *
7 | NEC Cenju-3/64

7 | Cray T3aD/128 1Q94

5

Adaplive Solutions CNAPS-256
Cray Y-MP8/6-32, 64, 128
Fujitsu VP2600/10, 20

k4 Fujitsu AP1000/512

KSR1-128

k4 Intel Paragon XP/L-29

Cray Y-MP/8-32, 64, 128, 256
7 Cray 3/4-128

et I I I A R
u
b4

PR R RNO®ND DD I 5O o Ny Ll
TRt S R I it

Some Machines

Technical Report:

sccs 577 CHAPTER 2. COMPUTER BENCHMARKS 19
Machine available Number
B 7 | NEC SX-3/1%
8 7 | NEC SX-3/22
8.04 7 | Siemens-Nixdorf VPP500/20 4Qo4
8.25 Cray C94A-128 3Q93
8.7 7 | Hitachi S-3800/480
8.8 7 | Intel Paragon XP/L-35
9.1 TMC CM-5/128VU-32/256
9.28 7 | NEC SX-3/41R
9.39 7 | IBM RS/6000 4Qo3 | s12*
9.65 7 | Cray T3D/256 3Q93
10.05 7 icomputer 16K /40
10.88 7 su-NEC VP2600/40
11.2 7 | Fujitsu AP1000/1024 4Qo3
11.78 KSR1-256
13.6 Siemens-Nixdorf S400/40
13.6 Siemens-Nixdorf S600/20
15.2 7 | Cray 4/4 4Qo4
15.47 7 | Intel Touchstone Delta 570
15.6 Cray 0916/8-128
15.6 Cray 0916/8-256
15.6 Cray 098-128, 256, 512
16 7 | NEC SX-3/24
17.76 7 | RWO-1/1K 2Q96
18.2 TMC CM-5/256
18.56 7 | NEC SX-3/24R
18.85 7 | Intel Paragon XP/L-75 4Qo3
19.04 7 | NEC Cenju-3/256 2Q94
19.32 7 | Cray T3D/512 3Q93
25.13 7 | Alenia Spazio Ape 100 Quadrics Parallel
25.13 7 | IBM SPP-512 4Qo4
27.84 7 | NEC SX-3/34R 4Q93
27.91 Cray 0916-256, 512
32 7 | NEC SX-3/44
35.04 TMC CM-5/512
35.18 7 | Intel Paragon XP/L-140
37.12 7 | NEC SX-3/44R
37.22 TMC CM-5/544VU
37.7 7 | Intel Paragon XP/L-150 2Q94
38.6 7 | Cray T3D/1024 4Qo4
50.26 7 | Meiko ©S-2/256-512VU 1Q94
59.31 7 | NAL NWT/140 77
64.34 7 | Toshiba TS/1-1024 2Q96
70.07 TMC CM-5/1024 77
75.39 7 | Hitachi CP-PACS/2048 1Q96
98.26 7 | Archipel Volvox-LHPC/2048 4Qo4
250.91 7 | Cray T3D/6656 4Q96
284.16 7 | RWO-1/16K 4QoT
494.21 7 | Intel?-2048 4QoT
1136.64 | 7 | RWOC-1/64K 4Qos
2513.16 | 7 | Fujitsu? 4Q99

Technical Report:

sccs 577 CHAPTER 2. COMPUTER BENCHMARKS 20
o
o
N
8 os £
mm om =
o = :Zmf ¢
_—_y %
id =t
000 Jlmw mu_
o (0w i u
B ¥ 13 35.2
o M ~ i&e 38 o
m z 3 mmm ﬁ % o]
0w 3 ES s @5 (o)}
eds | ¢ ¢ —
eSEl | E s
588 ;< g
T a8
CTES gz % o
ol S WS
Mam 8 - = >
g Q °35
£SO i
T "
825 m ° 3
3 5= ; o))
de 9 —
wpm < ,
< g
§9¢ i
W..Uum, |] 1O
85> L 10
dum] O
OAW g1
= = <
] [] |
o
<
(0)}
Yy 94 39 © o o 9 % o v o o o
o © o 9 9 3 3 3 3 33 3 =

— =

Figure 2.3: Performance of &mmamwﬂwmm%ﬁ_m%%ﬂwE&:& Supercomputers

Some Machines

Some Machines

Technical Report:

sces 517 CHAPTER 2. COMPUTER BENCHMARKS 21

Chapter 3

Networ k
66666666@366666666666 Taxonomy of Computers

Array

QOO

R
e
S
o

Hypercube

3.1 Flynn’s Classification

One common way to classify parallel computers is to use the taxonomy proposed

by Flynn [30]. It is based on the observation that each computer whether

parallel or sequential executes a stream of instructions on a stream of data. An

BN Y instruction stream is a sequence of instructions as executed by the machine.
// A data stream is a sequence of data including input and output, partial or
temporary results. The data and instruction stream can be single or multiple
\ so that four classes are distinguished as shown in Figure 3.1.
Instruction

Fattree

SISD MISD

Figure 7.4 Diiferent inferconnection nefworks

SIMD MIMD

2
=3
S
£

Figure 3.1: Classification by Flynn

Figures 3.3-3.6 show the relation of data and instruction streams to the processor

of Flynn’s taxonomy.

Some Machines 22

Technical Report:

sces 517 CHAPTER 3. TAXONOMY OF COMPUTERS 23

Examples for SIMD machines are architectures in which homogeneous processes
execute the same instruction synchronously on their own data such as the CM-2
or the Maspar and architectures in which each operation may be executed on
vectors of fixed or varying length. Examples for MIMD machines are the nCube
and the iPSC delta. Sequential computers are SISD.

3.2 Parallel Random Access Machine

One of the most famous theoretical models for parallel computation is the Par-
allel Random Access Machine (PRAM). The model has an arbitrary, but finite,
number of processors and an arbitrarily large shared memory which can accessed
by the processors in random access mode. The processors are synchronized but
can execute different instructions at a time. Shared memory computers can
be divided into subclasses according to whether access to the memory is done

concurrent or exclusive [7] as shown in Figure 3.2.

Write

Exclusive | Concurrent

EREW ERCW

Read

CREW CRCW

o
s
@
E
k1
<
i
5
3
c
&
[s)

Figure 3.2: Shared Memory SIMD Computers

EREW read and write on a memory location can be done only exclusively.
(that means only one processor has access to the particular memory loca-

tion)

CREW read can be performed concurrently

CRCW reads and writes can be performed concurrently. since processors can
write in the same memory location at the same time a strategy has to be

defined to do the writing. A simple one would be a random selection of

the processor writing. Other writes at the same time step will be ignored.

3.2. PARALLEL RANDOM ACCESS MACHINE

Technical Report:

sces 517 CHAPTER 3. TAXONOMY OF COMPUTERS 24

3.3 SPMD

In many cases only a single program runs on the different processors of a parallel
computer. This is abbreviated with SPMD or Single Program Multiple Data.
We view SPMD either an extension of SIMD or a restriction to MIMD.
Other classification scheemes can be found in [28, 29, 37, 40, 41, 42, 45].

3.3. SPMD

Technical Report:

sces 517 CHAPTER 3. TAXONOMY OF COMPUTERS

CHAPTER 3. TAXONOMY OF COMPUTERS

g Instructions Data

Figure 3.3: SISD

°
SIMD
N
[— Instructions
I
Processor Processor Processor Processor
1 2 3 bl n
— @ a = e
e e e
— e == {—
— T == —
° ° ° D ata °
°] ° °

Figure 3.4: SIMD

3.3. SPMD

: : : Instructions L
(ol (ol Commll —
e Y e s —
(el (ol Dol e
Processor Processor Processor Processor

1 2 3 bl n

|
I—
S— MISD
Ol e
I—
Data . °
Figure 3.5: MISD

: : : Instructions :
PN R PR R — E—
o M R SN mw— [E—
o S Ry m— —
[P R SR R s— E—
Processor Processor Processor Processor

1 2 3 bl n
o s — —
Cotl ol Dol [y, ot
o R — —

Figure 3.6: MIMD
3.3. SPMD

Chapter 4

Memory Access

To write efficient algorithms (not only for multiprocessor computers but also
for sequential machines), it is necessary to review the concept of a memory
hierarchy.

Normally, the computation done in a central processing unit (CPU) is much
faster than the time necessary to move the required data from the memory
to the registers of the CPU. The process of moving the data is called fetching
and the time required for transferring data from a part of the memory to the
CPU is called memory access time. In order to use the processor efficiently it is
important to keep the memory access time as small as possible. Unfortunately, it
is too expensive to build very fast memories with sufficient capacity for scientific
applications requiring huge amounts of data. Therefore, a memory hierarchyis
used to decrease the cost of the memory system while retaining efficient memory
access times. Figure 4.1 shows a typical memory hierarchy. The closer the
memory level is to the registers of the processor the faster is the access.

For example, to use data stored in the external memory it has to pass through
all levels of the memory hierarchy. Often, access time can be decreased if the
usage of specific data can be predicted, so that data is transferred into a faster
part of the hierarchy before it is actually referenced.

Onmne simple way to evaluate if a program can make use of the hierarchy in an
efficient way is to keep the ratio of operations to data movement as large as

possible. This ratio is important to achieve high performance when exploiting

27

Technical Report:

sces 517 CHAPTER 4. MEMORY ACCESS 28

Register

Cache
RAM

faster
access

larger

External Memory capacity

Figure 4.1: Typical memory hierarchy in a computer

concurrency.
For example, the following statement inside a loop performing matrix multipli-

cation,

Cyj G5+ Qg % bkj

requires three memory accesses to obtain the data ¢;;, a;x, b5, and one to store
the result in ¢;;. Addition and multiplication count as one floating point op-
eration each. The ratio of floating point operations to memory access time is
r=1

A simple programming trick to improve this ratio is to figure out how data is
stored in the memory. One has to know that most memory organizations use
specific strategies to reduce the memory access time. A common rule on many
machines is to fetch a block of data instead of only one datum at a time. The
distance between elements in the memory is called stride.

Therefore, it is best to formulate the algorithms in such a way that data elements
used in consecutive computation steps are stored in contiguous addresses of the
memory. Hence they are fetched in a block requiring fewer memory accesses.
Figure 4.2 shows how data (a matrix) is stored in a memory using the Fortran
programming language. Having this in mind it is obvious why Fortran is called

a column oriented programming language.

Technical Report:

sCOS 57T CHAPTER 4. MEMORY ACCESS 29

A

F (5N RN
ayn 2 A3|| o« &1
mmu WNN me DN:
a3 a3 As|| ... A
8my Am2) Amgl| =m Amn

- - - -

Figure 4.2: Storage of a two dimensional array in column oriented programming
languages like Fortran

Under the assumption, that a machine is able to fetch o contiguous data ele-
ments from the memory in one time step, some statements of the loop perform-

ing the matrix multiplication steps can be rewritten as
Cij Gyt Ak k by A g g1 R bpgaj o F G ka1 * Dhga—1,; (4.1)

This leads to 2« floating point operations, 2 memory accesses for storing and
fetching ¢;;, @ memory accesses for fetching the a,;’s and one memory access
for all by;’s. The ratio is r = %T|QQ

By storing the matrix A as its transpose, A?, one can rewrite the multiplication

as
1 1 1
Cij = egtap xbpgdag g xbig et ap g ¥ bt (4.2)

where a}, specifies the element in the k-th row and i-th column of A*.

Now there is only one memory access necessary to fetch vector a (@1, s i htam1)

Therefore, the ratio is 7 = §. The prediction of a maximal vector length o de-
pends on many factors: the machine used, the memory hierarchy, and their
fetching algorithm. Algorithms which update a block of contiguous vectors in-

stead of only one vector at a time are known as blocked algorithm. This way the

Technical Report:

sces 517 CHAPTER 4. MEMORY ACCESS 30

work is done {ocally on a block of data.

Numerical experiments [78, 60] showed that traditional linear algebra algorithms
do not achieve high performance on distributed-memory multiprocessors be-
cause of the lack of data locality. Therefore, data locality is the fundamental
problem in parallel computing and has great influence on the performance on
such machines. The use of block based algorithms is one of the most efficient
ways to improve the performance of numerical algorithms on distributed mem-

ory machines.

Chapter 5

Programming Models

In this chapter we concentrate on the use of different programming models. We

consider

e sequential programming,
e data parallel programming,
e and message passing programming.

We develop the code for a real application for each of these models in order to
outline their specific features. We show different algorithmic details while paral-
lelizing the original sequential algorithm. The application problem we consider

is known as recursive bisection of points in a plain.

Bisection of Points Recursive bisection is a very fast partitioning strategy.
It is often used for dividing points in a two dimensional plane into a number
of partitions containing an approximately equal number of points. The mem-
bership of a point to a specific partition is specified by its location in the two
dimensional plane.

A realistic application of the algorithm is described in [31]. In some VLSI
circuit simulations the computational core is dominated by the simulation of
the transistors. To increase the speed of the simulation the goal is to distribute

the calculations onto different processors of a parallel machine. To achieve

31

Technical Report:

sces 517 CHAPTER 5. PROGRAMMING MODELS 32

load balancing the recursive bisection technique is used. Omn each processor
one should map an equal number of transistors for the simulation to achieve a

minimal execution time for the simulation.

5.1 Sequential Programming

5.1.1 Problem Analysis

The following example is used to illustrate the recursive bisection algorithm
[76]. Assume that a number of random points are located in a two dimensional
finite plane. The problem is to map an equal number of points on a given num-
ber of processors. Figure 5.1 shows a two dimensional plane with 100 random
generated points.

First, the algorithm places half of the points to the left and the other half to
the right. This can be done by sorting the elements in the z-dimension. In the
next step the same is done in each of the parts separately in the y-dimension.
This is repeated as long as the desired number of partitions is found. In the
Figure 5.1 results for 2, 4, 8, and 16 partitions are given.

In order to keep the problem as simple as possible we assume that we are
not interested in the cost generated while mapping the final result on different

processor topologies. This is beyond the scope of this chapter.

5.1.2 Sequential Sorting

The problem analysis suggests that a fast sorting algorithm is the basis of the
recursive bisection strategy. Quicksort is one of the most popular sequential
sorting algorithms due to its good average time complexity of O(nlogn) for
large problem sizes. The quicksort algorithm is based on the important fact that
exchanges are executed over large distances which leads to it’s high efficiency.

First, the median of a sequence of data items is found. The median is the
data item in the middle of the list. This partitions the initial sequence into
two subsequences. The subsequences have the property that they are either
larger or smaller than the median. This step is repeated recursively on the so
generated subsequences till no further divide-and-conquer is possible. A pseudo-

code fragment representing the quicksort algorithm is shown in Figure 5.2.

5.1. SEQUENTIAL PROGRAMMING

Technical Report:

scos 57T CHAPTER 5. PROGRAMMING MODELS 33
o OOOCO o O o ooo@o o O
o oo |0 o @ @0 O o
0® © o5 o ©° e® © o [0 ©
00 6 & 4097 | 6o 8 & 40 °8°
@o © 98" & @o © 05" «
OOO © %@O OO) @ R .
[eXe) OO oo 906 OO [X) .. e @O OO
¢} [eJNeo) ® O oo
®os °Co | |Vee °go
0©° o]0 4 e ® o |0
Py
N °eP% o |o
@ o0 o
0® © ° o o |
oo 9 & %o
‘o @ o)
g P .
(X} 0. oo © o o
° o co
%o ° 8 ®
o |® o LO |
o o 902

Figure 5.1: Partitioning a random graph with 100 points graph into 2, 4, 8, and
16 parts

For a detailed description and complexity analysis one might consult [55].

5.1.3 Coordinate Bisection

With the help of the sorting algorithm it is now straight forward to write the
bisection algorithm. To do so we have to introduce first a few variables.

Since we work in the two dimensional plane it is useful to store the coordinates
in two arrays called X and V. The i-th point has the coordinates (z;, ;). Let N
denote the number of points placed in the plane. Let level denote the number
of recursions of the bisectioning, than we divide the points into 2'*¢ parts.
The algorithm is shown in Figure 5.3. Note that we changed the sorting rou-

tine appropriate. This means that we sort the three arrays X,Y, and names

Coordinate Bisection

Technical Report:

sces 517 CHAPTER 5. PROGRAMMING MODELS 34

PROCEDURE quicksort (int 1, int r, array a)
i=1
i=r
X = Quan
REPEAT
WHILE (COMPARE (a,,x) = SMALLER) i=i+1;
WHILE (COMPARE (x,¢;) = SMALLER) j=j-1;
IF (i<j) then
Swapltem (a,, a;);
i=i+1;
J=i-1
ENDIF
UNTIL (i>]);
TF (1<j) then quicksort(l,j,a);
IF (i<r) then quicksort(i,r,a);
END PROCEDURE
The routine COMPARE returns SMALLER if the value of
the first argument is smaller than the second argument.

Figure 5.2: The sequential quicksort algorithm

corresponding to the keys given with the values of X. The integer values a and

b specify the range on which the sort should be performed.

5.2 Data Parallel Programming

In case we apply a single instruction to all elements of a data structure simul-
taneously we use the term data parallel programming. A machine capable of
performing data parallelism is naturally an SIMD machine. Nevertheless, we
are of the opinion that dataparallel programming is more common than often
realized. The problem is ow we define an instruction applied on a data struc-
ture. An example for a program executed on an MIMD machine which is a
dataparallel parallel program are certain parallel genetic algorithms [74, 77, 73].
In this algorithms the data structure is the genetic coding and the instructions

are high level instructions like mutation, crossover and selection. In this way

5.2. DATA PARALLEL PROGRAMMING

Technical Report:

sces 517 CHAPTER 5. PROGRAMMING MODELS 35

PROCEDURE bisection(level, a, b, X, Y)
BEGIN
midpoint — g.w_é
sort (a,b, X, Y)
coord «— &3&351“% Ymidpoint
IF level =1 THEN
nparts < nparts + 1
FOR i «— a TO midpoint REPEAT
partition; = nparts
END REPEAT
nparts < nparts + 1
FOR ¢ «— midpoint+1 TO b REPEAT
partition; = nparts
END REPEAT
END IF
IF level > 1 THEN
bisection (level — 1, a, midpoint, ¥, X)
bisection (level — 1, midpoint+ 1,5, YV, X)
END IF
END PROCEDURE
The procedure is initiated with
bisection (level, 1,nodes, X,Y)

Figure 5.3: The sequential bisection algorithm

even SPMD algorithms are dataparallel programs. Nevertheless, in this paper
we would like to follow the usual understanding of dataparallel programming
and their tight connection to predefined instructions an a SIMD machines.
Since the sorting algorithm is used for the bisectioning we try first to parallelize
this algorithm. Under the assumption that we can place each data element
on a separate processor we can develop a simple sorting strategy often called
odd-even transposition.

The algorithm is shown in Figure 5.4. First, all odd numbered processors p,
obtain the data element x,49 from the next processor. If the obtained data
element is smaller than processor p; and p;y1 exchange there elements stored.
Second, all even numbered processors perform this operation. After [n/2] steps

a sorted list is obtained. Figure 5.5 shows an example of sorting 10 numbers.

5.2. DATA PARALLEL PROGRAMMING

Technical Report:

sces 517 CHAPTER 5. PROGRAMMING MODELS 36

PROCEDURE odd-even-transposition (int 1, int r, array a)
FOR j=1 TO n/2 REPEAT
FOR i = 1,3,..,2| n/2] —1 DO IN PARALLEL
IF ¢, > a; +1 THEN
a;, < a; +1
ENDIF
END DO IN PARALLEL
FOR i = 2,4,...,2| n/2] DO IN PARALLEL
IF ¢, > a; +1 THEN
a;, < a; +1
ENDIF
END DO IN PARALLEL
END REPEAT
END PROCEDURE

Figure 5.4: The sequential quicksort algorithm

5.2.1 Radix Sort

The complexity analysis shows that this rather straight forward sorting algo-
rithm does not perform well. Therefore, we introduce here a data parallel sorting
algorithm as used by the CM-2 [44].

The CM-2 has the ability to access data in parallel, so that sorting of the data
can be avoided often while using ranking. Due to experiments on the CM-2 Hillis
and Steele found out that for this particular machine bitonic sort has a very
good performance for large sort keys but Radix sort performs better on shorter
keys up-to 25-32. Sorting 65536 32 bit numbers takes with both algorithms
about 30 milli seconds.

The Figure 5.6 shows the radix sort algorithm. Sorting is performed via enu-
meration due to significant bits. Since each loop is done over n elements and k
is to be assumed much smaller than the number of elements the time complexity

for radix sort is O(n).

Radix Sort

CHAPTER 5. PROGRAMMING MODELS

e (s3] o] (=1 [z
3] 97
][[o][=] (2

i
\
\

&

\
\
\
\
\
|
y
\
\
\
\
\
\
\

2[z] [o][] (=]

o] 3] [2s] s3] [sa] [79
[z2(o) [z2] (28] [se] 52] [o7
CIENESETIETE)

Figure 5.5: 1daon algorithm

Radix Sort

Technical Report:

sces 517 CHAPTER 5. PROGRAMMING MODELS 38

FORj —1 TO 1+ | logz mazint | DO
FORALL k € {1,..,P} DO
WHERE (7} mod 29) = 0 DO
use a stable sort array A on digit k
END WHERE
END FORALL
END FOR

Figure 5.6: A data parallel radix sort algorithm

5.3 Message Passing Programming

5.3.1 Message Passing Sort

The message passing sorting algorithm is dependent on the topology assumed
on the processing elements. To be most general only a bidirectional array is
assumed as topology for the sorting process. It is important that the sorting
process includes only a subset of the computational units so that the other
processors might work independently on another task. This enables one to use
a parallel machine for example for more than one independent sorting processes
as used in the parallel bisection algorithm.

The parallel sorting algorithm itself uses the sequential quicksort in its initial
step. Since the quicksort algorithm is outlined earlier the parallel merge sort

algorithm is described next.

Parallel Mergesort Algorithm

The parallel sorting algorithm is based on the technique described in [6, 7] under
Merge-Splitting Sort. This algorithm is based on the Odd-Even Transposition
Sort but takes into account that not every element can be stored on a separate
processor. This is a very realistic restriction since MIMD machines are build
only with a medium number of processing elements.

The example shown in Figure 5.9 illustrates the parallel mergesort algorithm.
On the four processors 16 data items are generated in random order. These data

items are sorted with the sequential sorting algorithm. The result is shown in

5.3. MESSAGE PASSING PROGRAMMING

Technical Report:

SCCS 57T

CHAPTER 5. PROGRAMMING MODELS

39

PROGRAM bisection
“““ - Variables
INTEGER N, NSegment
PARAMETER(N=32)

INTEGER X(N), Y(N), Xnew(N), Ynew(N)
INTEGER rank(N)
INTEGER 1, levels, parts
LOGICAL segments(N)
““““ Determine Home ——M————
X=0
Y=0
Xnew =0
Ynew =0
rank = 0
segments = .FALSE.
Initialize
call CMF random (X,N)
call CMF random (Y ,N)
levels = 2; parts = 4 ! parts =
““““ Do main Loop ——M8M8M8™ ————
NSegment = N/2
call CoordBisection (N, X, Y, segments, Xnew, Ynew, rank,
$ NSegment, levels)

MchmN

““““ RankSort
SUBROUTINE RankSort (N, X, Y, segments, Xnew, Ynew, rank)
INTEGER X(:), Xnew(:), Y(:), Ynew(:), rank(:)
INTEGER N
LOGICAL segments(:)
call emfrank (rank, X, segments, 1, CMF_UPWARD,
$ CMF_SEGMENT _BIT, .TRUE.)
Xnew(rank) = X
Ynew(rank) =Y
END

Figure 5.7: A data paralle]l FORTRAN program

Message Passing Sort

Technical Report:

sces 517 CHAPTER 5. PROGRAMMING MODELS 40

SUBROUTINE CoordBisection (N, X, Y, segments,
$ Xnew, Ynew, rankN, Segments, level)
INTEGER X(:), Xnew(:), Y(:), Ynew(:), rank(:)
INTEGER N, NSegments, level
INTEGER 1
LOGICAL segments(:)
DO i=level,1, -2
IF (level >=1) THEN
call RankSort (N, X, Y, segments, Xnew, Ynew, rank)
FORALL (i=1:N, MOD (i-1, NSegments) == 0)
$ segments(I) = . TRUE.
NSegments = NSegments/2
ELSE
X = Xnew; Y = Ynew
ENDIF
IF (level >=1) THEN
call RankSort (N, Ynew, Xnew, segments, Y, X, rank)
FORALL (i=1:N, MOD (i-1, NSegments) == 0)

$ segments(I) = . TRUE.
NSegments = NSegments/2
ENDIF
END DO
END

Figure 5.8: A data parallel FORTRAN program

the first row of Figure 5.9.

In the next step all elements of processors with even numbers are send to the
right and the ones with odd numbers are send to the left. Each processing
element consist now of two data sequences. Its own and the one from its corre-
sponding neighbor. On each even processor the smaller elements of the two data
sequences are determined and for the odd ones the larger ones. They replace
the data items stored in the processor. This is shown in the Figure 5.9 in the
second row.

The following step is similar to the above one with the difference that now each
odd processor sends its data to the left and the even ones to the right. This
is done with two exemption. The processors on both ends of the linear array

do not participate in the exchange process. Than, on each odd processor the

Message Passing Sort

Technical Report:

sces 517 CHAPTER 5. PROGRAMMING MODELS 41

I T T T I T T T I T T T I T T T
‘1‘2‘21‘79” ‘26‘53‘53‘59” ‘0‘31‘51‘97U ‘5‘35‘51‘76”

T T I T T
‘1‘2‘21‘26 ‘53‘53‘59‘7 ‘0‘5‘31‘3 ‘51‘51‘76‘97

9
5

I T T T I T T
‘1‘2 21‘26” ‘0‘5‘31‘3

U 2
| [STe[=] [S[s[%[7]
U U

T T I T T I T T T
‘ 0 ‘ 1 ‘ 2 ‘ 5 ‘ 21‘ 26‘ 31‘ 35 ‘ 51‘ 51‘ 53‘ 53 ‘ 59‘ 79‘ 76‘ 97”

Processor 0 Processor 1 Processor 2 Processor 3

Figure 5.9: Example of the parallel sorting algorithm on 4 processors and 16
data items

smaller elements and on each even the bigger ones are collected.
These two steps are repeated p/2 times in order to guaranty the correctness of

the sorting algorithm, where p specifies the number of processors.

Complexity Analysis The sorting of n numbers with the sequential quicksort
algorithm in each processor is done in O(;ilog %) steps. Transferring the data
elements from one processor is done in O(;i) steps. A mergesort of two lists
requires at most 2% steps. Thus, the two steps are computed O(;i) time steps.
Since they are repeated p/2 times, the total running time is

t(n,p) = O (%log %) +0(n)

In contrast to [6, 7] the following mergesort algorithms are used in the hope to
improve the average running time for the mergesort algorithm with the factor
2. The worst case complexity analysis maintains unchanged.

The procedure mergehigh mergesorts two lists from the highest to the lowest
element till the new list has half the elements from both of the lists.

The procedure mergelow mergesorts two lists from the lowest to the highest till
the new list has half the elements from both of the lists.

The Figure 5.10 shows the parallel mergesort algorithm in pseudo code.

Message Passing Sort

Technical Report:

sces 517 CHAPTER 5. PROGRAMMING MODELS

42

SendRecv (Destination)
send the own items to destination and receive the neighbor items

PROCEDURE mergesort-parallel
FOR (t=0; t< ProcessorsInArray; t++)
TF (even(t)) THEN
IF (even(me)) THEN
SendRecv(right);
mergelow(dimension);
ELSE IF (odd(me)) THEN
SendRecv(left);
mergehigh(dimension);
ENDIF
ELSE
TF ((me = FirstProcessor) or (me = LastProcessor)) THEN
no msg exchange
ELSE
IF (even(me)) THEN
SendRecv(left);
mergehigh(dimension);
ELSE IF (odd(me)) THEN
SendRecv(right);
mergelow(dimension);
ENDIF
ENDIF
ENDIF
END FOR
END PROCEDURE

Figure 5.10: The parallel mergesort algorithm

Message Passing Sort

Technical Report:

sces 517 CHAPTER 5. PROGRAMMING MODELS 43

5.3.2 Parallel Recursive Bisection

With the help of the above described procedures the recursive bisection algo-
rithm is given in Figure 5.11 with the functionality as described at the beginning
of Section 5.1.1 .
The bisection algorithm is initiated with the call:

bisection (0,p — fopm,\mﬁwv.

The variable level determines that the input data is partitioned into 2°*¢ parts.

PROCEDURE bisection (FirstProcessor, LastProcessor,
dimension, level, Procltems)
quicksort (0, Procltems-1, items, dimension);
midpoint = (LastProcessor - FirstProcessor) / 2;
mergesort-parallel (FirstProcessor, LastProcessor, dimension);
IF level > 1 THEN
NextDimension = (dimension + 1) MODULO MaxDimension;
bisection (FirstProcessor, midpoint,
NextDimension,level-1,Procltems);
bisection (midpoint+1, LastProcessor,
NextDimension,level-1,Procltems);
END IF
END PROCEDURE

Here the quicksort algorithm is extended to the different dimensions
of the input data.

Figure 5.11: The parallel mergesort algorithm

5.4 Vector Programming

Using a machine like a CRAY vectorcomputer is for this particular case possible
while using the sequential program. The program might be changed in the way
that optimized library functions for the sorting algorithm are used. Because the
vector computer uses the sequential program as basis we do not describe the

specific features further.

Parallel Recursive Bisection

Technical Report:

sces 517 CHAPTER 5. PROGRAMMING MODELS 44

Since it is so easy to run sequential programs on a vector computer many sci-
entific programs are written for this class of machines. Nevertheless, in some
cases the performance of the machine is badly if the program does not consists

of a data structure that computes successively on data elements of an array.

5.4. VECTOR PROGRAMMING

Chapter 6

Performance Taxonomy

and Analysis

In order to evaluate the advantegas or disadvantages of a supercomputer it
is necessary to introduce some formalism. To compare the running time of
an application between sequential and parallel computers the term speed-up is

often used.

6.1 Seed-Up

The speed-up for a given problem is defined as the ratio between the response
time using a single computer and using a parallel computer with N processors.
Let ;¢4 denote the time to solve the problem with a single processor and tpq, (P)

the time to solve the problem with P parallel processors. Than the speed-up is

S(P) = s (6.1)

Sometimes it is not possible to obtain the running time for a problem running
on a sequential machine due to limitations of the sequential computer. The
time to complete a calculation could be to long or the machine does not provide
enough resources, e.g. memory. Therefore, estimates for the sequential running

times are used often. This indicates once more the usefulness and the need of

45

o AP TER 6. PERFORMANCE TAXONOMY AND ANALYSIS 46

parallel computers for particular applications which could not be tracked by a

sequential machine.

6.1.1 Amdahls Law

Amdahls law [8] was one mayor criticism against the use and the development
of parallel computers. It says that if o is the proportion of an algorithm which
can be performed in serial and 1 — « the proportion executed in parallel, then
the speed-up achieved with N processors is.

1

. H
S = T == T (6:2)
This means no matter how many processors one uses, the speed-up can not
exceed o~1. The observation from Amdahl is valid, but one should consider
that for making parallel computing useless one uses the assumption that o is
large. In contrast for many real life applications we find that o is very small
due to the fact that often the parallel algorithm is completely new designed for
the parallel computer.

Gustavson et. al. give the explanation why we can achieve for most problems
any desired efficiency on any numbers of processors if we scale up the problem

size sufficiently[?]. Let

toeg = ta + HD) (6.3)
(N.P)

where t, is the time of the sequential part of the algorithm ¢, 7 is the time of
the parallelizable algorithm using P processors applied to to problem of size V.

Than the speed-up is

(N,1)
to +1_
S(P)= —- (6.4)
o + 1000
Under the assumption that mw%p > 0 and &mmp < 0, then any desired efficiency
can be reached. For example, assume H%MMUV = Zﬂua then:

t, + N> Pt,+ PN?®
et Tt -pP (6.5)
ta + 55 Pt, + N3

limp —o0S(P)

Amdahls Law

o AP TER 6. PERFORMANCE TAXONOMY AND ANALYSIS 47

Thus, the efficiency approaches 1 for large problem sizes.

6.1.2 Linear and Superlinear Speed-Up

Is the speed up directional proportional to the number of processors in the
computer used we achieve {inear speed-up. Due to Amdahls Law linear speed-
up cannot be achieved, if the program contains a sequential portion. However,
Gustafson’s Law states it can be achieved if the problem size is increased as
the number of processors is increased. A program is called to be scalable if its
performance growth linear with the problem size.

When achieving a speed-up which is greater than the number of processors one
reaches superlinear speed-up. As we saw superlinear speed-up is theoretically not
possible. Neverthelejss, in practise it might occur because the algorithm might
change while distributing it on a parallel machines. An example for this might
be a non deterministic heuristic which may terminate earlier while running it

in parallel.

6.2 Efficiency

The concurrent efficiency is defined as

€= —= (6.6)

by combining the equations 6.1 and 6.6 we obtain

wmmm
= — @.‘N
*T Pty (P) (6.7)

The concurrent efficiency is e measure for how well the parallel processors are

utilized. The closer the value is to 1.0 the better is the efficiency.

6.2.1 Iso-Efficiency

With the help of the iso-efficiency one can quantify the effect of the size of
problem on an algorithm’s efficiency.
Let v be the efficiency, than the iso-efficiency specifies the size of a problem

which must be solved on p processors in order to achieve the same efficiency.

Linear and Superlinear Speed-Up

o AP TER 6. PERFORMANCE TAXONOMY AND ANALYSIS 48

6.3 Overhead

Different causes for the reduction of the speed-up and efficiency of a parallel

program exist. Those causes include

e Algorithmic Overhead,

o Software Overhead,

e Load Balancing,

o Communication Overhead,

e and External Communication Overhead.

6.3.1 Algorithmic Overhead

While determining the efficiency one compares a sequential and a parallel algo-
rithm solving the same problem. Sometimes the parallel algorithm is difficult
to find. In case a parallel efficient algorithm is non existing or can not be used

an Algorithmic Overhead exists.

6.3.2 Software Overhead

While decomposing an algorithm it might be necessary to introduce a more com-
plex algorithm. This is often the case while parallelizing sequential algorithms
on MIMD machines. The programs become more complex in order to ensure
data consistency and computational correctness. The overhead introduced by

expanding the sequential program is called Software Overhead.

6.3.3 Load Balancing

Onmne of the most discussed issues in parallel computing is the load balancing.
In order to achieve a high efficiency it is obvious that the computational load
between the processors should be distributed evenly.

A problem is load balanced among P processors if the work is evenly distributed
among the available processors and the computation is executed at the same

time.

6.3. OVERHEAD

o AP TER 6. PERFORMANCE TAXONOMY AND ANALYSIS 49

The terms mapping and scheduling are tightly connected to load balance. We
define these terms as follows: The allocation of processes to a processor is called

mapping. The allocation of work to processors is called scheduling.

6.3.4 Communication Overhead

Communication between processors cost time. This communication is necessary
in many algorithms to distribute the data and to inform other processors about
data necessary for their computation. This overhead caused by interprocessor

communication is called Communication Overhead.

6.3.5 External Communication Overhead

A very important issue is the question where the data is obtained on which the
calculation is performed. Most parallel programs require external data. These
are for example I/O operations to and from disks and external devices such as
monitors. Often this devices are shared and an overhead is caused. Therefore, a
considerable amount of research is done in parallel I/O these days. The overhead

is called Frternal Communication Overhead.

6.4 Computation and Communication Time

The total time spend to solve a problem on a parallel machine can be conve-
niently divided into the computation and calculation time. This has for example
also the advantage that on can compare the computation time of a sequential
algorithm with the computation time of the parallel algorithm. The communi-
cation time can be viewed as overhead necessary to perform the calculation on
the parallel machine. We use the abbreviations teom and teqe-

Therefore, we define

teale = typical time to perform a generic calculation

teom = typical time taken to communicate a word between two processors

tezt = time to communicate a word to send from each processor one word to

an external device

Communication Overhead

o AP TER 6. PERFORMANCE TAXONOMY AND ANALYSIS 50

In conjunction to t.,, one finds in literature often the term latency. Latency
specifies the time taken to service a request which is independent of the size
or nature of the operation. The latency of a message passing system is the
minimum time to deliver a message.

Furthermore, we define the total communication and computation time

Teate = sum of all generic calculation times = a(n)teaie (6.8)

Teomm = sum of all communication times in a program = b(n)teom (6.9)

Let Fo denote the fractional communication overhead

Teomm Q\Aﬁv leom leom
¢ HN4210 @Aﬁv wnin ﬁmﬁv wnin A v
1
-—1=Fc

€

The fractional communication overhead is only dependent on the grain size
n. Therefore, Fi» is independent of the number of processors. Similar to the
fractional communication overhead one can define the fractional external I/O

overhead.

Fiy = d(n)est (6.11)

teale
For the hypercube designed at Caltech [31] T70 = Pty so that Fg and Fp
differ only in a fractional constant.
MMH and mumH can be interpreted as the average number of calculations per-
formed per communicated word via internal or external channels. Therefore, it

is important

to do a substantial amount of calculation in ratio to the time spend

for the calculation to be efficient.

For some applications the problem occurs that while adding more processors

6.4. COMPUTATION AND COMMUNICATION TIME

o AP TER 6. PERFORMANCE TAXONOMY AND ANALYSIS 51

to solve a fixed problem the computation time increases. The point where this
occurs first is called parallel balance point. An example for a balance point can
be found in the parallel LU factorization algorithm shown in [78, 79]. In this
example the performance degrades because of the increasing load imbalance and

communication overhead.

6.5 Message Passing Environments

The communication between different processing elements is necessary to coor-
dinate the calculation on data distributed over the different processors.

There are many message passing environments available for the different parallel
computers. Some of the most common and well known are CMMD, iPSC-NX2,
PICL, P4, PVM, Express [4, 33, 19, 15]. These environments consist of a set
of functions which enable to write programs using message passing between
processing nodes. While some of the libraries are only available for a particular
machine others are supported on a variety of machines. The ones especially
designed for a particular machine have often better performance then those
implemented on many machines. Nevertheless the overhead is small in most
cases.

All of them share common characteristics. Beside this basic characteristics
they might include considerable extensions. An example for a more powerful
environment is Express supporting even graphics capabilities.

Recently, the packages PVM and P4 are used on many machines. Due to its
distribution PVM might well become a defacto standard for research and in-
dustry. In addition to the available packages there exists the desire to develop
an uniform message passing interface system (MPI). A promising step into this
direction might be a library combining PVM an P4. This library is know under
the name Chameleon [69]. Since P4 is supported currently on more machines
it might be a way to use this package for developing algorithms for the widest
range of massively parallel computers but also heterogeneous networks of work-
stations.

We feel that a standardization of the interface over many platforms will help to
make parallel programming more transparent and less error prone.

All libraries use the model of a virtual concurrent processor. They are a col-

6.5. MESSAGE PASSING ENVIRONMENTS

o AP TER 6. PERFORMANCE TAXONOMY AND ANALYSIS 52

lection of routines supporting the message passing functionality. All systems

have

1. a unique identification number of a process

2. and store the total number of participating processors.

The nodes are in connection with each other. As a programmer it is convenient
to view the system as fully interconnected which is simulated with software in
case the interconnection topology is restricted. We expect that in future this
software is located in specific very fast hardware units making the difference
between fully interconnection and restricted topologies smaller. Often only a
restricted topology is required while mapping a task graph onto the actual ma-
chine. In this cases sophisticated mapping strategies may be used to achieve the
goal to distribute the load evenly while minimizing the communication overhead.
Many systems underlying a one to one mapping between processes and available
processors. This is due to the high cost of swapping necessary while switching

from one process to another process execution.

Communication

Many programs are developed with the help of expected communication. This
means that the participating nodes in the communication coordinate the trans-
mits and receives in an organized way. Consequently, a node can not write
to another node unless the destination node is ready for the transmission. One
way to implement this loosely synchronous communication scheme is by defining
blocking communication routines as described in [31].

Another important class of communication routines is know under asynchronous
message passing for example used in CMMD. Here the nodes that wish to send
or receive data do not block while waiting for the partner node. This has the
advantage that a node can send a message and immediately start calculating,
enabling the overlap of communication and computation. Using asynchronous
message passing is inherently more difficult than synchronous message passing
since programming errors might lead easily to deadlocks which are more difficult

to detect.

6.5. MESSAGE PASSING ENVIRONMENTS

o AP TER 6. PERFORMANCE TAXONOMY AND ANALYSIS 53

In order to simplify the communication process it is useful to develop some
communication routines often used. These routines involve all or a subset of
nodes. They are known as collective communication routines. Routines which

are useful are

o shift, which moves data between neighboring processors
e broadcast, which sends the same message to the processors

e combine, which executes a function on a data distributed over the proces-

80Ts.

The global sum is a good example for a global combine operator. Here the sum
of all elements of an array distributed on the processing nodes is calculated and
the result is written in a variable available on each node.

Using the basic communication routines one can design libraries with better
functionality for a particular problem.

Examples are the routines gridinit, gridecoord introduced in [31], libraries for
finite differences methods, ScaLAPACK and many others. Essential for the
definition of these libraries it the ease they can be used and the scalability of

the performance while increasing the number of processors.

6.6 Parallel 10

Many programs are transforming data stored on external devices. This leads to
the problem of accessing the data to transform it. In case of parallel programs
it is useful to support a concurrent 10 subroutine library. The CUBIX library
functions provide a way to do this.

We distinguish two different modes. The first mode is called singular mode. In
this mode each node of the ensemble must concurrently execute an identical 10
operation (the routines are called in loose synchronization). The IO operation
is executed when all nodes have arrived at the same rondezvous point. In the
second mode, multiple IO mode, distinct data bound to different processor can
be accessed. It is useful to be able to switch between the separate modes. An

example can be found in [31] on page 114.

6.6. PARALLEL IO

o AP TER 6. PERFORMANCE TAXONOMY AND ANALYSIS 54

Since 10 is one bottleneck in parallel programs research is conducted in this
area recently. One study [18] shows that it is from advantage to provide a two
step library for IO operations enabling the optimization for particular machines
more easily. The study shows that for different distributions as used in HPF
the routines provided by the vendor (Intel Delta) lack of a high performance. In
order to speed up the computation the authors suggest to load in the data with
the fastest IO routine possible and redistribute the data as necessary in a second
mapping step. With this strategy for IO primitives difficult data distributions
like the (block,block) distributions are possible.

6.6. PARALLEL IO

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 56

f(x)

Chapter 7

Applications

X
a b
7.1 Numerical Integration Figure 7.1: Integration of a function
The integration of a continuous function is an embarrassingly parallel problem.
Therefore, it can be easily implemented in both a message passing and a data n = number of subintervals.
parallel program. To determine the integral Az =0 -a)/n
sum = 0.0
b —
[t r=e

a while (z < b)
the interval inbetween a and b can be divided into equally large parts. y = fl@)
For each part a representant of the function has to be found. This representant sum = sum + y
is than multiplied by the size of the subinterval. Adding up all those areas in the T =+ Avx
interval between a and b results to an numerical approximation of the function. end
Increasing the number of subintervals inbetween a and b increases the accuracy
of the computation. Since the single computational steps are independent from each other the algo-
A sequential algorithm can be formulated as follows: rithm can be easily parallelized:

7.1. NUMERICAL INTEGRATION
55

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 57

n = number of subintervals.

Az = (0 — a)/n

forall 1 € 1, .., n do in parallel
z, = Az % 1
v = flzi)

end

forall 1 € 1, .., n do

sum = sum + ¥,

end

The algorithm consists of two parts. The first part computes the function value

for each subinterval and the second part computes the sum.

7.1.1 Dataparallel Program

On the connection machine exists an efficient implementation of the sum oper-
ation. It is called SUM and sums up all the values of a vector distributed over

different processing elements.

n = number of subintervals.

Az = (0 — a)/n

forall ¢ € 1, .., n
z, = Az % 1
v = flz)

end

sum = SUM (y:1:n)

7.1.2 Message Passing Program

The message passing program is slightly more complicated since on each pro-
cessor are assumed to be more than one data item. Let p denote the number
of processors and n/p are the number of integration points mapped on one

processor, than the algorithm for the integration looks like:

Dataparallel Program

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 58

p = number of total processors
td = identification number of own processor
n = number of subintervals.

Az = (0 — a)/n

forall ¢ € 1, .., n
z;, = Az x 1+ 1d %
sum = sum + f(=z;)
end

sum = GlobalSum (sum)

f(x)

1 2 3 4 n
Processor

Figure 7.2: Integration of a function

Determining the GlobalSum of elements (see section ?7) is done in O(logn)
time on a variety of architectures including the CM5 and the Hypercube by

using a tree structure for the summation process.

Message Passing Program

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 59

Therefore, we compare the complexity of the algorithm.

Algorithm Time Space | Cost

sequential O(n) O(1) | O(n)
parallel(n=p) | O(logn) O(n) | O(nlogn)

msg parallel | O(logp) + O(%) | O(p) | O(plogp) + O(n)

In the table the cost is defined as space times time cost. An optimal parallel
architecture would have naturally the structure of a tree to allow the efficient

summation of the subintervals.

7.2 Long Range Interactions

A problem is in the class of Long Range Computations if all nontrivial compu-
tation must be performed between all pairs of a data base. Examples for long
range computations are gravitational n-body problems, products of two long
polynomials, molecular dynamics calculations, and others.

The simple way to calculate the result is to loop over all element pairs of the
database. Assume that D is the domain or the database and p; € D denotes the
i** point in the database Let F(pi,pj) denote the calculation performed between

the points i and j, than the following loop describes the generic calculation.

do i=1,n
do j=1,n
Fpi,p5)
end do
end do

Clearly, the complexity of the calculation is O(n?). To calculate this function
in parallel one can use a simple pipelined approach for solving the problem.
Assume we have m processors and N is the total number of particles. For
simplicity we assume that m divides N without rest. At the beginning each

processor holds two identical arrays of N/m particles. Than in each processor

7.2. LONG RANGE INTERACTIONS

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 60

the calculations between each particle in this processor are calculated. Now the
particles of the second list are send to the neighboring processor in left direction.
This step is repeated m — 1 times.

Looking at the overhead:

1 tsendreceive
o rentdreceine

m ty

one can clearly see that the algorithm will perform efficiently as long as the

number of particles stored in one processor are large enough.

Optimization

In case we know some properties of the function to be calculated the performance
of the algorithm can be improved. For example, in case of n-body calculations
we know that the potential between the same point is 0 and the function is
symmetrically. Therefore, we only need to calculate n? — n points making the
algorithm almost twice as fast. This is due to the reduction of the calculation
by the factor of more than half but keeping the communication time constant.
The algorithm is easily extendable in case N is not divided by m without rest. In
order to maintain load balance we just keep track that every processor contains

approximately the same number of particles.

7.3 Short Range Interactions

The N-body calculation introduced above is computationally very intense. One
can reduce the computational effort while making use of the physical structure
of the problem and introduce short range interactions.

In this section we concentrate on the problem where an update of the particles,
e.g. a positional change has to be calculated. This algorithm is characterized
by it’s need predictable communication pattern. That means we know that a
communication phase follows the computation phase but we do not know which
data has to be transmitted to which processor at compile time.

A simple but not necessarily best data decomposition for this problem is to

divide the geographical regions evenly over the processors. Better methods are

7.3. SHORT RANGE INTERACTIONS

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 61

for example the barnes hut method and the introduction of a particle tree.
Here we introduce the scheme of the geometrical hashing. We assume that
a particle can only move a maximum distance which is smaller than the area
covered by one processor. This has the advantage that only nearest neighbor
processor communication occurs. Due to the advanced operation system of
most of the parallel machines is is easy to introduce diagonal moves in the
communication pattern. Most parallel machines allow an arbitrary point to
point communication. With this advanced operation systems the restriction of
the minimum distance a particle travels can be overcome but results in higher
communication overhead on most of the available machines.

The way one can update the particle movement is to store a list with 8 queues in
the 2d case representing the 8 directions. In this queues one inserts the elements
which have to be moved to another geographical block and therefore processor.
After a particular time the particles are simply send over to the processor where
it should be placed. With the help of asynchronous communication this could be
achieved quite easily. In the receiving processor we interrupt the calculation if
a message arrives an incoming channel. This message/particle is than included
in the list of particles of this particular processor. In order not to destroy the
actual calculation the polling of the incoming messages is done after a calcula-
tion is completed. Is no message available the processor can continue with its
calculation.

Geographical hashing comes in place when the calculation is performed on only
part of the articles rather than the complete database of particles reducing
communication and computation effort drastically. Assume the weight of a
particle taking part of a calculation is related to its distance. Assume that
local interactions are far more important than long range interactions. In this
case it is important to consider only particles in the local neighborhood smaller
than a cutoff distance. Under the assumption that the cutoff distance is smaller
than the geographical region a processor stores only particles in neighboring
processors have to be considered reducing the calculation and communication
cost. The communication for border elements can be done in a similar way to

the finite difference and finite element method.

7.3. SHORT RANGE INTERACTIONS

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 62

7.3.1 Irregular Problems

In case the distribution of particles or unevenly distributed communication over
the processors the algorithm above would not perform well because of a high
load imbalance. The Wator problem introduce in [31] is a good example of
this class of problems. A geographically domain decomposition seems to be
not suitable. Nevertheless one could introduce smaller geographically blocks as

shown in the next picture where the numbers represent the distinct processors.

2121212 instead of 11112222

34343434 11112222
12121212 33334444
34343434 33334444

This is a fairly easy domain decomposition, known as scattered decomposition.
It works for the WaToR problem. For the N-body problem the situation is not
so simple and it is better to distribute for example the linked list of neighbors
in a hash oct tree fashion as shown by S. Warren in SC93. The idea here is
first to generate a hash tree and than distribute the particles evenly on a ring

of processors using the peano-hilbert ordering over the domain.

7.4 The Simulated Annealing Approach

Simulated Annealing (SA) is an optimization technique simulating a stochas-
tically controlled cooling process[50, 27, 53, 54]. The principles of simulated
annealing are based on statistical mechanics where interactions between a large
number of elements are studied. One fundamental question in statistical me-
chanics is to study the behavior of such systems at low temperatures. To gen-
erate such states the system is cooled down slowly.

As the name indicates Simulated Annealing simulates such an annealing process.
The process is started at a random state s. Now the aim is to find a configuration
t with lower energy obtained by a random disturbance of the current state s. The
probability to get from one system configuration into the next can be described
by a probability matrix (as;) where as specifies the probability to get from

configuration s to a neighbor configuration t. This probability matrix is chosen

Irregular Problems

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 63

symmetrically. Is
E(t)— E(s) <0,

the new configuration is accepted, since it has a lower energy. Is the energy of the
new configuration ¢ higher, than it is accepted with the probability proportional

to

E(H)—B(s)
(& T .

The acceptance of the configuration with the higher energy is necessary to allow
jumps out of local minimal configurations. This process is repeated as long as
an improvement is likely. The choice of the temperature parameter is given by

a cooling plan such that

Ty > 1Ty > ..., such that lim T =0

- - k—oo

This leads to the generic simulated annealing algorithm shown in Figure 7.3.

7.4.1 SA and GPP

As example we use the Graph Partitioning Problem as introduced in [75, 51, 52].
For the graph partitioning problem one can find the following analogies between

the physical system:

physical system SA-GPP
state feasible partition
energy cost of the solution
ground state optimal solution

Graph Partitioning

The uniform graph partitioning problem (GPP) is a fundamental combinatorial
optimization problem which has applications in many areas of computer science
(e.g., design of electrical circuits, mapping) [51, 65]. The term graph partition-

ing problem is used in literature for different problems. Following the paper

SA and GPP

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 64

PROC Generic Simulated Annealing
BEGIN SEQUENTIAL
chose the cooling strategy 11, T,
generate a starting solution s
k<1
REPEAT
generate a new solution ¢ in the
neighborhood of s
N — E(t) — E(s)
IF A¥ < 0 THEN
s =t
ELSEIF ¢” ™ < random [0,1] THEN
s — t
END IF
k — k+1
UNTIL T, < T,;n or time limit reached
END SEQUENTIAL
END PROC

Figure 7.3: The generic simulated annealing algorithm

[50] and the notation in [65] the graph partitioning problem can be formulated
mathematically as follows:

Let G = (V, E) be an undirected graph, where V = {v1,v2, ..., v,} is the
set of n nodes, &£ C V x V is the set of edges between the nodes. The graph
partitioning problem is to divide the graph into two disjoint subsets of nodes
Vi and Va, such that the number of edges between the nodes in the different
subsets is minimal, and the sizes of the subsets are nearly equal. The subsets
are called partitions, and the set of edges between the partitions is called a cut.

Figure 7.4 shows a simple graph and a possible partition of this graph.
The cost of this solution is 3 assuming that each edge has the weight 1.

For some algorithms it is from advantage not to maintain the strict constrained
of the equal partition size. This can be done by extending the cost function
with an imbalance term. Than the cost of a partition is defined to be

For the GPP we can define the following cost function:

SA and GPP

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 65

11 12

Figure 7.4: Example of a partition

e(Vi, Vo) = [{{u,v} € E:u € Vi and v € Vo}| + o(|Vi| — [Va])?

where |A|is the number of elements in the set A and « controls the importance
of the imbalance of the solution. The higher o the more important is the equal
balance of the partitions in the cost function.

Using the cost function as given in equation (7.4.1) one can obtain solutions to
problem instances by an annealing process. The definition of the probability

matrix (as) can be chosen as follows:

e A partition ¢ is neighbor to a partition s iff s can be obtained by moving

one node of a subset to the other.

e The probability of the neighbor states to a partition s are the same.

7.4.2 Parameter scheduling for the Simulated annealing

algorithm

Instead of using the generic simulated annealing algorithm we use the algorithm

displayed in Figure 7.5. This is motivated by the following reasons:

1. It is easier to define a cooling scheme.

Parameter scheduling for the Simulated annealing algorithm

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 66

2. Many studies published use this scheme which makes comparison more

easy.

PROC Simulated Annealing
BEGIN SEQUENTIAL
T — TO
generate a starting solution s
WHILE (NOT frozen) DO
DO ¢ «— 1, L Number of Nodes
generate a new solution ¢ in the
neighborhood of s
(swap one node to the other part)
N — E(t) — E(s)
IF AF < 0 THEN
s =t
ELSEIF ¢~ T+ < random [0,1] THEN
s — t
END IF
time «— time +1
END DO
T — kT
END WHILE
END SEQUENTIAL
END PROC

Figure 7.5: Simulated Annealing Algorithm used for the Experiments

The simulated annealing algorithm 7.5 is controlled by the parameters L, k, alpha.
The variation of this parameter has a large influence on the solution quality as
shown in the paper by Johnson. We were able to reproduce the results and show

some of them in [75]

Acceptance Frequency The acceptance frequency specifies how frequent a
change in the solution during a timeinterval of the annealing process occurred.
The frequency is calculated over all trials in the inner loop of the interval length
L.

This acceptance frequency is important since it helps to estimate when an im-

provement of the solution will be unlikely while continuing the annealing pro-

Parameter scheduling for the Simulated annealing algorithm

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 67

cess. We decided to terminate the algorithm (the solution is frozen) when the

acceptance probability drops under 0.00025 percent.

Imbalance Factor The imbalance factor has also an huge influence in the
acceptance rate. Is the value to large the process stops to early in a bad solution
is it to small we fall in a solution which is very imbalanced and often unwanted.
In many studies the value of 0.05 is chosen and we could reproduce with this

value very good results.

Temperature The initial temperature is very critical for an efficient simu-
lated annealing run. While choosing the temperature to high no improvement
of the solution occurs during the first annealing steps (Figure ?77). Is the temper-
ature chosen to low the cooling process terminates to quickly and does not spend
time in intermediate solutions. Therefore, the solution space is not explored in
depth. For our results we obtained very good results with a temperature of 0.5.
The acceptance frequency at this temperature for the given problem instance is
about 0.80. Johnson et. al. proposed to reduce the temperature such that the
acceptance frequency drops to 0.4. In this case we reduced the running time
about 1/3, while keeping the quality of the solutions found.

In case of high temperatures most of the transpositions are accepted. The
smaller the temperature get the fewer transpositions are accepted. At temper-
ature 0 only transpositions with positive AFE are accepted. This effect is shown
in Figure ??7. A common way to specify the cooling strategy to chose a cooling

rate such that
HNN+H = ﬁﬂ\a .

With an r = 0.95 we obtained very good results.
The following parameters lead to very good results: Ty = 0.06,c0 = 0.05,k =
0.95, L = 16. Overall the following results for the GPP and Simulated annealing

are valid (see above and [50]).

e Long annealing must be used to get the best results.

o It is not necessary to spend a long time at high temperatures.

Parameter scheduling for the Simulated annealing algorithm

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 68

e A geometric cooling strategy is sufficient
e The variation of the solutions can be large even with long runs.
e The parameter setting is dependent on the problem instance.

e Small neighborhood sizes improve the running time

7.4.3 Parallelization

The simulated annealing algorithm is somewhat difficult to parallelize due to
occurring conflicts while updating the costfunction in parallel.

One way to do this is to consider swaps of points in parallel. Therefore, a
possible algorithm could be to divide the points onto different processors.
Assume we have m processors and n points in the graph. At the beginning of
the algorithm we distribute the points randomly over the processors. Aim is to
divide this points between the k processors.

To make the annealing step work we have to store for each point not only the
neighboring node but also the processor in which this neighboring node is stored.
Now in each processor a point can be selected in parallel to be switched between
the processors using the annealing update rule. It is clear that it could come to
conflicts which have to be resolved in case two processors request the same node
for switching. In order to resolve this conflict the update is done in multiple

stages.
1. Each processor selects a random point located in the processor.
2. A random point outside the processor is selected.
3. requests to the processor are send on which the neighbors are located.

4. The request is granted if no conflicts occur. In case of a conflict the node

is send to a requesting processor selected randomly.
5. update the costs
This algorithm has two disadvantages.

1. A parallel move can cause moves with contradictory gain win as introduced

in Dally [21]. Dally also gives a way how to avoid this.

Parallelization

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 69

2. requests to the same processor might be possible causing a high volume of
messages to one processor. This could be avoided by introducing around
robin processor selecting scheme preferring communication between pro-

cessors which contain neighbors.

It is out of the scope of this paper to go too much into details. We refer here
to the many papers available on parallel simulated annealing algorithms and to
[31] where an algorithm for the TSP on a Hypercube architecture is introduced.
Besides parallel implementations of the Simulated Annealing [66, 12, 14, 39, 49,
80] algorithm other parallel implementations exists for the Graph partitioning

problem, for example [62, 35, 36, 22]

7.5 Matrix Algorithms

7.5.1 Matrix Multiplication

Many scientific problems are based on matrix operations [38, 64, 67]. One very
important operation is the matrix multiplication. We introduce here a parallel
algorithm for the matrix multiplication. The algorithm introduced here will
need more data movement than the other algorithms described in this report.

First, the matrix is decomposed in parts which will be distributed on the differ-
ent processors. For simplicity we assume that the number of processors is p and
that the number of rows and columns are equal. One way to decompose this
problem is to choose rectangular decompositions as shown in Figure 7.6. The
algorithm consists of four steps. Assume n is the number of columns and m x

m are the number of processors. The processors are arranged in a grid or torus.

1. Communicate the diagonal subblocks to all processors in horizontal direc-

tion.

2. The subblocks from the last step are multiplied with the appropriate blocks
of B stored at this processor and added to the matrix C.

3. The subblocks B are shifted up in the processor grid.

4. The subblocks of A which are to the right of the subblocks A transferred
in the first step are broadcasted in the rows. Goto Step 2.

7.5. MATRIX ALGORITHMS

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 70

=L Siep1

Step 2
A
I
WA LALALA | Sep3
PN

= Siep 4

Figure 7.6: Steps of the parallel Matrix multiplication

This is done M times. At the end of the calculation the Matrix C is computed.

Complexity Analysis

The complexity analysis is naturally dependent on the machine used because
the broadcast routine might be of different order. We assume in the current
analysis that a machine is used with point to point communication and a network
topology of a torus.

The time for the broadcast in one row would be of the order
(N/M)t pomm * (M —1)
The time for performing the calculation on a subblock is

ANIM P togie

Matrix Multiplication

Technical Report: Technical Report:

sces st CHAPTER 7. APPLICATIONS 71 sces st CHAPTER 7. APPLICATIONS 72
The time for moving the B subblock is 7.6 LU factorization
Q/N\sz % Loormm Solutions of a system of linear equations are required in many scientific applications[32,
48]. Consider the solution of a dense system of linear equations, AZ = ma where
Adding up the three terms gives the total time for one time step. This step is A'ls an n-by-n matrix, b is a vector of dimension n and Z is the solution vector
repeated M-1 times. of dimension n. One method of solving this problem is to proceed by first fac-

torizing A into a unit lower triangular matrix L and an upper triangular matrix
U, i.e., A= LU, and then solving for ¥ and & in two consecutive substitution

-

steps: LY =10 and UZ = 4.

7.6.1 Message Passing Algorithm
Most of the CPU time is spent in factorizing the matrix because:

e the computational effort to factorize the matrix is higher than for the two
substitution steps.

e most factorization programs result in more memory accesses than floating
point operations. This cause the processor to be idle during the time data

is transferred from the memory for the computation.

The first observation motivates why it is desirable to build a fast LU factorization
algorithm. The second observation shows where optimization can be successful:
It is worthwhile to optimize a factorization algorithm so that it makes efficient
use of the way data is transferred to the computational unit.

The memory access time can be decreased if the usage of specific data can be
predicted, so that the data can be transferred into a faster part of the hierarchy
before it is actually referenced. Since most memory organizations fetch a block
of data instead of one datum at a time, it is best to formulate the algorithms
in such a way that data elements used in consecutive computation steps are
stored in contiguous addresses of the memory. Hence they are fetched in a
block requiring fewer memory accesses. Figure 4.2 shows how data (a matrix) is
stored in a memory using the column oriented programming language Fortran.
Algorithms which update a block of contiguous vectors instead of only one
data element at a time are known as blocked algorithms. This way the work
is done locally on a block of data. Data locality is one of the fundamental

problems in parallel computing and has a great influence on the performance on

Matrix Multiplication 7.6. LU FACTORIZATION

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 73

such machines. The use of blocked algorithms is one of the most efficient ways
to improve the performance of numerical algorithms on distributed memory

machines[78, 60, 61, 78].

Parallel Computational Model

To define a parallel algorithm for solving a system of linear equations it is neces-
sary to define the computational model on which the implementation is based.
A study on shared memory MIMD machines using blocked based algorithms
for LU factorization can be found in [61]. The results presented in this paper
concentrate on distributed memory MIMD machines. These machines have a
natural bound on the number of available processors. At a time, each processor
can execute different instructions in parallel on different data. Message passing
allows interprocessor communication. In order to incorporate a wide variety of
architectures, the communication relation between the processors is based on a

unidirectional ring.

Figure 7.7: Parallel computing modell

Now it is clear that an efficient implementation has to find the trade off be-
tween communication time and computation time. If the algorithm sends too
many messages and computes too less, the communication time dominates the
computation time. Furthermore, we assume that the memory capacity of each

processing element is restricted.

Basic Linear Algebra Subprograms

Usage of vector and matrix operations are common in many applications which

are not provided by a programming language like Fortran77. Hence, it is de-

Message Passing Algorithm

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 74

sirable to have a library supporting such a class of routines. The Basic Linear
Algebra Subprograms (BLAS) provide such routines [24]. Different levels of
BLAS are distinguished by the amount of data used for an operation and its
arithmetic complexity. Computations on vectors of order n can be found in level
1 BLAS. Level 2 BLAS provides matrix-vector computations of order n?, and
level 3 BLAS provides matrix-matrix computations of order n2.

Looking at the computational effort of the BLAS routines it is clear that the
ratio between floating point operations and memory accesses for level 1 and 2
BLAS is not as good as for level 3 BLAS routines. Therefore, it is obvious
that the strategy is to maximize the use of level 3 BLAS. The presented algo-
rithms use some subroutines from BLAS of level 3, like GEMM for the matrix

multiplication and TRSM for solving a triangular system.

Noblock algorithm

Now, a necessary basis has been established to formulate the factorization algo-
rithms. A fast noblock factorization algorithm forms the building block for the
blocked algorithms. The noblock algorithms are distinguished by the order of
loops in which the factorization is done. The suitable loop orders for the column
oriented FORTRAN are jik, kji, and jki. For example, the abbreviation jik
points out that j is the loop index for the outermost loop and & for the inner

most loop [25].

do ———
do ———— where ¢, j, k are the loop indices
do ———
Qif * Ak
4 — a; — ———
Ak
end do
end do
end do

Figure 7.8: Gaussian Elimination Algorithm

Since the number of memory touches for the k7 noblock algorithm is twice as

high as for the jki-noblock and the jik-noblock algorithm, the running time

Message Passing Algorithm

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 75

for this algorithm is slower. Experiments show that the jik noblock algorithm

performs better than the two others.

jik-Noblock Algorithm

Before the algorithm is described in detail it is useful to visualize the data
dependencies of the n x n matrix elements between the computational steps
(Figure 7.9) of the jik-noblock algorithm. Data dependencies are expressed by
the height of the matrix element. If a datum is higher than another then this
datum has to be calculated first. This scheme is used throughout the paper.
In Figure 7.9 the state of the algorithm is shown at time step j. Following the
data dependencies first the vector [U) is updated using A and the vector @Tﬁ
next the element of R. is computed and »0) is updated using U and &:.

Therefore, at time step j the jik-noblock algorithm updates one column of L and

one row of U. This noblock algorithm is also also known as Crout’s Algorithm.

Figure 7.9: jik noblock

Let {U) represent the j** column vector of the matrix L and »¥) the j** row
vector of the matrix U beginning at a;;. The matrix AV specifies a submatrix
of A which includes all elements from the first column to the column j —1 and
from the rows 7 +1 to n. The matrix gw specifies a submatrix of A4 which
includes all elements from the first row to the row j — 1 and from the columns
j+1 ton.

0. Initialization: j — 1

1. Update 1P () — () — 4y (5)

2. Select pivot and exchange:

P dmingg|lhil = max {1} ¢ -1

Message Passing Algorithm

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 76

Exchange row j and row p
3. Scaling: I —1WD/a,; Vie[l,m—j+1]
IF 5 = n THEN stop
4. Compute row ab: o)) Uyt
5. Iterate: j —j+1
GOTO Step 1.

The detailed description of the other sequential blocked algorithms using BLAS
can be found in [61].

Parallel Blocked Algorithms

Rewriting the LU decomposition as a blocked algorithm with properly defined
block sizes helps to limit the trade off between the communication time and the
computation time. To understand the parallel blocked factorization algorithms
the corresponding sequential blocked algorithms are also introduced. This way
one is able to observe the data dependencies inherent in the algorithms. The
parameter [specifies the block size which is the number of column vectors
used by the noblock algorithm for factorization in each iteration of the blocked
algorithm. As shown in [78] the parallel SAXPY algorithm is the most general

one for our purposes.

Parallel Blocked kji-SAXPY

In the j** step of the kji-SAXPY algorithm, one block column of L and one
block row of U are computed and the corresponding transformations are applied
to the remaining submatrix. The basic steps involved in the j** iteration are
shown in Figure 7.10 (left). Of the three algorithms presented, this algorithm is
best suited for distributed memory MIMD architectures. The reason for this is
the data dependencies involved in the steps above (shown in Figure 7.10.) In the
j iteration, the j'* block depends only on the j —1** factorized block. Hence,
each node has to store only the last factorized block. As a result the memory
limitations encountered in the parallel SDOT and GAXPY algorithms do not
exist here. Furthermore, the amount of work involved in updating and comput-
ing the block row, i.e. the time spent in Steps 2 and 3 (rest of the processors) is

comparable to the time required to update and factorize the subdiagonal block

Message Passing Algorithm

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 77

(current processor). Hence, the pipelined version of this algorithm produces a
significant improvement in performance. The pseudo-code for the pipelined ver-
sion of the algorithm is given in Algorithm 7.11. Figure 7.10 (right) shows the
layout of the matrix onto the processor along with the operations in the second
iteration. The activities of each of the processors in the pipelined algorithm are

shown in Figure 7.12 for a three processor system.

Results

The presented study was conducted on a 32 node Intel iPSC/860 Hypercube.
FEach 1860 node has an 8 KByte cache and 8 MBytes of main memory. The
clock speed is 40 MHz, and each node has a theoretical peak performance of 80
MFLOPS for single precision. Communication is supported by direct-connect
modules present at each node.

PICL [33] (Portable Instrumented Communication Library) was used in the
presented implementations and provided a simple and portable communication

structure. Some of the algorithms used the Basic Linear Algebra Communica-

tion Subprogram library for data movement between the processors (BLACS)[11].

BLACS is a part of the effort to implement LAPACK on distributed memory
MIMD architectures. The matrices used in the experiments were dense matrices
where each matrix element was a randomly generated real number between 0
and 1.

In order to compare the parallel implementations of the three factorization al-
gorithms we first compared the performance achieved for a constant matrix
size with different block sizes and on different numbers of processors. The par-
allel GAXPY algorithm performs better than the other two algorithms for a
smaller number of processors. Maximal performance is achieved by the parallel
GAXPY algorithm on 16 processors with a block size of 8. The performance of
the SAXPY algorithm is close to the GAXPY algorithm and achieves the best
performance for block sizes in the range 8 4. The SDOT algorithm achieves
very little improvement over the noblock algorithms because of its data depen-
dencies as described earlier.

The performance obtained for very small block sizes is low for all three algo-

rithms. Although small block sizes provide better load balancing, this advantage

Message Passing Algorithm

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 78

is offset by the increased communication overheads between the processors and
the decrease in the amount of computation at each processor. Very large block
sizes on the other hand, lead to low communication overheads but poor load
balancing. This leads to a fall in performance for the parallel GAXPY and
SAXPY algorithms as the block size increases. This observation however, does
not hold for the parallel SDOT algorithm which shows a slight improvement in
performance for very large block sizes. The reason for this is that large block
sizes imply smaller number of reshapes which means a smaller penalty is paid
by the SDOT algorithm.

An absolute peak performance of about 26 MFLOPS /Processor is achieved by
the parallel SAXPY algorithm for a 1536 x 1536 matrix with # equal to 12 and
on 4 processors. It shows that the optimal number of processors is problem

dependent.

Conclusion

This section describes methods for blocked LU factorization on distributed mem-
ory MIMD architectures. These methods are also applicable on shared memory
parallel vector computers [61]. Our numerical results and performance compar-

isons show the following:

e The data dependencies inherent in the parallel SAXPY algorithm are most
suited for distributed memory MIMD architectures. No reshaping of the
matrix is necessary since only a small portion of the factorized matrix has

to be stored in each processor.

A further observation from our experimentation with LU factorization is that
the best performance is achieved at block sizes where the computation at each
node outweighs the tradeoff between high load balancing (small block sizes)
and low communication overhead (large block sizes). This optimal block size
is dependent on the algorithm used, the size of the matrix and the number of

processors available [78].

Message Passing Algorithm

Figure 7.12: Spacetime diagram for the pipelined kji-SAXPY algorithm

Message Passing Algorithm

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 81

7.6.2 Data Parallel Algorithm
GauBl-Jordan Algorithm

The well known Gauf-Jordan algorithm is a straight forward method to find the
solution of a system of linear equations. Multiples of the equations are added
in such a way that the resulting system has the form of a triangular:

Let A be nonsingular and a; pq1 = b;.

do j=1,n
do i=1,m
do k=j,n+1
if (1 # j) then
ar = a — (g /aj;)a5n
end if
end do
end do
end do
do i=1,m
Ty = G g1/
end do

On a SIMD computer like the Connection Machine this algorithm can be par-

allelized easily by executing the loops for i and k in parallel.

do j=1,n
do i=1,m; k=j,n+1 in parallel
if (i # j) then

wr = ak — (g /ag;)a
end if
end do in parallel

end do
do i=1,m in parallel
Ty = Q\f§+H\®:

end do in parallel

Data Parallel Algorithm

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 82

Complexity

The complexity of the sequential algorithm is O(n®). In the parallel algorithm
the inner loops fori and k can be parallelized since no data-dependency exists.
Therefore, n steps are necessary to compute the outermost. To compute the
result an additional step is needed to perform the last parallel loop. Therefore,
O(n) time steps are needed to perform the GauB-Jordan algorithm on n? +
n processors. Since #(n) = O(n) and p(n) = O(n?) the cost of the parallel
algorithm is e(n) = #(n)p(n) = O(n?).

Algorithm || Processors | Time | Cost
p(n) r) | c(n)
Gaufi(seq.) 1 O(n®) | O(n®)
Gaufi(par.) O(n?) O(n) | O(n?)

In the table the cost is defined as space times time cost.

Gaussian Elimination on the connection machine

On the connection machine the Gaussian elimination can be easily formulated
using the SPREAD command. The SPREAD command has the following pa-

rameters:
SPREAD (source, dimension, ncopies)

The command SPREAD takes a source array and creates a new array with an
additional dimension. It copies than the array ncopies times along the specified

dimension.

A

”ma wq ‘Na Au”
Then,

B

SPREAD (A, dim=1, ncopies=3)

results into

B = [53,7, 4]

Data Parallel Algorithm

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 83

”ma f.uva ‘Na %”
”ma f.uva ‘Na %”

Now the Algorithm for Gaussian elimination on the Connection machine using
CM-Fortran is:

do i=1,n-1

C=A(:) [/ AGD

C(1:) =0

A = A - SPREAD (C, 2, n+1) * SPREAD (A(j,:),1,N)
end

Data Parallel Algorithm

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 84

7.7 Solving Partial Differential Equations

7.7.1 Finite Element Method

The finite element method solves a partial differential equation by replacing
continuous functions by piecewise approximations. These approximations are
defined as polygons referred as elements. Most common are polynomial approx-
imations. The problem is than reduced to the problem to find solutions at the
vertices of the polygons instead of the whole space. This can be done by either

Gaussian elimination, conjugant gradient or multigrid methods.

7.7.2 Finite Difference Method

The finite difference method solves a partial differential equation on a discrete
grid. The derivatives are approximated by the difference between the two grid

points divided by the separation.

7.8 Laplace Equation

The Laplacian equation is described as follows:

92 92
V=224 2 g
dr2 y?
An example for the application for the Laplace equation is finding steady state

voltage points in a 2 dimensional area.

7.8.1 Jacobi iteration

The Jacobi iteration scheme each trial solution is updated simultaneously as
shown below.

Viewing a 2 dimensional area as a grid of points the Laplacian equation can be
solved numerically. The value of each grid point ¢, ; can be calculated iteratively

by the following formula:

— 1 1 1
=ittt

7.7. SOLVING PARTIAL DIFFERENTIAL EQUATIONS

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 85

The value is influenced by the value of its neighbor values on the grid. This
calculation can naturally mapped in dataparallel fashion on a parallel SIMD

machine.

7.8.2 Gauss Seidel iteration

In the Gauss Seidel iteration scheme the update is done sequentially in a partic-
ular order. Since the Jacobi iteration is slow in convergence it is of advantage to
use the Gauss Seidel iteration. The Gauss Seidel scheme is a special case of the
successive-over-relaxation (SOR) method. In this method a correction scheme
is added to the basic term as used in the Jacobi iteration. the term consists of
the old value multiplied by a weight factor.

t—1

t t t
+ s eyt +(1 - Evmi.

1,71

In case of Gauss Seidel wis 1. On an MIMD machine the domain is subdivided
in equally big parts with overlapping regions at the borders (see Figures at the
end of the section). To do the update correctly the Red-Black update scheme
is used. This means that the domains mapped onto a processor are further
subdivided into regions called black and red. First the sequential update is
done on the red regions than on the black regions.

The overall algorithm looks like:
1. exchange edge values with neighbor processor
2. perform SOR update on red points in sequence
3. exchange edge values with neighbor processor
4. perform SOR update on black points in sequence
5. exchange edge values with neighbor processor
6. advance time step

7. if finish stop else goto 1

Gauss Seidel iteration

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 86

7.8.3 Data Parallel Program

The program has been successfully implemented on the CM2. The program

outline is given in C.

#include <cscomm.h>
F#define current Current
F#define volatile
#include<cm/display.h>
F#undef volatile
#undef current
#include<stdlib.h>
#include<stdio.h>
#define xsize 512 /* specify the maximal size of the grid */
F#define ysize 512
shape [xsize][ysize] PICTURE;
char:PICTURE image;
int:PICTURE x, y, null;
float:PICTURE c, up, down, left, right;
Writelmage(int 1) /* Write the image in ASCII format */
{
float max;
printf ("Time: max >?= c;
fc = (c *256.0) [max;
image = fc;
CMSR-write-to-display (&image);
¥
main(){
char user-input[80];
int time;
/* initialize the Graphics facilities */
CMSR-select-display-menu (8, xsize, ysize);
/* CMSR-display-set-color-map (”greyscale”); */
CMSR-display-set-color-map ("rainbow”);

Data Parallel Program

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS

printf("please wait transfer picture”); printf(newline);
with(PICTURE){
x = pcoord(0); /* assign to each processor a x,y coordinate®/
y = pcoord(1);
do{
cnvg-test = 0
/* from-grid-dim corresponds to mpshift */
/* the parameters given bellow explain the ussage */
/* mpshift(array,shift,dim) = from-grid-dim(c,null,dim-1,shift) */
/* processors at the boundaries do not participate in
certain shift operations
*/
c-old = ¢;
where (y >= 0)
up = from-grid-dim (&c, null, 0, -1);
where (y < ysize-1)
down = from-grid-dim (&c, null, 0, 1);
where (x < xsize-1)
right= from-grid-dim (&c, null, 1, 1);
where (x >= 0)
left = from-grid-dim (&c, null, 1, -1);
/* the convergence test should only be done one the interior
points since the boundary values should be fixed */
where (x >= 0) and (x < xsize-1){
and (y >=0) and (y < ysize-1)
¢ = (up + down + left + right) / 4.0 ;
convg-test = amax2(conv-test, abs (c-old - c));
/* the function amax2can be simulated by
convg-test >7= abs(c-old -c);
*/
}
} until (convg-test <= convg);
Writelmage(time);

Data Parallel Program

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 88

printf("Press return to continue”); printf(newline);
gets (user-input);

}

7.8.4 Message Passing Program

The message passing program is slightly more complicated. Looking at the
formulation of the problem the procedure mpshift defines a high level message
passing send and receive routine. Usually these routines have to be used in a
low level fashioned way. Here syncronization is assumed to be done with the
help of the mpshift routine. As a result the asynchronous and synchronous
communication between the processors is hidden for the user of the mpshift

routine.

Processor Boundary
n nodal points

4-stencil
[J ©0 % /10
L JOX olae.y.
®0 00 []
. ®{0 0 0 of®
g @O0 O O Ofe
[@O0 O 0O Oe
2 (RN
8
c
(03) (33)
nproc= 16=r*c
nrows

Figure 7.13: Decomposition. Example with 16 nodal points and 16 processors.

Figure 7.13 shows the decomposition of the program onto a grid of processing

elements. Assume that each processor has a processor id of the form

Message Passing Program

Technical Report: Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 89 sces st CHAPTER 7. APPLICATIONS

xdimension(f-old) = xdimension(f-new) = nrows/r+2

ydimension(f-old) = ydimension(f-new) = ncolumns/c+2

(¢,7) = pid (row, column) = pid
main
where 11is the column in which the processor is located and j is the row. Assume dest-up = f-old(1,nrows/r4+2) A
the Processors are arranged in a processor grid with r rows and ¢ columns. dest-down = f-old(1,0) _B
Than the number of processing elements is dest_left = Hs.oE?nMvFme\n._.w 1) _c
dest-right = f-0ld(0,1) —D
nproc=cxr source-up = f-old(1,1) —E
. . source-down = f-old(nrows/r,1) —F
The number of data elements in the problem is defined as
source-left = f-old(1,ncolumns/c) —G
source-right = f-old(1,1) —H

ntotal = nrows * ncolumns
This results in the following relation ship between the processors:

FEach processing element stores destination Source

x BBBBBBBB x b S X b S X

nrowsr * neolumms|c 1 S c AAARAAAA Covrinn D

D C o C...... D
elements, assuming nrows is a multiple of r and ncolumns is a multiple of c. D C . BBBBBBBB . . Col D
To make the description of the algorithm easier, the following abbreviations are x AAAAAAAA X x XX ... X
used: Initialize the addresses for the shift operation

if (row = 0) then
ymin =1 ;

#define mpshiftup (source,dest,length) mpshift(1,1,source,dest,length) dest-up = dummy

#define mpshiftdown (source,dest,Jength) mpshift(-1,1,source,dest,length) source-down = dummy

#define mpshiftleft (source,dest,length) mpshift(1,2,source,dest,Jength) end if

#define mpshiftright(source,dest,Jength) mpshift(-1,2,source,dest,length) if (row = r) then

Now the algorithm can be defined as follows (note that the array index variables ymax = ydimension(f-old) - 2;

are starting from 0): dest-down = dummy

source-up = dummy

end if
n-loc = nrows/r * ncolumns/c; if (column = 0) then
dimension f-new(nrows/r + 2, ncolumns/c + 2); xmin = 1;
dimension f-old(nrows/r + 2, ncolumns/c + 2); dest-left = dummy
indices starting from 0. source-right = dummy

Message Passing Program Message Passing Program

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 91

end if
if (column = r) then
xmax = ximension(f-old) - 2;
dest-right = dummy
source-left = dummy
end if
begin
test = 0
shift to the right
mpshiftup (source-right, dest-right, nrows/r)
shift to the left
mpshiftup (source-left, dest-left, nrows/r)
shift up
mpshiftup (source-up, dest-up, ncloumns/c)
shift down
mpshiftup (source-down, dest-down, ncloumns/c)
do i=xmin,xmax
do j=ymin,ymax
temp = 1/4 * (f-old(i,j+1) + f-old(i,j-1)
+ fold(i+1,j) + f-old(i-1,)));
test = max (test, abs(temp - f-old(i,j))
f-new(i,j) = temp
end do
end do
do i=1,xdimension(f-new)-2
do j=1,xdimension(f-new)-2
f-0ld(i,j) = f-new(i,j)
end do
end do
if (test > cnvg)
goto begin
else
stop
end if

Message Passing Program

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 92

end begin

end main

7.8.5 Performance of the Parallel Program

Let ¢cq1c denote the time used for one floating point operation and fcomm be the
time used for the transfer of one datum from one processor to another one. A

floating point operation is an addition, a subtraction or a multiplication.

One Dimensional Case
Two-stencil

Let n denote the number of nodal points stored in each processor. Than in each

step of the Jacobi update the following equation is calculated:

H | |
o) = 2620 +652Y) (7.1)

the equation uses 1 addition and 1 multiplication, resulting in 2 floating-point
operations. The number of boundary elements is 2. Therefore, only 2 elements
have to be updated to complete the calculation. The Figure 7.14 a) illustrates

the relation graphically. Thus, the communication overhead is given by

.\, _ 2tcomm leomm Aﬂ Mv
¢ 2nteale Ntealc

Four-stencil

Let n denote the number of nodal points stored in each processor. Than in each

step of the Jacobi update the following equation is calculated:

o) = 0 + o) -) - 05 (73)

where A and C are constants. The equation uses 1 addition, 2 subtractions
and 2 multiplications, resulting in 5 floating-point operations. The number of
boundary elements is 4. Therefore, 4 elements have to be updated to complete
the calculation. The Figure7.14 b) illustrates the relation graphically.

Thus, the communication overhead is given by

Performance of the Parallel Program

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 93

n nodal points

a) Zsendl @000 oe
P YoX A g

Processor Boundary

n nodal points

eocoo0 ole
eeco0 ~

Processor Boundary

b) 4-stencil

Figure 7.14: One dimensional case

At comm 0.80tcomm
.= = 7.4
f Snleale Ntealc ()

Two Dimensional Case
Four-stencil

Let n denote the number of nodal points stored in each processor. Than in each
step of the Jacobi update the following equation is calculated:

1= 1=y

1 _ _ _ _
8 = 05D +olZV oV 0l (75)

the equation uses 3 additions and 1 multiplication, resulting in 4 floating point
operations. The number of boundary elements is 4\/n. Therefore, 4\/7 elements
have to be updated to complete the calculation. The Figure 7.15 a) illustrates

the relation graphically. Thus, the communication overhead is given by

_ 4nleomm _ tcomm

= = 7.6
f 4ntcalc \/Etcalc ()

Performance of the Parallel Program

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 94

Eight-stencil(distance 2)

Let n denote the number of nodal points stored in each processor. Than in each

step of the Jacobi update the following equation is calculated:

8 = 6+ el gl -~ s -0 - aln))

(7.7)
The equation uses 3 additions, 4 subtractions and 2 multiplications, result-
ing in 9 floating point operations. The number of boundary elements is 8y/n.
Therefore, 8,/n elements have to be updated to complete the calculation. The
Figure7.15 b) illustrates the relation graphically.

Thus, the communication overhead is given by

_ 8\/Etcomm _ 0~89tcomm

= = 7.8
f gntcalc \/Etcalc ()

Eight-stencil (distance 1)

Let n denote the number of nodal points stored in each processor. Than in each

step of the Jacobi update the following equation is calculated:

" = A+ o el VD 0N 0D, el

(7.9)
The equation uses 7 additions and 1 multiplications, resulting in 8 floating point
operations. The number of boundary elements is 41/n +4. Therefore, 4(y/n+1)
elements have to be updated to complete the calculation. The Figure7.15 c)
illustrates the relation graphically.

Thus, the communication overhead is given by

4 1 tcomm
1, = A+ Dteomm (7.10)
8nteqlc
For large n this leads to
0.5%comm
foe == (7.11)

\/Etcalc

Performance of the Parallel Program

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 95

Examplen = 16 n nodal points

a) 4-stencil

[4
(JoX J
[]

Processor Boundary

n nodal points

NI
c) 8stencil(distance 1)
[4
L JoX
]
Figure 7.15: O eé_ i ension Processor Boundary

3-dimensional Case

In a similar way the results for the three dimensional case can be obtained.

6-stencil

Let n = a® denote the number of nodal points stored in each processor. Than

in each step of the Jacobi update the following equation is calculated:

6 = AT+ 48T 4 o4 ol 0T DY)

where A is a constant. The equation uses 5 additions and 1 multiplication,

Performance of the Parallel Program

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 96

resulting in 6 floating point operations. The number of boundary elements is
6a®. Therefore, 6a2 elements have to be updated to complete the calculation.
The Figure 7.16 a) illustrates the relation graphically. Thus, the communication

overhead is given by

6 2tcomm tCOTILTIL
fo = ocomm _ (7.13)

6nteaic ateale

The communication neighbors
for 8local nodal pointsin the processor

6 Stencil
1)
AcH
Iy
yavy
] 12 Stencil
26 Stencil

Figure 7.16: One dimensional cag8ePlockisanoda point

Twelve-stencil

Let n=a*a*a denote the number of nodal points stored in each processor. Than

in each step of the Jacobi update the following equation is calculated:

Performance of the Parallel Program

Technical Report:

sces 517 CHAPTER 7. APPLICATIONS 97

0 =AY+l + o ol ol elDY) Ty

1—x —y 1ty 1—2z
—plo) = olol — el — gy (7.15)
-9 - o2 (7.16)

The equation uses 5 additions, 6 subtractions and 2 multiplications, resulting
in 13 floating point operations. The number of boundary elements is twice as
much as in the case before 12a?. Therefore, 124 elements have to be updated to
complete the calculation. The Figure 7.16 b) illustrates the relation graphically.
Thus, the communication overhead is given by

_ 120%tcomm _ 0.923tcomm

= = 717
.\, 13ntcaic ateale A v

Twentysix-stencil

Let n = a® denote the number of nodal points stored in each processor. Than

in each step of the Jacobi update the following equation is calculated:

) = ACEED + 6l + 610 40l + 0TV 40T ()

1—x 1—y 1+y t—z
S A T A i (7.19)
— ol - ekl — el - ol (7.20)
— ol -l - el - el (7.21)
-t - el - elnh - ol (7.22)
-0l - el - ol - el (7.23)

The equation uses 5 additions, 20 subtractions and 2 multiplications, resulting in
27 floating point operations. The number of boundary elements is the number
of boundary elements in the 6 Stencil plus the corner elements. Therefore,

6a2 + 8 + 8a elements have to be updated to complete the calculation. The

Performance of the Parallel Program

Fpsramaaltel CHAPTER 7. APPLICATIONS 98

Figure7.16 c) illustrates the relation graphically.
Thus, the communication overhead is given by
(602 4 8a + 8)tcomm (6a% + 8a + 8)tcomm

.\, M‘Nﬁwnin M‘Nm\wwnin A v

For very large a the term is becomes

6%)teomm _ (0:22)tcomm
f= (6a%) _ (0.22) (7.25)
M‘Nﬁwnin Q\wnin

Performance of the Parallel Program

Bibliography

(1]
(2]
(3]
(4]

(8]

9]

(10]

(11]

Linpack Performance. database at netlib@ornl.gov.
machines. database at netlib@ornl.gov.
The Sirlin Report on Parallel Processing.

CMMD User’s Guide. Tech. rep., Thinking Machines Corporation, May
1993.

SPEC Newsletter, 1993.
AKL, S. G. Parallel Sorting Algorithms. Academic Press, 1985.

AKL, S. G. The Design and Analysis of Parallel Algorithms. Prentice Hall,
New Jersy, 1989.

AMDAHL, G. M. Validity of the single processor approach to achiev-
ing large-scale computing capabilities. In AFIPS Conference Proceedings
(1967), AFIPS Press.

ANDERSON, E., Ba1, Z., DEMMEL, J., DONGARRA, J., CrOZ, J. D.,
GREENBAUM, A., HAMMARLING, S., MCKENNEY, A., AND SORENSEN,
D. Preliminary LAPACK Users’ Guide. Netlib, Oak Ridge National Lab-
oratory, 1991.

ANDERSON, E.; Ba1, Z., J.DONGARRA, GREENBAUM, A., McKENNEY,
A., Croz, J. D., AND HAMMARLING, S. LAPACK: A Portable Linear
Algebra Library for High Performance Computers. IEEE ... (1990), 2-10.

ANDERSON, E., BENZONI, A., DONGARRA, J., MOULTON, S.,; OSTROU-
cHOV, S., TOURANCHEAU, B., ; AND VAN DE GEILJN, R. Basic Lin-
ear Algebra Communication Subprograms. In Sizth Distributed Memory
Computing Conference Proceedings, IEEE Computer Society Press (1991),
pp- pp. 287-290.

99

Technical Report:

sCCs 577 BIBLIOGRAPHY 100

(12]

(13]

14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

BAIARDI, F., AND ORLANDO, S. Strategies for a massively parallel imple-
mentation of simulated annealing. In Lecture Notes in Computer Science
366 (1989), Springer-Verlag, pp. pp. 273-287.

BaiLy, D. Twelve Ways to Fool the Masses with Benchmarks. internet,
monthley posting in comp.benchmark.

BANERJEE, P., JONES, M. H., AND SARGENT, J. Parallel simulated
annealing for cell placement on hypercube multiprocessors. ? Vol. 1, No. 1
(Jan 1990), pp. 91-106.

BEGUELIN, A., DONGARRA, J., GEIST, G. A., MANCHEK, R., AND SUN-
DERAM, V. A user’s guide to PVM: Parallel virtual machine. Tech. Rep.
TM-11826, Oak Ridge National Laboratory, 1991.

BEeLL, C., AND NEWELL, A. Computer Structures: Readings and Eram-
ples. McGraw-Hill, 1971.

BeLLocy, G. E., AND HARDWICK, J. C. Progamming Parallel Algorithms.
Tech. Rep. CMU-CS-93-115, Carnegie Mellon University, Pittsburgh, PA,
1993.

BORDAWEKAR, R., DEL RosARIO, J. M., AND CHOUDHARY, A. N. De-
sign and Evaluation of Primitives for Parallel I/O. In Supercomputing’93
(November 1993), TEEE Computer Society.

BuTLER, R., AND LUsk, E. User’s guide to the p4 parallel program-
ming system. Tech. rep., Argonne National Laboratory, Mathematics and
Computer Science Division, October 1992.

CHENG, D. Y. A Survey of Parallel Programming Languages and Tools.
Tech. Rep. RND-93-005, NASA Ames Research Center, Moffet Field, CA,
Mar. 1993.

Darry, W. J. A VLSI Architecture for Concurrent Data Strucures. The
Kluwer international series in engineering and computer science SECS 27.
Kluwer Academic Publisher, Norwell, Massachusets, 1987.

Davis, L. Genetic Algorithms and Simulated Annealing. Morgan Kauf-
mann, Los Altos, 1987.

DoNGARA, J. Performance of various computers using standard linear
equation software. Tech. Rep. CS5-89-85, Oak Ridge National Laboratory,
Mar. 1985.

DONGARRA, J., CrROZ, J. D., HAMMARLIN, S.; AND DUFF, I. A Set of
Level 3 Basic Linear Algebra Subprograms. ACM Transactions on Mathe-
matical Software 16,1 (Mar 1990), pp. 1-17.

BIBLIOGRAPHY

Technical Report:

sCCs 577 BIBLIOGRAPHY 101

25]

[26]
[27

28]

29]

(30]

(31]

(32]

35

[36

37]

(38]

DoNGARRA, J., GusTavsoN, F. G., AND KARP, A. Implementing Lin-
ear Algebra Algorithms for Dense Matrices on a Vector Pipeline Machine.
SIAM Review 26,1 (Jan 1984), pp. 91-112.

Dowp, K. High Performance Computing, June 1993.

FaigLe, U., AND SCHRADE, R. Simulated Annealing — Eine Fallstudie.
Angewandte Informatik, 6 (June 1988), pp. 259-263. (in german).

FENG, T.-Y. Some Characteristics of Associative/Parallel Processing.
pp. 5-16.

FLynn, M. Very High-Speed Computing Systems. Proceedings of the IEEE
54,12 (December 1966), 1901-1909.

Frynn, M. J. Some Computer Organizations and Their Effectiveness.
IEEE Trans. Computers C-21, 9 (September 1972), 948-960.

Fox, G., JoHunsoN, M., LyzencA, G., OTTO, S., SALMON, J., AND
WALKER, D. Solving Problems on Concurrent Processors. Prentice Hall,
New Jersey, 1988.

Fox, G., JoHunsoN, M., LyzencA, G., OTTO, S., SALMON, J., AND
WALKER, D. Solving Problems on Concurrent Processors. Prentice Hall,
New Jersey, 1988.

GEIsT, G. A., HEaTH, M. T., PEYTON, B. W., AND WORLEY, P. H.
PICL: A portable instrumented communications library. Tech. Rep. TM-
11130, Oak Ridge National Laboratory, 1990.

GEIsT, G. A., HEaTH, M. T., PEYTON, B. W., AND WORLEY, P. H.
PICL, A Portable Intrumented Communication Library, C Reference Man-
ual. Tech. Rep. Tech. Rep. ORNL/TM-11130, Oak Ridge National Labo-
ratory, Oak Ridge, Tennessee 37831, July 1990.

GILBERT, J. R., AND ZMIJEWSKI, E. A Parallel Graph Partitioning Al-
gorithm for a Message-Passing Multiprocessor. In st Int. Conf. on Super-
computing (1987), pp. 498-512.

GILBERT, J. R., AND ZMIJEWSKI, E. A Parallel Graph Partitioning Al-
gorithm for a Message-Passing Multiprocessor. Tech. Rep. 87-803, Cornell
University, 1987.

Giror, W. A Complete Taxonomy of Computer Architecture Based on the
Abstract Data Type View. In IFIP Workshop on Tazonomy in Computer
Architecture (June 1981), pp. 19-38.

GoLuB, G. H., AND LoaN, C. F. V. Matriz Computations. John Hopkins
University Press, 1989.

BIBLIOGRAPHY

Technical Report:

sCCs 577 BIBLIOGRAPHY 102

(39]

[40]

(41]

(42]

43]

44]

(45]

[46]

[47]

(48]

[49]

(50]

(51]

GREENING, D. R. Parallel simulated annealing techniques. Physica D 42
(1990), pp. 293-306.

HANDLER, W. The Impact of Classification Schemes on Computer Archi-
tecture. In 1977 International Conference on Parallel Processing (August
1977), pp. 7-15.

HANDLER, W. Standards, Classification, and Taxonomy: Experiences with
ECS. In IFIP Workshop on Tazonomy in Comp;uter Architecture (June
1981), pp. 39-75.

HANDLER, W. Innovative Computer Architecture - How to Increase Par-
allelism but not Complexity. In Parallel Processing Systems - An Advanced
Course, D. J. Evans, Ed. Cambridge University Press, 1982, pp. 1-42.

HERRARTE, V., AND LUSK, E. Studying parallel program behavior with
Upshot. Tech. Rep. TM-11130, Oak Ridge National Laboratory, 1991.

HiLris, W. D., AND STEELE, G. L. Data Parallel Programming. Com-
munications of the ACM 29, 12 (December 1986), 1170-1183.

HoARE, C. A Model for Communicating Sequential Processes. Tech. Rep.
PRG-22, Oxford University Programming Research Group, 1981.

HockNEY, R.; AND BERRY, M. Public International Benchmarks for Par-
allel Computers. Tech. rep., PARKBENCH Committee, University Ten-
nessee, Nov. 1993.

HockNEY, R., AND JESSHOPE, C. Parallel Computers. Adam Hilger,
1981.

Hwana, K., AND Bricas, F. A. Computer Architecture and Parallel
Processing. McGraw-Hill, 1985.

Hwanag, K., aAND XU, J. Mapping Partitioned Program Modules onto
Multicomputer Nodes Using Simulated Annealing. In International Con-
ference Parallel Processing (1990), vol. Vol. 2, pp. pp. 292-293.

JounsoN, D. S.; Aracgon, C. R.;, AND McGEoOcH, L. A. Optimiza-
tion by Stimulated Annealing: An Experimental EvaluationPart I, Graph
Partitioning. Operations research Vol. 37, No. 6 (Nov. 1989).

KERNIGHAN, B., AND LIN, S. An efficient heuristic procedure for par-
titioning graphs. Bell Systems Technical Journal Vol. 49, No. 2 (1970),
Pp. 291-308.

KERNIGHAN, B. W., AND LIN, S. An Efficient Heuristic Algorithm for
the Traveling Salesman Problem. Operations Research 21 (1973), 498-516.

BIBLIOGRAPHY

Fpsramaaltel BIBLIOGRAPHY 103

[53] KIRKPATRICK, S. Optimization by Simulated Annealing: Quantitative
Studies. Journal of Statistical Physics 34 (1984), pp. 975-986.

[54] KIRKPATRICK, S., GELLATT, C. D., AND VEccHI, M. P. Optimization
by Simulated Annealing. Science 220 (1983), pp. 671-680.

[55] KNuTH, D. E. The Art of Computer Programming, Sorting and Searching,
vol. Volume 3. Addison Wesley, 1973.

[56] Lanpau, R. H., aND FINK, P. J. A scientist’s and enggineer’s guide to
Workstations and Supercomputers. Wiley-Interscience, 1993.

[57] M. HEAaTH, J. A. E. Paragraph. Tech. rep., Oak Ridge National Labora-
tory, Oak Ridge, Tennessee 37831, Oct 1991.

[58] MasPAR COMPUTER CORPORATION. MasPar System Overview, pn 9300-
9001-00, revision a5 ed., Aug. 1991.

[59] MivaTa, E. Frequent asked Questions: Benchmark. posted monthly in
newsgroup comp.benchmark.

[60] MoHAMED, A. G. Block-based Solvers for Engineering Applications. In
Mechanics Computing in the 1990’s and Beyond, Proceedings of the ASCE
Engineering Mechanics Speciality Conference (Columbus, Ohio, May 1991),
H. Adeli and R. L. Sierakowski, Eds., ASCE, New York, pp. pp. 19-22.

[61] MoHAMED, A. G., Fox, G. C., AND VON LASZEwWsKI, G. Blocked LU
Factorization on a Multiprocessor Computer. Microcomputer in Civil En-
geneering Vol. 8, No. 1 (1993), pp. 45-56.

[62] MooRrE, D. A Round-Robin Parallel Partitioning Algorithm. Tech. Rep.
88-916, Cornell University, 1988.

[63] MoREAU, R. The Computer Comes of Age. MIT Press, 1984.

[64] ORTEGA, J. M. Introduction to Parallel and Vector Solution of Linear
Systems. Frontiers of Computer Science. Plenum Press, New York, 1988.

[65] PaAPADIMITRIOU, C. H., AND STEIGLITZ, K. Combinatorial Optimization:
Algorithms and Complexity. Prentice Hall Inc., 82.

[66] RaMAN, S., AND PATNIK, L. Circut Partitioning using Simulated An-
nealing on a Hypercube. Tech. rep., Coordinated Science Labopratory,
University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA, 1988.

[67] RIcE, J. R. Numerical Methods, Software, and Analysis. McGraw-Hill,
1983.

BIBLIOGRAPHY

Fpsramaaltel BIBLIOGRAPHY 104

[68] RoSEN, S. Electronic Computers: A Historical Survey. Computing Surveys
1,7 (1960).

[69] SMITH, B. Parallel Programming Tools. Tech. Rep. Draft, Argonne Na-
tional Laboratory, University of California, Los Angeles, February 1993.

[70] STERLIN. Sterlin Report on Parallel Processing, 1993.
1] TREW, A., AND EDS., G. W. Past, Present, Future. Springer, 1991.

[72] vAN DE GELN, R. Massively Parallel LINPACK Benchmark on the Intel
Touchstone DELTA and iPSC/860 Systems: Progress Report. Tech. Rep.
Computer Science Technical Report TR-91-28, University of Texas, Aug,
updated Dec 5 1991.

[73] voN LAszEWSKI, G. A parallel genetic algorithm for the graph partitioning
problem. In Transputer Research and Applications 4, Proc. of the 4th Conf.
of the North-American Transputers Users Group (1990), TOS Press.

[74] voN LaszZEwWSKI, G. Intelligent Structural Operators for the k-way Graph
Partitioning Problem, July 1991. plenary presentation.

[75] voN LaszEwskI, G. A Collection of Graph Partitioning Algorithms: Sim-
ulated Annealing, Simulated Tempering, Kernighan Lin, Two Optimal,
Graph Reduction, Bisection. Tech. Rep. SCCS 477, Northeast Parallel
Architectures Center at Syracuse University, April 1993.

[76] vON LASZEWSKI, G. Object Oriented Recursive Bisection on the CM-5.
Tech. Rep. SCCS 476, Northeast Parallel Architectures Center at Syracuse
University, April 1993.

[77] voN LASZEWSKI, G., AND MUHLENBEIN, H. A Parallel Genetic Algorithm
for the k-way Graph Partitioning Problem. In 1st inter. Workshop on
Parallel Problem Solving from Nature (Nov. 1990), Springer, Ed.

[78] voN LaSZEWSKI, G., PARASHAR, M., MOHAMED, A. G., AND FOX,
G. C. High Performance Scalable Matrix Algebra Algorithms for Dis-
tributed Memory Architectures. Tech. Rep. SCCS 271b, Northeast Paral-
lel Architectures Center at Syracuse University, CRPC-TR92210, Center
for Research on Parallel Computation, Rice University, Houston, TX, June
1992.

[79] voN LaszZEwWSKI, G., PARASHAR, M., MOHAMED, A. G., AND FOX,
G. C. High Performance Scalable Matrix Algebra Algorithms for Dis-
tributed Memory Architectures. In Proceedings of Supercomputing 92 (Min-
neapolis, Nov. 1992), IEEE Compt. Soc. Press, pp. 170-179. Best Student
Paper Award.

BIBLIOGRAPHY

Technical Report:

sces 517 BIBLIOGRAPHY 105

[80] Xu, J., aAND HwaNg, K. Simulated annealing method for mapping pro-
duction systems onto multicomputers. In IEEE Conf AI Applic (1990),
pp. pp. 350-356.

BIBLIOGRAPHY

