
A Data Parallel Algorithm for Solving

the Region Growing Problem

on the Connection Machine 1

Nawal Copty Sanjay Ranka Geo�rey Fox

Ravi V. Shankar

School of Computer and Information Science

Syracuse University

Syracuse, NY 13244

Published in:

Journal of Parallel and Distributed Computing, Special Issue on

Data Parallel Languages and Programming 21, 1

(April 1994), pp. 160-168

1This work was supported in part by NSF under CCR-9110812 and DARPA under contract #

DABT63-91-C-0028. The content of the information does not necessarily re
ect the position or the

policy of the Government and no o�cial endorsement should be inferred.

Abstract

Region growing is a general technique for image segmentation, where image characteristics are

used to group adjacent pixels together to form regions. This paper presents a parallel algorithm

for solving the region growing problem based on the split and merge approach, and uses it to

test and compare various parallel architectures and programming models. The implementations

were done on the Connection Machine, models CM-2 and CM-5, in the data parallel and message

passing programming models. Randomization was introduced in breaking ties during merging

to increase the degree of parallelism, and only one and two-dimensional arrays of data were used

in the implementations.

Keywords: Region growing, Split and merge, Parallel processing, Data parallelism,

Message passing, and Connection machine.

1 The Region Growing Problem

Region growing is a general technique for image segmentation. Image characteristics are used to

group adjacent pixels together to form regions. Regions are merged with other regions to grow

larger regions. A region might correspond to a world object or a meaningful part of one [2].

The merging of pixels or regions to form larger regions is usually governed by a homogeneity

criterion that must be satis�ed. A variety of homogeneity criteria have been investigated for

region growing. If f(x; y) is the image intensity at the pixel with coordinate (x; y), then the

pixel range homogeneity criterion for a region R is true whenever kf(x1; y1)� f(x2; y2)k < T

for all point pairs (x1; y1) and (x2; y2) in R, and false otherwise. This particular homogeneity

criterion requires that the range between the minimum and maximum intensities within a region

R not exceed a threshold value T .

There are many algorithms for solving the region growing problem [1, 2, 6, 7, 10, 15]. The

e�ectiveness of a particular algorithm depends on the application area and the input image. In

this paper, we present a parallel algorithm for solving the region growing problem based on the

split and merge approach proposed by Horowitz and Pavlidis [8].

While previous parallel implementations [13, 14] of the split and merge approach have used

dynamic or tree structures to represent the regions in the image, our implementations use only

one and two-dimensional arrays. We also introduce an element of randomness to the algorithm

whenever a tie occurs during merging; this has signi�cantly reduced the execution time. A

component labeling algorithm proposed by Hambrusch et al [6] de�nes as initial regions adjacent

pixels that have the same intensity value, instead of using a split stage. Moreover, Hambrusch

et al use extra selection criteria that improve the quality of the solution for some input images

and reduce the possibility of a tie during merging.

2 The Split and Merge Approach

The split and merge approach solves the region growing problem in two stages: the split stage

and the merge stage. The split stage is a preprocessing stage that aims to reduce the number

of merge steps required to solve the problem.

2.1 The Split Stage

In the split stage, an N � N image is partitioned into square regions which conform to the

homogeneity criterion. At �rst, each pixel is considered a homogeneous square region of size

1� 1. Then every group of four adjacent pixels are tested for homogeneity. If the homogeneity

criterion is satis�ed, the pixels are combined into one larger square region of size 2 � 2, and so

on... The split stage terminates when the whole image is one square region of size N � N , or

when no more square regions can be merged. Figure 1 shows the square regions produced by

the split stage for a 4 � 4 image, where the threshold value T = 3. The numbers in the image

represent pixel intensities.

1

6 7 1 3

8 6 5 4

8 8 65

6687

(a)

6 7 1 3

8 6 5 4

8 8 65

6687

(b)

Square regions: (a) at start of the split stage; (b) after �rst and �nal split iteration

Figure 1: The Split Stage

2.2 The Merge Stage

In themerge stage of the split and merge approach, the square regions determined by the split

stage are iteratively merged into larger and larger regions which conform to the homogeneity

criterion. The merge continues until no more merges are possible.

The merge is achieved by reformulating the region growing problem as a weighted, un-

directed graph problem, where the vertices of the graph represent the regions in the image, and

the edges represent the neighboring relationships between these regions. That is, an edge e

exists between two vertices v and w of the graph, if and only if the regions represented by v and

w share a common boundary. The weight of the edge e is the di�erence between the maximum

and minimum pixel intensities in the union of the two regions represented by v and w.

Obviously, only vertices connected by edges satisfying the homogeneity criterion can be

merged. In one merge iteration, each region selects for merging the neighbor that best satis�es

the homogeneity criterion, namely the neighbor connected to it by the edge of least weight.

This \best merge" approach yields better results by minimizing the increase in range with each

merge [14]. A tie between two or more neighbors may be broken by selecting the neighbor with

the smallest (largest) ID, or by using some other criteria.

Two regions actually merge if they select each other for merging. Once two regions merge,

the region with the smaller ID becomes the representative of the two, and the vertices and

edges of the graph are updated. The merge stage terminates when no more edges satisfying the

homogeneity criterion exist in the graph.

Figure 2 shows the di�erent regions obtained and their corresponding graphs in each iteration

of the merge stage, for the 4 � 4 image of Figure 1. Ties are broken by selecting the neighbor

with the smallest ID. The small numbers in parenthesis in the corners of the regions denote the

region IDs.

Resolving Ties at Random: The region growing problem is a representative of a type of

loosely synchronous problems, known as adaptive irregular problems, whose data objects evolve

during the computation in a time synchronized manner [5]. The problem exhibits a dynamic

behavior that starts with a high degree of parallelism that very rapidly diminishes to a much

lower degree of parallelism.

In order to increase the degree of parallelism in the algorithm, we introduced an element

of randomness to our parallel implementations. Whenever a tie occurs during the merging of

regions, the tie is broken by selecting one of the tied neighbors at random instead of selecting

2

(a) (b) (c) (d)

6 7 1 3

8 8 656

8 6 5

6 7 1 3

2 5

3

4

0

2

2

1

3

4

3

7

1

1

6

0 3

2

3 2
5

7

2
5

6

1

0 3

2

3

7

3

5

3
5

0

2
7

1

2

(0)(0) (2) (5) (5)(2) (0) (2)

8 5 46 8 6 4
(3)

(0)

(6)

(5)(2)
6 7 1 3

8 6 5 4
(1) (4)

7 8 66 7 8 6 6 7 6687 8 6 6

8 8 5 6 8 8 5 6 8 58

4(3) (6)
5

(3)

6 317

Regions: (a) at start of the merge stage; (b) after �rst merge iteration; (c) after second merge

iteration; (d) after third and �nal merge iteration

Figure 2: The Merge Stage When Ties are Broken by Choosing Neighbor With Smallest ID

the neighbor with the smallest (largest) ID. In Figure 2(a), both regions 3 and 5 tie for merging

with region 6, as they best satisfy the homogeneity criterion for region 6. Region 6 chooses to

merge with region 3, since ties in Figure 2 are broken by choosing the neighbor with the smallest

ID. However, no merge actually takes place, since region 3 chooses to merge with region 4. If,

instead, ties were broken at random, then, in the �rst merge iteration, the three region pairs:

0 and 1, 3 and 4, 5 and 6 could merge at the same time, and the merge stage could take 2

iterations instead of 3.

Experimentally, the random approach in breaking ties proved to be signi�cantly faster than

the approach of selecting the neighbor with the smallest (largest) ID, as shown in Table I. This

is due to the fact that the random approach generally results in a larger number of merges

per merge iteration, while the approach of selecting the neighbor with the smallest (largest) ID

imposes a serialization on the order of merges.

3 The Parallel Implementations

The region growing problemwas implemented on two distinct models of the Connection Machine:

the CM-2 and CM-5.

The CM-2 is a massively parallel computer that belongs to the range of SIMD (Single In-

struction Multiple Data) machines. The CM-2 operates under the programmed control of a front

end computer that provides the program development and execution environment. All CM-2

programs execute on the front end; during the course of the execution, the front end issues in-

structions to the CM-2 processors. The CM-2 supports the data parallel model of programming,

and provides the CM Fortran language which is essentially standard Fortran 77 supplemented

with the array processing extensions of Fortran 90.

The CM-5, on the other hand, is an MIMD machine composed of a control processor and

3

tens or hundreds of node processors connected together in the form of a fat tree [9]. Every

node processor is a general-purpose computer that can fetch and interpret its own instruction

stream, execute arithmetic and logical instructions, calculate memory addresses, and perform

interprocessor communication. The CM-5 supports both the data parallel and message passing

models of programming. For the data parallel model, the CM-5 provides the CM Fortran

language. For the message passing model, the CM-5 provides the CMMD library, which is

a collection of routines that permit cooperative message passing among the node processors.

CMMD supports a version of message passing known as host/node programming, where a host

program runs on the control processor, and independent copies of a node program run on each

of the node processors.

3.1 The Data Parallel Implementation

In the data parallel model of execution, the same CM Fortran program can be executed on both

the CM-2 and the CM-5 without modi�cation. The data parallel implementation of the split

and merge region growing algorithm consists of the following steps:

1. The two-dimensional pixel image is repeatedly split into homogeneous square regions. The

split stage stops when the whole image is one homogeneous square region, or when no more

merges are possible.

2. For each square region in the pixel image, a corresponding graph vertex is created, and

for each pair of neighboring square regions, an edge is created. Edges that do not satisfy

the homogeneity criterion are de-activated.

3. A region determines its neighboring region that best satis�es the homogeneity criterion.

In the case of a tie, the region chooses one of the tied neighboring regions at random. Two

regions merge if their merge choices are mutual. In one merge iteration, several region

pairs can merge at the same time without con
icting with each other.

4. The vertices and edges of the graph are updated to re
ect the new regions in the image.

Edges that do not satisfy the homogeneity criterion are de-activated.

5. If there still exist any active edges, then steps 3 and 4 are repeated. Otherwise, the

program terminates.

3.2 The Message Passing Implementation

In contrast to the data parallel model of execution, the message passing model requires the

programmer to explicitly specify the detailed behavior of individual processors operating asyn-

chronously. The message passing implementation of the split and merge algorithm is a hand-

coded translation of the data parallel one. It consists of the following steps:

0. The pixel image is partitioned equally among the node processors. Given a pixel image of

size N �N and P1�P2 node processors, the pixel image is mapped to the processor grid

such that each processor receives an N

P1
� N

P2
sub-image of the original image.

4

1. Each node processor independently splits its N

P1
� N

P2
sub-image and determines the ho-

mogeneous square regions within it. If the sub-image within a processor is rectangular in

shape, it is divided into square sections and the split stage is applied independently to

each of these sections in turn.

2. Each node processor sets up the vertices and edges of the graph associated with its sub-

image. Boundary information is exchanged so that edges connected to vertices in other

processors are created.

3. The node processors cooperate to merge the regions determined so far in the image.

4. The node processors cooperate to update the vertices and edges of their graphs.

5. If there still exist any active edges in any of the node processors, then steps 3 and 4 are

repeated. Otherwise, the host and node programs terminate.

Irregular Communication: At several points in the message passing implementation, irregu-

lar communication is required, where each of the node processors sends zero or more messages to

other processors in an irregular fashion. An e�cient communication scheme is needed whereby

messages are sent and received without causing deadlock.

Two di�erent communication schemes were investigated. The �rst, called Linear Permu-

tation (LP) [12], uses synchronous (blocked) message passing. In this scheme, each processor

obtains a copy of the communication matrix, using a global concatenation operation. Then,

in step i, 0 < i < Q, processor pk sends a message to processor p(k+i) MOD Q and receives a

message from processor p(k�i) MOD Q, where Q is the total number of node processors. The

sender and receiver processors are blocked until the message is transmitted. The steps of the

Linear Permutation algorithm are as follows:

For all processors pk, 0 � k � Q� 1, in parallel do

for i = 1 to Q� 1 do

Processor pk sends a message to processor p(k+i) MOD Q

Processor pk receives a message from processor p(k�i) MOD Q

endfor

The second communication scheme uses asynchronous message passing. In this scheme, a

processor that wishes to send or receive a message does not block while waiting for its partner.

A processor announces its intention to send or receive a message, and then pursues other com-

putation until the message is ready to be sent and received. When both the sender and receiver

are ready, the system interrupts whatever else is happening on the processors and the message

is transmitted. The steps of the asynchronous communication algorithm are as follows:

1. Using a global reduction operation, each processor determines the number of messages it

must receive from the other processors.

2. Every processor sends, asynchronously, all the messages it wishes to send to other proces-

sors.

3. Every processor receives the required number of messages.

5

In order to reduce the communication overhead in both schemes, whenever a processor needs

to send more than one message to the same destination, all the messages are concatenated

together and sent as one large message.

3.3 Data Structures

In implementing the split and merge algorithm for solving the region growing problem, no

sophisticated data structures were needed to solve the problem. Two-dimensional arrays were

used to store the intensities as well as other information pertaining to the pixels, such as whether

a pixel is a region representative or not. One-dimensional arrays were used to store information

about the vertices and edges of the graph modeling the problem.

To illustrate the way in which data is stored in the various arrays, consider Figure 2(a) which

shows the regions in the image at the start of the merge stage where the threshold value T = 3.

Information on vertices corresponding to these regions is stored in one-dimensional arrays, as

follows:

Region ID:

Min. pixel value:

Max. pixel value:

0

6

8

1

7

8

2

1

1

3

5

5

4

5

6

5

3

3

6

4

4

Information on edges is stored in one-dimensional arrays, as follows:

6

8

0

1

Yes

1

8

0

2

No

5

8

0

3

Yes

5

8

1

4

Yes

1

5

2

3

No

1

3

2

5

Yes

5

6

3

4

Yes

4

5

3

6

Yes

4

6

4

6

Yes

3

4

5

6

Yes

of 2 regions:

of 2 regions:

Min. pixel value in union

Max. pixel value in union

ID of �rst region of Edge:

ID of second region of Edge:

Edge active?

4 Complexity

Given an N �N pixel image, the complexity of the parallel split and merge algorithm depends

on the number of processors used and the number of iterations required to �nd the regions in

the image. The number of iterations in turn depends on the shape and size of those regions.

4.1 The Split Stage

In the best case, when every pixel is a region by itself, only one split iteration is required. In

the worst case, when the whole image is one homogeneous square region, log(N) split iterations

are required.

CM-2 Implementation: Suppose that P processors are used by the data parallel implemen-

tation on the CM-2, and P is smaller than N2. At the beginning of the split stage, each pixel

6

is considered a square region and the �rst split iteration can be done in N2

P
steps. In the second

split iteration, there are O(N
2

4
) square regions and this iteration can be done in O(N2

4�P
) steps,

and so on, until the number of square regions becomes � P . When this occurs, each iteration

can be done in one step and there will be at most log(P) of these iterations. So, the complexity

of the split stage in the data parallel implementation on the CM-2 is given by O(N
2

P
+ logP).

CM-5 Implementations: In both the data parallel and message passing implementations

on the CM-5, the �rst logN
2

P
split iterations are done locally, while the last logP iterations

require communication. Assuming that communication in each of the last logP split iterations

requires O(�) time units, where � is the setup time, then the total time for the split stage is

O(N
2

P
+ (� � logP)). If the split stage is stopped after logN

2

P
iterations, then the time is O(N

2

P
).

4.2 The Merge Stage

The number of iterations needed to complete the merge stage of the algorithm is upper bounded

by the maximum number of sub-regions that must be merged to connect any single region in the

image. If a region consists of r sub-regions, then it will require at least log(r) merge iterations.

In the worst case, when only one pair of regions is merged in each iteration, it will require r� 1

merge iterations.

The total time for the merge stage depends on the number of regions in the image at the

beginning and at the end of the merge stage. Let Ri and Rf denote these two numbers, re-

spectively. Suppose that the number of regions is reduced by a factor of k at every step in the

merge stage (1 � k � 2). Then the number of iterations required is logk
Ri

Rf
. The exact value

of k depends on the input image and the approach used in resolving ties. As the timings in

Table I show, the random tie breaking approach generally results in a greater value of k than

the smallest (largest) ID approach.

The number of edges, E, and the number of regions, Ri, at the beginning of the merge stage

can be derived by Euler's formula [4]: V +Ri �E = 2, where V is the total number of corners

of the square regions. Since E = V +Ri � 2 and V � 4�Ri, then Ri � E � 5�Ri. Thus, the

number of edges is linearly proportional to the number of regions.

CM-2 Implementation: Suppose that P processors are used by the data parallel implemen-

tation on the CM-2. Then the total time required for any step of the merge stage in which E

edges are active is E

P
� (Cost of a Random Access Write + Cost of a Random Access Read).

The time taken by a Random Access Read and a Random Access Write of B data elements

on a P -processor hypercube is O(logP) if B � P , and O(B�logB
P

) if B � P 1+2;2> 0.

If we assume that the number of active edges decreases by a factor of k in each iteration

of the merge stage (same as for number of regions), then the total time required for the merge

stage, assuming B � P in every iteration, is O(logP � logk
Ri

Rf
). The total time required in the

general case is O(Ri�logRi

P
+ logP � logk

Ri

Rf
). Note that this is a very loose complexity analysis.

CM-5 Implementations: In the data parallel and message passing implementations on the

CM-5, each merge step of the algorithm requires a many-to-many communication. The complex-

ity of the many-to-many communication is di�cult to analyze, since it depends on the number

of the messages sent by every processor, which in turn depends on the image.

7

5 Performance

The data parallel implementation (CM Fortran) of the split and merge algorithm was executed

on both a 16K CM-2 and a 32-node CM-5, while the message passing implementation (F77 +

CMMD) was executed on a 32-node CM-5 only. Several images were used to test the various

implementations. These images are shown in Figure 5 in the Appendix.

5.1 Smallest-ID vs. Random Approach in Resolving Ties

Table I compares the smallest-ID and random approaches in resolving ties during the merge

stage. The table presents the execution time and the number of iterations required by the

merge stage of the data parallel implementation (CM Fortran) on the CM-5, using each of the

two approaches. Invariably, in all of the images, the random approach in resolving ties proved

to be signi�cantly faster than the approach of selecting the region with the smallest ID. Similar

results were obtained for the message passing implementation on the CM-5, as well as the data

parallel implementation on the CM-2.

Merge Stage Merge Stage

(Smallest-ID Approach) (Random Approach)

Time (sec) Iterations Time (sec) Iterations

Image 1: 334.948 290 33.013 19

Image 2: 151.670 153 31.615 20

Image 3: 1406.099 809 42.570 27

Image 4: 622.980 549 37.588 25

Image 5: 186.834 226 24.471 16

Image 6: 1754.254 1062 75.582 45

Table I: Comparison of Smallest-ID and Random Approaches in Breaking Ties

in the Data Parallel Implementation on the CM-5 (32 nodes)

5.2 Comparison of the Parallel Implementations

The bar chart of Figure 3 gives a visual comparison of the times taken by the merge stage in

the various implementations. LP refers to the Linear Permutation communication scheme and

Async refers to the asynchronous one.

Figure 4 presents the execution time and speedup of the merge stage in the message passing

implementation on the CM-5 using asynchronous communication, as a function of the number

of processors used.

The detailed timings of the various implementations (using the random approach in resolving

ties) is presented in Table II in the Appendix.

8

Image 1 Image 2 Image 3 Image 4 Image 5 Image 6
0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

T
im

e
(s

ec
)

T
ak

en
 b

y
M

er
ge

 S
ta

ge

CM Fortran on CM-2 (8K Procs)
CM Fortran on CM-2 (16K Procs)
CM Fortran on CM-5 (32 nodes)
F77 + CMMD on CM-5 (32 nodes, LP)
F77 + CMMD on CM-5 (32 nodes, Async)

Figure 3: Execution time of the Merge Stage in the Various Implementations

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35

Ti
me
(s
ec
)

Number of CM-5 Processors

Timings for Merge Stage (F77+CMMD on CM-5, Async)

Image 1
Image 2
Image 3
Image 4
Image 5
Image 6

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35

Sp
ee

du
p

Number of CM-5 Processors

Speedup of Merge Stage (F77+CMMD on CM-5, Async)

Image 1
Image 2
Image 3
Image 4
Image 5
Image 6

Figure 4: Execution Time and Speedup of the Merge Stage on the CM-5 as a Function of the

Number of Processors

9

As was previously mentioned, the message passing version of the region growing algorithm

is essentially a straightforward, hand-coded translation of the data parallel CM Fortran version.

The CM Fortran version was easier to program than the message passing one (the number of

lines of source code was 2525 and 1128 in the message passing and CM Fortran versions, re-

spectively). In the message passing version, the programmer explicitly speci�es synchronization,

data partitioning, and communication, while, in the CM Fortran version, the compiler and the

run-time system insert synchronization, lay out the data, and provide communication among

the node processors.

The experimental results presented in Table II and Figures 3, 4 show that the message passing

version exhibits reasonable speedup on the CM-5, an MIMD machine. However, the compiled

CM Fortran version on the same machine runs signi�cantly slower. We believe that with a more

e�cient implementation of a CM Fortran/High Performance Fortran (HPF) compiler, the per-

formance of the data parallel version should be closer to that of the hand-coded message passing

one. We are developing a Fortran 90D/HPF compiler which supports the above conversion [3].

We plan to test the performance of the region growing algorithm with this compiler and present

results at a later stage.

Of the two communication schemes investigated on the CM-5, the asynchronous scheme is

faster. In the Linear Permutation scheme, the processors must iterate Q times, where Q is

the number of processors used, until all the required sends and receives are completed. In the

asynchronous scheme, however, the number of iterations is � Q and is dependent on the number

of messages to be sent and received.

The graph that models the region growing problem constantly evolves during the course of

the computation. In the current message passing implementation, the vertices and edges of the

graph remain in the same processors throughout the merge stage. This, in general, leads to load

imbalance. A potential approach would be to let the active vertices and edges migrate between

the processors, so the load is more evenly distributed. We are currently investigating various

load balancing schemes and their tradeo�s.

6 Conclusions

We have presented a parallel algorithm for solving the region growing problem based on the split

and merge approach. Ties during merging were resolved by selecting a partner at random. The

algorithm was implemented on the Connection Machine, models CM-2 and CM-5, in both the

data parallel and message passing programming paradigms. The performance of the algorithm

using the di�erent architectures and programming models was analyzed and compared.

Acknowledgements: We would like to thank Paul Coddington, Pablo Tamayo, and Jhy-Chun

Wang for interesting and helpful discussions; Gregor von Laszewski for help in preparing the

manuscript; and the referees for their useful and insightful comments.

10

References

[1] H. Alnuweiri and V. Prasanna, \Parallel Architectures and Algorithms for Image Compo-

nent Labeling", IEEE Trans. Patt. Anal. Machine Intell., 14, pp. 1014-1034, 1992.

[2] D. Ballard and C. Brown, Computer Vision, Prentice Hall, Englewood Cli�s, NJ, 1982.

[3] Z. Bozkus et al, \Compiling Fortran 90D/HPF for Distributed MemoryMIMDComputers",

Tech. Report # 444, Northeast Parallel Architectures Center, Syracuse Univ., May 1993.

[4] S. Even, Graph Algorithms, Computer Science Press, Potomac, MD, 1979.

[5] G. Fox et al, \Software support for irregular and loosely synchronous problems", Tech.

Report, Northeast Parallel Architectures Center, Syracuse Univ., May 1992.

[6] S. Hambrusch, X. He, and R. Miller, \Parallel Algorithms for Gray-Scale Digitized Picture

Component Labeling on a Mesh-Connected Computer", J. Parallel Distrib. Comput., to

appear.

[7] R. M. Haralick and L. G. Shapiro, \Image Segmentation Techniques", Computer Vision,

Graphics, and Image Processing 29, pp. 100-132, 1985.

[8] S. L. Horowitz and T. Pavlidis, \Picture Segmentation By a Directed Split-and-Merge

Procedure", Proc. 2nd International Joint Conf. on Pattern Recognition, pp. 424-433, 1974.

[9] C. Leiserson, \The Network Architecture of the Connection Machine CM-5", Proc. 4th

Annual ACM Symposium on Parallel Algorithms and Architectures, San Diego, CA, 1992.

[10] T. Pavlidis, \Image Analysis", Annual Review of Computer Science 3, pp. 121-146, 1988.

[11] S. Ranka and S. Sahni, Hypercube Algorithms. Springer-Verlag, New York, 1990.

[12] S. Ranka, J. Wang, and G. Fox, \Static and runtime algorithms for all-to-many personal-

ized communication on permutation networks", Proc. International Conf. on Parallel and

Distributed Systems, 1992.

[13] J. C. Tilton, \Image segmentation by iterative parallel region growing with applications to

data compression and image analysis", Proc. 2nd Symposium on the Frontiers of Massively

Parallel Computation, 1988.

[14] M. Willebeek-LeMair and A. Reeves, "Solving non-uniform problems on SIMD computers:

Case study on region growing", J. Parallel Distrib. Comput. 8, pp. 135-149, 1990.

[15] S. W. Zucker, \Region growing: Childhood and adolescence", Computer Graphics and

Image Processing 5, pp. 382-399, 1976.

11

APPENDIX

Image 1 (128 x 128 image)

Image 3 (128 x 128 image)

Image 5 (256 x 256 image)

Image 4 (256 x 256 image)

Image 6 (256 x 256 image)

Image 2 (128 x 128 image)

Figure 5: Images 1-6

12

Image 1: 128� 128 image composed of two nested rectangular regions

No. of square regions found at end of split stage = 436

No. of regions found at end of merge stage = 2

Split Stage Merge Stage

(Random Approach)

Time (sec) Iterations Time (sec) Iterations

CM Fortran on :

CM-2 (8K procs) 0.200 4 9.511 19

CM-2 (16K procs) 0.112 4 7.027 20

CM-5 (32 nodes) 0.361 4 33.013 19

F77 + CMMD on :

CM-5 (32 nodes, LP) 0.022 4 6.914 24

CM-5 (32 nodes, Async) 0.021 4 4.025 20

Image 2: 128� 128 image composed of a collection of rectangles

No. of square regions found at end of split stage = 193

No. of regions found at end of merge stage = 7

Split Stage Merge Stage

(Random Approach)

Time (sec) Iterations Time (sec) Iterations

CM Fortran on :

CM-2 (8K procs) 0.200 4 8.184 18

CM-2 (16K procs) 0.112 4 5.345 17

CM-5 (32 nodes) 0.360 4 31.615 20

F77 + CMMD on :

CM-5 (32 nodes, LP) 0.022 4 9.236 35

CM-5 (32 nodes, Async) 0.021 4 6.441 35

Image 3: 128� 128 image composed of a collection of circles

No. of square regions found at end of split stage = 1732

No. of regions found at end of merge stage = 11

Split Stage Merge Stage

(Random Approach)

Time (sec) Iterations Time (sec) Iterations

CM Fortran on :

CM-2 (8K procs) 0.200 4 13.711 24

CM-2 (16K procs) 0.112 4 9.538 25

CM-5 (32 nodes) 0.361 4 42.570 27

F77 + CMMD on :

CM-5 (32 nodes, LP) 0.022 4 9.454 33

CM-5 (32 nodes, Async) 0.021 4 5.516 28

Table II: Comparison of the Performance of the Parallel Implementations

13

Image 4: 256� 256 image composed of two nested rectangular regions

No. of square regions found at end of split stage = 823

No. of regions found at end of merge stage = 2

Split Stage Merge Stage

(Random Approach)

Time (sec) Iterations Time (sec) Iterations

CM Fortran on :

CM-2 (8K procs) 1.008 5 13.882 26

CM-2 (16K procs) 0.529 5 10.381 28

CM-5 (32 nodes) 2.052 5 37.588 25

F77 + CMMD on :

CM-5 (32 nodes, LP) 0.097 5 16.512 37

CM-5 (32 nodes, Async) 0.097 5 10.942 29

Image 5: 256� 256 image composed of a collection of rectangles

No. of square regions found at end of split stage = 298

No. of regions found at end of merge stage = 7

Split Stage Merge Stage

(Random Approach)

Time (sec) Iterations Time (sec) Iterations

CM Fortran on :

CM-2 (8K procs) 1.008 5 9.287 19

CM-2 (16K procs) 0.529 5 6.633 20

CM-5 (32 nodes) 2.046 5 24.471 16

F77 + CMMD on :

CM-5 (32 nodes, LP) 0.099 5 14.388 35

CM-5 (32 nodes, Async) 0.098 5 6.640 35

Image 6: 256� 256 image of a \tool"

No. of square regions found at end of split stage = 2248

No. of regions found at end of merge stage = 4

Split Stage Merge Stage

(Random Approach)

Time (sec) Iterations Time (sec) Iterations

CM Fortran on :

CM-2 (8K procs) 1.008 5 19.530 34

CM-2 (16K procs) 0.529 5 13.426 33

CM-5 (32 nodes) 2.066 5 75.582 45

F77 + CMMD on :

CM-5 (32 nodes, LP) 0.098 5 12.192 36

CM-5 (32 nodes, Async) 0.098 5 7.236 38

Table II, cont'd.: Comparison of the Performance of the Parallel Implementations

14

