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Abstract

There is a class of problems in computational sci-

ence and engineering which require formulation in full

matrix form and which are generally solved as dense

matrices either because they are dense or because the

sparsity can not be easily exploited. Problems such as

those posed by computational electromagnetics, com-

putational chemistry and some quantum physics ap-

plications frequently fall into this class. It is not suf-

�cient just to solve the matrix problem for these ap-

plications as other components of the calculation are

usually of equal computational load on current com-

puter systems, and these components are consequently

of equal importance to the end user of the application.

We describe a general method for programming such

applications using a combination of distributed com-

puting systems and of more powerful back-end com-

pute resources to schedule the components of such ap-

plications. We show how this not only improves com-

putational performance but by making more memory

available, allows hitherto impracticably large problems

to be run. We illustrate this problem paradigm and

our method of solution with problems in electromag-

netics, chemistry and physics, and give a detailed per-

formance analysis of a typical electromagnetics appli-

cation. We discuss a method for scheduling the com-

putational components using the Application Visuali-

sation System (AVS).

1 Introduction

Consider a typical problem in electromagnetics sim-
ulation involving the computation of a scattering �eld
pattern from a conducting object. The scatterer could

be as simple as an open-ended waveguide or as com-
plex as a full aircraft. The general formulation of such
a problem is to �nd some appropriate discretisation
scheme to represent the geometry and to solve the ap-
propriate equations. In this particular case, Maxwell's
equations for the electric �eld must be solved subject
to the appropriate boundary conditions [12].

Many application problems can be formulated as
matrix equations including many of the �eld equa-
tions and partial di�erential equations arising in sci-
ence and engineering. For some of these the problem
is most e�ciently expressed not as a fully stored ma-
trix but as the �eld variables themselves. A typical
example of this would be a wave equation in an elastic

media stored as a displacement �eld and with a lo-
cal updating algorithm used on the discretised mesh.
The matrix formulation of this problem results in a
multiply-banded matrix which would be wasteful of

storage.

Some problems are so complicated in terms of the
algorithm that they must be formulated as a full ma-
trix which itself may have a su�ciently simple struc-
ture that some storage packing can be applied and
a sparse matrix solver algorithm applied. Matrices
like this often arise in computational uid dynamics
or structural engineering applications where �nite ele-
ments or volumes are employed. The resulting matrix
is by no means trivial but can be factored e�ciently
by an advanced sparse technique such as the frontal
method [7]. In other problems it is not obvious how to
exploit the sparsity for an e�cient solution, and the
matrix must be solved as though it was dense. It is
this last case we wish to consider in more detail.



Parallel Solvers

On serial implementations and to a certain extent
on traditional vector systems the matrix-solving com-
ponent often dominates the application's computa-
tional complexity to such an extent that it is su�-
cient to focus all e�ort on this part of the application
alone in terms of e�cient coding and algorithms. A
great deal of e�ort has been expended in writing fast
e�cient matrix factorisation and solver codes and li-
braries. There has been su�cient awareness of the im-
portance of this problem that factorisation and solver
code has been written for many of the parallel and high
performance computing systems available today either
as a portable library [4] or as proprietary code opti-
mised speci�cally for one vendor's machine [22, 20].
Vendor-supplied code often has the additional capabil-

ity to work with matrix sizes larger than the available
machine memory. These so called out-of-core solvers
typically make use of low level system facilities to be
able to move blocks of the matrix between an attached
high speed disk and the distributed node memory. Al-
though the communications limitations inevitably de-
grades performance over an in-core solution, the ca-
pability of solving a very large problem size at all can
be very valuable.

Generally these packages (for in-core solution) are
excellent and can be applied very e�ectively to solve
the matrix which lies at the heart of the application.
However, by using such an e�cient solver, and by re-
ducing the time taken in the factorising and solving
phases of an application, the other parts, which may
have been very minor on a serial implementation, now
become as signi�cant in terms of compute time on a
parallel system.

Computational Phases of an Application

A typical application code might have four identi-
�able phases: assembling the matrix; factorising the
matrix; solving one or more right hand sides (RHS)
using the factored matrix; and disassembling the so-
lution into the desired form. If the problem is char-
acterised by the matrix edge size n, which might be
the number of elements, patches or nodes depending
on the particular problem, then the number of com-
putational operations in each of these will typically be
of order n2 for the assembly, n3 for the factorisation,

n2 for the RHS solution and of order n or sometimes
n2 for the disassembly of the solution. On a serial im-
plementation the time to completion for each of these
phases of the computation is just proportional to the
operation count. For a parallel computer system, pro-

cessors can be added to reduce the e�ective powers
of n in the factorisation and RHS solution phases by
one. Our main point in this paper is that the ma-
trix assembly and possibly the disassembly too, must
be similarly reduced in completion time or the bene-
�ts of using the parallel factorisation and solve will be
wasted.

The total time to completion for the application is
generally the only matter of interest to the end user,
and so it is necessary to consider all phases of the
computation. In a particularly complex problem with
an irregular mesh for example, the matrix assembly
may in fact have the same power of n dependence as
the factorisation, but may in fact be weighted by a
higher constant if for example some particularly ex-
pensive operations such as square roots or trigono-
metrical functions are involved.

Problem A B C D

N 126 280 861 1087

A Assembly 4.598 22.711 158.362 2124.677
b Assembly 0.011 0.129 1.545 6.734
Factor 0.129 0.701 12.597 81.544
Solve 0.026 0.190 2.837 14.486
Disassembly 1.603 0.118 1.177 8.293

Table 1: Times (seconds) for components of a CEM
Simulation Code

We illustrate this phenomena with some times (ta-
ble 1) taken from running a method of moments com-
putational electromagnetics code on an Intel iPSC.
Our (prototype) parallel implementation uses a COM-
PLEX version of the ScaLAPACK library codes de-
scribed in [4], The distribution of compute times for
the various algorithmic components shows how the
matrix factorisation is still dominated by the time to
assemble the matrix at small to mediumproblem sizes.
This is no longer true for very large problems sizes, but
the regime of interest to us is close to the cross over
point, and it is important to consider parallel imple-
mentations of the matrix assembly too.

In addition there are some applications which will
require the solution of many medium sized matrices
and where the matrix assembly will continue to dom-
inate the completion time for the whole application.

Memory Considerations

A further consideration arises from the storage re-
quirements of our problem. A typical implementation



of a matrix factoriser/solver will be able to partition
the n2 storage required to store the matrix itself across
the distributed memory of its processors and thus al-
low a very large matrix to be stored. Some of the
e�ort in achieving this will again be lost however, if
the solution and RHS vectors are not also partitioned.
Furthermore if the assembly and/or disassembly is not
also similarly partitioned, then these phases of the
computation must be carried out on a single compute
node of the system. This is viable on some hybrid
systems where there is a de�nite \master/slaves" re-
lationship between the compute nodes of the system
so that there is one or more nodes with extra memory.
This is sometimes the case on systems which employ a
so-called \front-end" which can be heavily con�gured
with memory. Nevertheless it is likely that unless the
overall machine's memory con�guration can be eas-
ily changed or tuned for one particular problem, then
some bene�t of using a distributed memory parallel
computer system will be wasted.

For very large systems which must use an out-of-
core solver, these arguments are no longer so simple.
In such a case the performance degradation due to
communications between node memory and even the
fastest available concurrent �le systems is consider-
able, This degradation may a�ect the matrix assembly,
factorisation, RHS solution and solution-disassembly
in a very machine-dependent manner. This will be de-
termined by the particular memory/disk/caching sys-
tem and hierarchical structure on a given architecture.
Characterising this and designing an optimal portable
solution is a very di�cult problem at present and we
do not consider this further here.

Scheduling Computational Tasks

Our solution to this class of problems is to consider
the scheduling of the phases of the computations on
a hetero-architecture where distributed workstations
for example are used in conjunction with a high per-
formance computer system to overlap as much of the
computation as possible and minimise the total time
to completion.

It is often possible to partition the problem assem-
bly phase into computationally distinct tasks. An im-
portant example concerns the assembly of the RHS
vectors in contradistinction to assembly of matrix it-
self. It may be possible to farm out these tasks to sep-

arate compute nodes. This is particularly attractive
on a parallel system which allows the compute nodes
to act independently as well as in the loosely syn-
chronous fashion necessary for the factorisation and
solution phases.

Certain problems may also allow the matrix itself
to be decomposed as a sum of sub-matrices, and it is
also computationally advantageous to treat these sub-
matrix assemblies as separate tasks.

The design goal is generally to achieve the lowest
possible time to completion of the whole application
code. This is generally consistent with making the
most e�cient use of all parts of the hetero-architecture
including the concurrent �le system if one is available
and the distributed compute resources (front-end or
additional workstations) as well as the main back-end
compute engine. It is consequently necessary to ex-
ploit any task parallelism that presents itself as well
as the data parallelism generally employed in the fac-
torisation and RHS solution.

2 Application Visualisation System

and Compute Modules

It is not desirable for the end-user of an applica-
tion code to have to make extensive con�gurational
changes to the code to allow its e�cient execution
on our proposed heterogeneous system. Indeed it is
preferable that this scheduling be done at as high a
level as possible within the application code, and be
easy for the programmer to tune too.

Our approach involves using the Application Vi-
sualisation System (AVS) [1] to control the modular
application components. This is illustrated in �gure
3 and discussed below.

3 Industrial Applications Examples

A number of industrial applications that employ
dense matrix methods are reviewed in [10]. In this
section we illustrate the our paradigm using a spe-
ci�c electromagnetics problem. We also discuss the
paradigm's applicability to problems in computational
chemistry.

Computational Electromagnetics and
Radar Cross-Sections

Electromagnetic scattering (EMS) is a widely en-
countered problem in electromagnetics [12, 15, 24],
with important industrial applications such as mi-
crowave equipment, radar, antenna, aviation, and
electromagnetic compatibility design.

Here, we consider one speci�c problem as illustrated
in �gure 1. Above an in�nite conductor plane, there is





an incident EM �eld in free space. Two slots of equal
width on the conducting plane are interconnected to a
microwave network behind the plane. The microwave
network represents the load of waveguides, for exam-
ple, a microwave receiver. The incident EM �eld pen-
etrates the two slots which are �lled with insulating
materials such as air or oil. Connected by the mi-
crowave network, the EM �elds in the two slots inter-
act with each other, creating two equivalent magnetic
current sources in the two slots. A new scattered EM
�eld is then formed above the slots. We simulate this
phenomena and calculate the strength of the scattered
EM �eld under various physical circumstances. The
presence of the two slots and the microwave load in
this application requires simulation models with high
resolution and therefore a high performance comput-
ing system. The problem geometry is shown in �gure
2.

The moment method [13, 14, 19] is used as the nu-
merical model for the EMS problem, which can be
represented as:
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f : a function;
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It is interesting to note that for this problem we
can split the matrix factorisation into several model-
speci�c parts. In particular from previous work [18]
we note:
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solver for ~V have signi�cant communication re-
quirements and are computationally intensive;

3.
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requires little time. Calculation time for
�
Y a

�
,

�
Y b

�
and ~I are relatively balanced.

Generally, we can decompose our problem onto a
heterogeneous computing system or \metacomputer"
that makes use of both functional parallelism and
pipelining. In this application, functional parallelism
consists of graphical I/O (i.e., user interaction, 3D
rendering) and decomposed simulation computations
which are handled concurrently by di�erent compo-
nents of the metacomputer. Pipelining combines cal-
culations and communications among di�erent proces-
sors or groups of processor that are carried out si-
multaneously in consecutive stages of the simulation.
We have employed a heterogeneous computing system
built from a number of SUN and IBM workstations
and a Connection Machine [23]. Figure 3 shows a
screendump of the scheduling and visualisation tool.
The user can: interactively adjust the model param-
eters; and schedule the parts of the computation on
computer components of the metacomputer; and ob-
serve the data �elds of the model solution. The full de-
tails of this work are given in [2], but in brief, we �nd it
is possible to build a robust simulation system where
all the high performance computing components are
utilised e�ciently. We �nd the turnaround time for a
simulation run is of the order of 8 seconds, which is
quite satisfactory for this type of interactive code.

We observe that by allocating the computational
components across di�erent machines, we have been
able to reduce the amount of memory that is used by
for example workspace and also scalar quantities on
the parallel architecture. This is important since it
frees up more in-core memory to be used by the fac-
torisation and solving code and allows larger problems
sizes to be run.

Visualisation is very important in helping scien-
tists to understand this problem under various phys-
ical conditions. In using an environment like AVS
to \glue" our heterogeneous system components to-
gether, we also have the capability to incorporate a
number of user-friendly interactive controls or \wid-
gets" for adjusting input parameters and displaying
output rapidly and meaningfully (See Figure 3). This
can increase the e�ciency of the scientist employing
such a simulation tool.



Figure 3: The Graphical User Interface on the Local Machine



Computational Chemistry and Quantum
Physics

In the Rayleigh-Ritz variational method for solv-
ing the Schroedinger equation, the eigenvalues of the
resulting matrix represent upper bounds of the exact
eigenvalues and the solution vectors give the coe�-
cients in a series expansion of the wave functions. In

some applications there are additional problem con-
straints that make the matrix sparse to some extent.
Nevertheless it is often the case that the sparseness
is not easily exploitable and a dense solution method
must be employed.

For such matrix eigenvalue problems, typically only
the set of smallest eigenstates are actually of interest.
These correspond to the lowest vibrational frequencies
of a structure or to the lowest energy levels of a chemi-
cal molecule or an atomic nucleus. The computational
problem is then to obtain these values from a matrix
that may be very large and expensive to store as well
as make computations on.

A key observation both for factorising/solving large
matrices and also for �nding the eigenvalues is that the
computations can be set up in terms of matrix-vector
products [6]. Furthermore, it is possible to imple-
ment these elemental operations of linear algebra us-
ing memory-saving pointer techniques for sparse (but
irregular) systems, and also for distributed memory
systems [5]. The Davison algorithm and its variants is
based on use of elemental matrix-vector product op-
erations [8, 9, 17]. Work at our own center has in-
volved porting the MOPAC computational chemistry
code [16] with techniques like this.

In such problems, the matrix assembly and disas-
sembly can be considerably more computationally ex-
pensive than the elemental eigensolution algorithm.

We believe there is considerable scope for combining
heterogeneous compute-engines for simulation prob-
lems in computational chemistry where the set of al-
gorithmic sub-components favour di�ering computer
architectures.

4 Discussion

We have presented a range of application problems
whose computational performance is split across more
than one major component. While it may be possible

to implement these components optimally on the same
computer platform, this is often not the case. For
such applications a heterogeneous computer system
which can make use of functional parallelism, data-
parallelism and pipelining.

We believe there are a number of matrix formu-
lated problems that can bene�t from the heteroge-
neous system scheduling and visualisation paradigm
that we have presented.

We are presently working on a more general com-
putational electromagnetics code which allows solu-
tion of a full range of CEM problems, and not just
the slotted conductor problem presented above. We
aim to implement this code on a range of distributed
memory computing systems, and to experiment fur-
ther with functional decomposition of the relevant as-
sembly and disassembly application components. We
are also considering di�erent distributed data layouts
for these components compared to that required by
the matrix factoring algorithm.

We have already successfully applied this technique
to other supercomputing applications problems such
as �nancial modeling [3] and believe it is of broad
importance to other industrial applications problems
[11].

This general paradigm is well suited to rapid-
prototyping certain simulation and modeling applica-
tions that require both interactive data visualisation
and high performance computing. At the software en-
vironment level, this model only requires support of
high level data visualisation and networking facilities.
The technology for building such systems exists al-
ready in the form of products such as AVS[1] from
AVS Inc. and Explorer[21] from Silicon Graphics Inc..

Finally we make the general observation that since
the dominant factor in the cost of a parallel computing
system is (at the time of writing) its memory, it is
vital that this memory be used to best e�ect. Our
paradigmallows the parallel system to store only those
data that are necessary for its computations, and for
other scalar data and data used in other parts of the
computation to stored just once, on another part of
our metacomputer.
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