
Compiler and Runtime Support for Out-of-Core HPF Programs

Rajeev Thakur Rajesh Bordawekar Alok Choudhary

Dept. of Electrical and Computer Eng. and

Northeast Parallel Architectures Center

Syracuse University, Syracuse, NY 13244, USA

thakur, rajesh, choudhar @npac.syr.edu

Abstract

This paper describes the design of a compiler which can
translate out-of-core programs written in a data parallel lan-
guage like HPF. Such a compiler is required for compiling
large scale scienti�c applications, such as the Grand Chal-
lenge applications, which deal with enormous quantities of
data. We propose a framework by which a compiler together
with appropriate runtime support can translate an out-of-
core HPF program to a message passing node program with
explicit parallel I/O. We describe the basic model of the
compiler and the various transformations made by the com-
piler. We also discuss the runtime routines used by the com-
piler for I/O and communication. In order to minimize I/O,
the runtime support system can reuse data already fetched
into memory. The working of the compiler is illustrated us-
ing two out-of-core applications, namely a Laplace equation
solver and LU Decomposition, together with performance
results on the Intel Touchstone Delta.

1 Introduction

Massively parallel computers (MPPs) with a peak perfor-
mance as high as 100 GFlops have made their advent into
the supercomputing arena. As a result, MPPs are increas-
ingly being used to solve large scale computational problems
in physics, chemistry, biology, engineering, medicine and
other sciences. These applications, which are also referred
to as Grand Challenge Applications [14], are extremely com-
plex and require several Teraops of computing power to be
solved in a reasonable amount of time. In addition to requir-
ing a great deal of computational power, these applications
usually deal with large quantities of data. At present, a typ-
ical Grand Challenge Application could require 1Gbyte to
4Tbytes of data per run [12]. These �gures are expected to
increase by orders of magnitude as teraop machines make
their appearance.

Although supercomputers have very large main mem-
ories, the memory is not large enough to hold this much
amount of data. Hence, data needs to be stored on disk
and the performance of the program depends on how fast

Proc. of the 8th ACM International Conference on Su-
percomputing, Manchester, England, July 1994.

the processors can access data from disks. A poor I/O ca-
pability can severely degrade the performance of the entire
program. The need for high performance I/O is so signif-
icant that almost all the present generation parallel com-
puters such as the Paragon, iPSC/860, Touchstone Delta,
CM-5, SP-1, nCUBE2 etc. provide some kind of hardware
and software support for parallel I/O [10, 17, 4, 11]. A good
overview of the various issues in high performance I/O is
given in [12]

In this paper, we consider the I/O problem from a lan-
guage and compiler point of view. Data parallel languages
like HPF [15] and pC++ [2] have recently been developed
to provide support for high performance programming on
parallel machines. These languages provide a framework
for writing portable parallel programs independent of the
underlying architecture and other idiosyncrasies of the ma-
chine. In order that these languages can be used for pro-
gramming Grand Challenge Applications, it is essential that
the compiler can automatically translate out-of-core data
parallel programs. Language support for out-of-core pro-
grams has been proposed in [3, 8, 20]. We propose a frame-
work by which a compiler together with appropriate run-
time support can translate an out-of-core HPF program to
a message passing node program with explicit parallel I/O.
Although we use HPF as the source language, the transla-
tion technique is applicable to any other data parallel lan-
guage. There has been considerable research on compiling
in-core data parallel programs for distributed memory ma-
chines [6, 22, 21]. This work, to our knowledge, is one of the
�rst attempts at a methodology for compiling out-of-core
data parallel programs.

The rest of the paper is organized as follows. The model
for out-of-core compilation is explained in Section 2. Sec-
tion 3 describes the compiler design including the transfor-
mations made by the compiler. The runtime support system
is described in Section 4. We use two out-of-core examples
to demonstrate the working of the compiler, namely the so-
lution of Laplace's equation and LU Decomposition. We
discuss some performance results on the Intel Touchstone
Delta in Section 5, followed by Conclusions in Section 6. In
this paper, the term in-core compiler refers to a compiler for
in-core programs and the term out-of-core compiler refers to
a compiler for out-of-core programs.

2 Model for Out-of-Core Compilation

High Performance Fortran (HPF) is an extension to For-
tran 90 with features to specify data distribution, align-
ment, data parallel execution etc. In distributed memory

382

P3P2

P0 P1

DisksDisks

To P0

To P2

To P1

To P3

Local array Local array

 Files Files

Global Array

Processors

ICLA ICLA

Figure 1: Model for out-of-core compilation

computers, arrays have to be distributed among the pro-
cessors in some manner. HPF provides directives (ALIGN
and DISTRIBUTE) which describe how arrays should be
partitioned. Arrays are �rst aligned to a template or index
space using the ALIGN directive. The DISTRIBUTE direc-
tive speci�es how the template is to be distributed among
the processors. In HPF, an array can be distributed as ei-
ther BLOCK(m) or CYCLIC(m). In a BLOCK(m) distribu-
tion, contiguous blocks of size m of the array are distributed
among the processors. In a CYCLIC(m) distribution, blocks
of size m are distributed cyclically.

The DISTRIBUTE directive in HPF speci�es which ele-
ments of the array are mapped to each processor. This re-
sults in each processor having a local array associated with
it. In an in-core program, the local array resides in the local
memory of the processor. Our group at Syracuse Univer-
sity has developed a compiler for in-core HPF programs [6].
For large data sets, however, local arrays cannot entirely �t
in main memory. Hence, these programs are referred to as
out-of-core programs. In such cases, parts of the local array
have to be stored on disk. We refer to such a local array
as the Out-of-core Local Array (OCLA). Parts of the
OCLA have to be swapped between main memory and disk
during the course of the computation. If the operating sys-
tem supports virtual memory on each processor, the OCLA
can be swapped in and out of the disk automatically by the
operating system. In that case, the HPF compiler for in-core
programs could also be used for out-of-core programs.

A major consideration in the design of an HPF compiler
is performance. Studies of the performance of virtual mem-
ory provided by the OSF/1 operating system on the Intel
Paragon have shown that the paging in and paging out of
data from the nodes drastically degrades the performance of

the user code [19]. Also, most of the other massively paral-
lel systems at present, such as the CM-5, iPSC/860, Touch-
stone Delta, nCUBE-2 etc, do not support virtual memory
on the nodes. Hence, the HPF compiler must translate into
a code which explicitly performs I/O. Even if node virtual
memory is supported, paging mechanisms are not known to
handle di�erent access patterns e�ciently. This is true even
in the case of sequential computers where, in order to get
good performance, the programmer must explicitly do I/O
instead of leaving it to the operating system.

The basic model on which the out-of-core compilation is
based is shown in Figure 1. Since the local arrays are out-
of-core, they have to be stored in �les on disk. The local
array of each processor is stored in a separate �le called the
Local Array File (LAF) of that processor. The node
program explicitly reads from and writes into the �le when
required. If the I/O architecture of the system is such that
each processor has its own disk, the LAF of each processor
will be stored on the disk attached to that processor. If
there is a common set of disks for all processors, the LAF
will be distributed across one or more of these disks. In
other words, we assume that each processor has its own
logical disk with the LAF stored on that disk. The mapping
of the logical disk to the physical disks is system dependent.
At any time, only a portion of the local array is fetched and
stored in main memory. The size of this portion is speci�ed
at compile time and it usually depends on the amount of
memory available. The portion of the local array which is in
main memory is called the In-Core Local Array (ICLA).
All computations are performed on the data in the ICLA.
Thus, during the course of the program, parts of the LAF
are fetched into the ICLA, the new values are computed
and the ICLA is stored back into appropriate locations in

383

the LAF.

3 Compiler Design

This section describes the design of the compiler for out-of-
core HPF programs. We mainly focus on the compilation
of array expressions and FORALL statements for out-of-
core arrays. The compilation basically involves the following
stages: Data Partitioning, Communication Detection, I/O
Detection and �nally Code Generation with calls to runtime
libraries. We �rst describe how the compilation is done for
in-core programs and then extend the methodology to out-
of-core programs. We explain both cases with the help of the
HPF program fragment given in Figure 2. In this example,
arrays A and B are distributed in (block,block) fashion on
16 processors arranged as a two-dimensional grid of 4� 4.

3.1 In-core Compilation

This section describes the in-core compilation methodology
used in the HPF compiler developed by our group at Syra-
cuse University [6]. Consider the array assignment state-
ment from Figure 2. The compiler translates this statement
using the following steps:-

1. Analyze the distribution pattern of each array used in
the array expression.

2. Depending on the distribution, detect the type of com-
munication required.

3. Perform data partitioning and calculate lower and up-
per bounds for each participating processor.

4. Use temporary arrays if the same array is used in both
LHS and RHS of the array expression.

5. Generate the corresponding sequential F77 code.

6. Add calls to runtime libraries to perform collective
communication.

The local arrays corresponding to arrays A and B lie
in the local memory of each processor. Since array B is
distributed in block-block fashion over 16 processors, the
above assignment requires fetching data from neighboring
processors. The compiler analyzes the statement and inserts
a call to the appropriate collective communication routine.
The assignment statement is translated into corresponding
DO loops with a call to a routine which performs overlap
shift type communication [6], as shown in Figure 3.

3.2 Out-of-core Compilation

For compiling out-of-core programs, in addition to handling
all the issues involved in compiling in-core programs, the
compiler must also schedule explicit I/O accesses to fetch/store
appropriate data from/to disks. The compiler has to take
into account the data distribution on disks, the number
of disks used for storing data and the prefetching/caching
strategies used.

As explained earlier, the local array of each processor is
stored in a separate local array �le (LAF) and the portion of
the local array currently required for computation is fetched
from disk into the in-core local array (ICLA). The size of
the ICLA is speci�ed at compile time and usually depends
on the amount of memory available. The larger the ICLA

parameter (n=1024)
real A(n,n), B(n,n)

..........
!HPF$ PROCESSORS P(4,4)

!HPF$ TEMPLATE T(n,n)
!HPF$ DISTRIBUTE T(BLOCK,BLOCK) ONTO P

!HPF$ ALIGN with T :: A, B
...........

FORALL (i=2:n{1, j=2:n{1)
A(i,j) = (B(i,j{1) + B(i,j+1) + B(i+1,j)

+ B(i{1,j))/4
...........

B = A

Figure 2: HPF Program Fragment

Call communication routine to perform overlap shift.
do j = lower bound, upper bound

do i = lower bound, upper bound
A(i,j) = (B(i,j{1) + B(i,j+1) + B(i{1,j) +

B(i+1,j))/4
end do

end do

Figure 3: Translation of the Array Assignment Statement.

the better, as it reduces the number of disk accesses. Each
processor performs computation on the data in the ICLA.

Some of the issues in out-of-core compilation are similar
to optimizations carried out in in-core compilers to take ad-
vantage of caches or pipelines. This optimization, commonly
known as stripmining [23, 24], partitions the loop iterations
so that data of �xed size (equal to cache size or pipeline
stages) can be operated on in each iteration. In the case of
out-of-core programs, the computation involving the entire
local array is performed in stages where each stage operates
on a di�erent part of the array called a slab. The size of each
slab is equal to the size of the ICLA. As a result, the iter-
ation space of the local array assignment/forall statement
is partitioned (stripmined) so that each iteration operates
on the data that can �t in the processor's memory (ie. the
size of ICLA). In other words, there are two levels of data
partitioning. Data is �rst partitioned among processors and
then data within a processor is partitioned into slabs which
�t in the processor's local memory.

3.2.1 Language Support for Out-of-Core Compilation

In order to stripmine the array assignment statements, the
compiler needs information about which arrays are out-of-
core and also the amount of memory available to store the
ICLA. We propose two directives, OUT OF CORE and
MEMORY, using which the user can specify this infor-
mation to the compiler. The HPF program can be an-

parameter (n=64000)

!HPF$ OUT OF CORE :: D, C
!HPF$ MEMORY M(n)

Figure 4: Proposed Out-of-Core Directives for HPF

384

OVERLAP

2

3

4

1

OUT-OF-CORE

COMMUNICATION

IN-CORE

COMMUNICATION

(A)

(B)

(C)

(D)

SLABS

1. 2. 3. 4.

P1

P5 P6 P7

P13 P15

P0 P2 P3

P8 P9 P10 P11

P14

P4

P12

ARRAY IN P5

LAF

AREA

Figure 5: Compilation of Out-of-core Programs

notated with these directives, as shown in Figure 4. The
OUT OF CORE directive speci�es which arrays are out-
of-core (e.g D, C). The MEMORY directive speci�es the
amount of memory available for the ICLA. In the future,
we plan to incorporate some optimizations in the compiler
by which the compiler will be able to automatically cal-
culate the memory available for the ICLA on the basis of
the amount of memory provided on each processor and the
memory used by the program.

3.2.2 Communication Models for Out-of-Core Compila-
tion

Let us now examine the compilation of array assignment
statements involving out-of-core arrays. We consider the
array assignment statement from the HPF program shown
in Figure 2.

A(i,j) = (B(i{1,j) + B(i+1,j) + B(i,j{1) + B(i,j+1))/4

Array B is distributed over 16 processors in (block,block)
manner as shown in Figure 5(A). Consider the out-of-core
local array (OCLA) and corresponding local array �le (LAF)
for processor 5, shown in Figure 5(B). The OCLA is divided
into slabs, each of which is equal to the size of the in-core lo-
cal array (ICLA). The slabs are shown using columns with
di�erent shades. The same �gure shows the overlap area
(also called ghost cells) for array B for the above array as-
signment statement. The overlap area is used to store the
data received from other processors.

Each point (i; j) of the array is computed using the val-
ues at its four neighboring points. Hence each processor,
except those at the boundaries, needs to get one row or one
column from each of its four neighboring processors. There
are two ways in which this communication can be done,
which we call the Out-of-core Communication Method and
the In-core Communication Method. Figure 6 describes how
the compilation is done for each of these methods.

� Out-of-core Communication Method: In this method,
the compiler determines what o�-processor data is re-
quired for the entire out-of-core local array. The shaded

region in Figure 5(C) shows the amount of data to
be received by processor 5 (comm data). In the out-
of-core communication method, the entire comm data
is communicated in one step and stored at appropri-
ate locations in the local array �le. The computation
is stripmined using the memory size provided by the
user. During the computation, each slab along with its
comm data, is read from and written to the local array
�le. No communication is required during the compu-
tation on each slab, since the necessary comm data is
fetched from the local array �le. After the computa-
tion, the slab is written back to disk.

The out-of-core communication method requires extra
data storage during program execution. Also, the com-
munication stage requires accessing data from other
processors (inter-processor communication) and stor-
ing data to the local array �le (disk access). However,
this method allows the compiler to identify and op-
timize collective communication patterns because the
communication pattern depends on the logical shape
of arrays and the access patterns for the entire array.
For example, there are four shift type communications
required in this example. This communication pattern
is preserved except that communication also requires
disk accesses in addition to data movement. Also,
since communication is separated from computation,
the compiler can easily perform other code optimiza-
tions such as loop fusion.

� In-core Communication Method: In this method,
the compiler analyzes each slab instead of the entire
out-of-core local array. The assignment statement is
�rst stripmined according to the memory size. Then
each data slab is analyzed for communication. If the
slab requires o�-processor data, appropriate communi-
cation primitives are used to fetch the necessary data.
This is illustrated in Figure 5(D). In this example, the
local array �le is divided into four data slabs. The
shaded region in Figure 5(C) shows the total amount
of data to be communicated for the entire OCLA. Fig-
ure 5(D) shows the data to be fetched for each in-

385

Out-of-core Communication

1. Stripmine code based on memory size.

2. Schedule communication for entire out-of-core data.
3. Repeat k times (k is the stripmine factor).

3.1 Read data from disk to ICLA.

3.2 Do the computation on the data in ICLA.
3.3 Write data from ICLA back to disk.

In-core Communication

1. Stripmine code based on memory size.

2. Repeat k times (k is the stripmine factor).
2.1 Read data from disk to ICLA.

2.2 Schedule communication for in-core data.

2.3 Do the computation on the data in ICLA.
2.4 Write data from ICLA back to disk.

Figure 6: Compiling for out-of-core and in-core communication

dividual slab (comm data). Each shade represents a
di�erent slab. Consider the last two slabs. The last
slab needs data from three other processors whereas
the slab before it needs data from two other proces-
sors. Thus, the communication patterns for the slabs
within the same local array are di�erent.

Since the comm data is stored in the ICLA, this method
does not require disk accesses to store the comm data.
After the necessary comm data is fetched, the com-
putation on each slab is done. Since the communica-
tion pattern for each slab may be di�erent, the com-
piler needs to analyze each slab separately and insert
appropriate communication calls to get the necessary
data. Optimizing such communication patterns can be
di�cult. It requires extensive pre-processing and the
translated code looks unreadable.

3.3 Compiling Out-of-core Array Assignment Statements

Array assignments involving distributed arrays often result
in di�erent communication patterns [9, 13]. The compiler
must recognize the type of communication in order to gen-
erate appropriate runtime calls (communication as well as
I/O). It is relatively easier to detect and optimize the com-
munication in the out-of-core communication method than
in the in-core communication method. Also, since commu-
nication is performed with respect to the entire out-of-core
array and for each assignment statement there is a single
call to a communication routine, the overall communication
overhead is independent of the number of slabs and the size
of the ICLA. Hence, we prefer to use the out-of-core com-
munication method.

Detecting the type of communication required in an ar-
ray assignment statement involves analyzing the relation-
ships among the subscripts of the arrays in the statement [6,
16, 13]. I/O pattern detection involves analyzing I/O char-
acteristics of array expressions. There are many factors that
inuence the I/O access patterns. Important among these
are :-

� How the array is distributed among the processors.

� What is the communication pattern in the array ex-
pression.

� How the array is stored in the local array �le (eg. col-
umn major/row major).

� How the �le system stores the local array �le (number
of disks, data striping etc).

� How many processors read the �les.

After detecting the type of communication and I/O, the
compiler performs basic code optimizations. These opti-
mizations rearrange the code so that the overhead of com-
munication and I/O can be reduced. The compiler then

inserts calls to appropriate runtime routines depending on
the I/O access pattern and communication.

4 Runtime Support

As discussed earlier, each processor has an out-of-core local
array (OCLA) stored in a local array �le (LAF) and there
is an in-core local array (ICLA) which is used to store the
portion of the OCLA currently being used for computation.
During program execution, it is necessary to fetch data from
the LAF into the ICLA and store the newly computed val-
ues from the ICLA back into appropriate locations in the
LAF. Since the global array is distributed, a processor may
need data from the local array of another processor. This
requires data to be communicated between processors. Thus
the node program needs to perform I/O as well as commu-
nication, both of which are not explicit in the source HPF
program.

The compiler does basic code transformations such as
partitioning of data and computation, and inserts calls to
runtime library routines for disk accesses and communica-
tion. The runtime support system for the compiler consists
of a set of high level specialized routines for parallel I/O and
collective communication. These routines are built using the
native communication and I/O primitives of the system and
provide a high level abstraction which avoids the inconve-
nience of working directly with the lower layers. For exam-
ple, the routines hide details such as bu�ering, mapping of
�les on disks, location of data in �les, synchronization, opti-
mum message size for communication, best communication
algorithms, communication scheduling, I/O scheduling etc.

Runtime support has been used previously as an aide
to the compiler. Runtime primitives for the initial read-
ing of data from a �le for an in-core program are discussed
in [5]. The in-core HPF compiler developed by our group
at Syracuse University uses runtime support [7, 1]. Pon-
nusamy et al [18] describe how runtime support can be inte-
grated with a compiler to solve unstructured problems with
irregular communication patterns. These projects only deal
with compilation of in-core programs, so the runtime sup-
port is mainly limited to communication libraries. The run-
time support for our out-of-core compiler is di�erent in the
sense that in addition to having routines which perform only
I/O, even the communication routines need to do I/O.

4.1 Issues in Runtime Support

Consider the HPF program fragment given in Figure 2. This
has the array assignment statement

A(i,j) = (B(i,j{1) + B(i,j+1) + B(i+1,j) + B(i{1,j))/4

Suppose the arrays A and B are distributed as (block,block)
on a 4 � 4 grid of processors as shown in Figure 7. As an

386

P0 P1 P2 P3

P4 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

Array distributed on Out-of-core Local In core Local

P5

16 processors Array on P5 Array on P5

Local Array File

 on P5

Overlap Area

Overlap Area

Actual Data

(A)

(D)

(B) (C)

Figure 7: Example of OCLA, ICLA and LAF

example, consider the out-of-core local array on processor
P5, shown in Figure 7(B). The value of each element (i; j)
of A is calculated using the values of its corresponding four
neighbors in B, namely (i � 1; j), (i + 1; j), (i; j � 1) and
(i; j+1). Thus to calculate the values at the four boundaries
of the local array, P5 needs the last row of the local array of
P1, the last column of the local array of P4, the �rst row of
the local array of P9 and the �rst column of of the local array
of P6. Before each iteration of the program, P5 gets these
rows and columns from its neighboring processors. If the
local array was in-core, these rows and columns would have
been placed in the overlap areas shown in the Figure 7(B).
This is done so as to obtain better performance by retaining
the DO loop even at the boundary. Since the local array
is out-of-core, these overlap areas are provided in the local
array �le. The local array �le basically consists of the local
array stored in either row-major or column major order.
In either case, the local array �le will consist of the local
array elements interspersed with overlap area as shown in
Figure 7(D). Data from the �le is read into the in-core local
array and new values are computed. The in-core local array
also needs overlap area for the same reason as for the out-of-
core local array. The example shown in the �gure assumes
that the local array is stored in the �le in column major
order. Hence, for local computation, columns have to be
fetched from disks and then written back to disks.

At the end of each iteration, processors need to exchange
boundary data with neighboring processors. In the in-core
case, this would be done using a shift type collective commu-
nication routine to directly communicate data from the local
memory of the processors. In the out-of-core case, there are
two options:-

� Direct File Access: Since disks are a shared resource,
any processor can access any disk. In the direct �le
access method, a processor directly reads data from
the local array �le of some other processor as required
by the communication pattern. This requires explicit
synchronization at the end of each iteration.

� Explicit Communication: Each processor accesses
only its own local array �le. Data is read into mem-

P3P2

P0 P1

Processors

DisksDisks

Simultaneous Accesses
To Disk

Figure 8: Direct File Access Method

ory and sent to other processors. Similarly, data is
received from other processors into main memory and
then saved on disk. This is similar to what would be
done in in-core compilation methods.

Consider a situation in which each processor needs to
communicate with every other processor (all-to-all commu-
nication). In the direct �le access method, this will result in
several processors trying to simultaneously access the same
disk as shown in Figure 8, resulting in contention for the
disk. A minimum of one block of data, the size of which
is system dependent, is transferred during each disk access.
Even if a processor actually needs a small amount of data,
one whole block will be transferred for each access from
every processor. So the direct �le access method has the
drawback of greater disk contention and higher granularity
of data transfer. Also, in some communication patterns (eg.
broadcast), the same piece of data may be fetched repeat-
edly by several processors. In the explicit communication
method, each processor accesses only its own local �le and
reads the data to be sent to other processors into its local

387

Dimension
1 2 3 4 5 6 7

Incore lb
Incore ub
Incore lbo
Incore ubo
Global sz

OCLA size
Procs

OOC storage x y
Distribution

Block sz

Figure 9: Out-of-Core Array Descriptor (OCAD)

memory. This data is communicated to other processors.
Thus, there is no contention for a disk and since the data to
be sent to all other processors has to be read from disk, the
high granularity of data access from disk is less of a problem.
In addition, the time to communicate data between proces-
sors is at least an order of magnitude less than the time to
fetch data from disk. However, this requires a communica-
tion phase in addition to I/O. The relative performance of
these two methods on the Touchstone Delta is discussed in
Section 5.

4.2 Out-of-Core Array Descriptor (OCAD)

The runtime routines require information about the array
such as its size, distribution among the nodes of the dis-
tributed memory machine, storage pattern etc. All this in-
formation is stored in a data structure called the Out-of-
Core Array Descriptor (OCAD) and passed as a parameter
to the runtime routines. Before any of the runtime routines
are called, the compiler makes a call to a subroutine which
�lls in the OCAD on the basis of some parameters. The
structure of the OCAD is given in Figure 9. Rows 1 and
2 contain the lower and upper bounds of the in-core local
array (excluding overlap area) in each dimension. The lower
and upper bounds of the in-core local array in each dimen-
sion including overlap area are stored in rows 3 and 4. The
size of the global array in each dimension is given in row 5.
Row 6 contains the size of the out-of-core local array. Row
7 speci�es the number of processors assigned to each dimen-
sion of the global array. The format in which the out-of-core
local array is stored in the local array �le is given in Row 8.
The array is stored in the order in which array elements are
accessed in the program, so as to reduce the I/O cost. The
entry for the dimension which is stored �rst is set to 1, the
entry for the dimension which is stored second is set to 2
and so on. For example, for a two-dimensional array, x,y =
1,2 means that the array is stored on disk in column major
order and x,y = 2,1 means that the array is stored in row
major order. This enables the runtime system to determine
the location of any array element (i,j) on the disk. Row
9 contains information about the distribution of the global
array. Since the array can be distributed as BLOCK(m) or
CYCLIC(m), where m is the block-size, the value of m is
stored in Row 10 of the OCAD.

4.3 Runtime Library

We are developing a library of runtime routines using which
we can compile any general out-of-core HPF program. The

routines are divided into two categories | Array Manage-
ment Routines and Communication Routines. The Array
Management Routines handle the movement of data be-
tween the in-core local array and the local array �le. The
Communication Routines perform collective communication
of data in the out-of-core local array. Some of the basic rou-
tines are described below.

4.3.1 Array Management Routines

1. read vec(�le, A, OCAD, i, j, start vec, end vec,
stride)
This routine reads vectors from the local array �le to
the in-core local array A. The vectors are assumed
to be rows if the array is distributed along rows and
columns if the array is distributed along columns. The
vectors are read starting from number 'start vec' in
the out-of-core local array till vector number 'end vec',
with the speci�ed stride. The vectors are placed in the
in-core local array starting from the location (i,j).

2. write vec(�le, A, OCAD, i, j, start vec, end vec,
stride)
This routine writes vectors starting from location (i,j)
in the in-core local array A to the local array �le.
The location in the �le is speci�ed by 'start vec' and
'end vec', which are the starting and ending vector
numbers in the out-of-core local array, together with a
stride.

3. write vec with reuse(�le, A, OCAD, i, j, start vec,
end vec, stride, left shift, right shift)
This routine writes vectors from the in-core local ar-
ray to the local array �le as in write vec. In addition it
reuses data from the current ICLA slab for the com-
putation involving the next ICLA slab. This is done
by moving some vectors from the end of the in-core
local array to the front of the in-core local array, in
addition to writing all the vectors to the �le. This
can be explained with the help of Figure 10 and the
Laplace equation solver discussed earlier.

Suppose the array is distributed along columns. Then
the computation of each column requires one column
from the left and one column from the right. The com-
putation of the last column requires one column from
the overlap area and the computation of the column
in the overlap area cannot be performed without read-
ing the next column from the disk. Hence, instead of
writing the column in the overlap area back to disk
and reading it again with the next set of columns, it
can be reused by moving it to the �rst column of the
array and the last column can be moved to the over-
lap area before the �rst column. If this move is not
done, it would be required to read the two columns
again from the disk along with data for the next slab.
The reuse thus eliminates the reading and writing of
two columns in this example. The number of columns
to be moved is speci�ed by 'left shift' and 'right shift'.
'left shift' refers to the number of columns from the
left that are needed for the computation of any column
and 'right shift' refers to the number of columns from
the right. In general, the amount of data reuse would
depend on the intersection of the sets of data needed
for computations involving two consecutive slabs.

388

Overlap Areas

ICLA

Move columns

Figure 10: Data Reuse

4.3.2 Communication Routines

1. out of core shift(�le, OCAD, nvec, direction)
This is a collective communication routine which does
a shift type communication for out-of-core local arrays.
It shifts a speci�ed number of vectors to the processor
in the speci�ed direction. For example, if the array
is distributed along columns and n vectors have to be
shifted to the right, each processor (except the last)
reads the last n columns in its local array from the
local array �le and sends them to the processor on
the right. Each processor (except the �rst) receives
n columns from the processor on the left and places
them in the overlap area at the beginning of the local
array �le. Data in the local array �le is not moved.

2. out of core multicast(�le, OCAD, i, j, nelements,
vec, source, proclist)
This routine does an out-of-core multicast operation.
\source" speci�es the source processor and \proclist"
is the list of destination processors. A broadcast oper-
ation in which data has to be sent to all other proces-
sors can be speci�ed by setting proclist(1) to {1. The
source processor reads \nelements" from its local array
�le starting from the element at location (i; j) in the
out-of-core local array. These elements are broadcast
(or multicast) to the processors speci�ed by proclist.
At the destination, the data is stored in the in-core
vector \vec".

We have described only a subset of the runtime library in
this paper because of space limitations.

5 Examples: Laplace Equation Solver and LU Decompo-
sition

We illustrate the working of the compiler using two out-of-
core applications | the �rst is a Laplace equation solver
by Jacobi iteration method and the second is LU decompo-
sition. The Laplace solver program is discussed previously
in Sections 3 and 4 (see Figure 2). For simplicity, we con-
sider the case in which the arrays are distributed only in
one dimension, along columns. The translated Fortran 77
code using the Explicit Communication Method is given in
Figure 11. In the Jacobi iteration method, the new values
in each iteration are computed using the values from the
previous iteration. This requires the newly computed array
to be copied into the old array for the next iteration. In the
out-of-core case, this would require copying the local array

do k=1 to no of iterations

call oc shift(unit1,OCAD,1,right) !right shift
call oc shift(unit1,OCAD,1,left) !left shift
do l=1, no of slabs

call read vec(unit1, B, OCAD, i, j, start vec,

end vec, stride)
do j=j1, j2

do i=i1, i2
A(i,j) = (B(i,j{1) + B(i,j+1) +

B(i+1,j) + B(i{1,j))/4
end do

end do
call write vec(unit2, A, OCAD, i, j, start vec,

end vec, stride)
end do

C exchange �le unit numbers instead of explicitly
C copying �les (optimization)

unit1 $ unit2
end do

Figure 11: Translated code for the Laplace Equation Solver

parameter(n=1024, m=16)

real A(n,n), mult(n), maxNum, row(n)
!HPF$ PROCESSORS P(m)

!HPF$ TEMPLATE D(n)
!HPF$ DISTRIBUTE D(CYCLIC) ONTO P

!HPF$ ALIGN (*,:) with D :: A

!HPF$ OUT OF CORE :: A
!HPF$ MEMORY(4096)

do k=1, n
maxNum = A(k,k)

mult(k+1:n) = A(k+1:n,k)/maxNum
A(k+1:n,k) = mult(k+1:n)

forall �(i=k+1:n, j=k+1:n)
a(i,j) = a(i,j) - mult(i) � a(k,j)

end do

Figure 12: LU Decomposition without pivoting

�le. We do an optimization in which instead of explicitly
copying the �le, the �le unit numbers are exchanged after
each iteration. This is equivalent to dynamically changing
the virtual addresses associated with arrays. Hence the pro-
gram uses the correct �le in the next iteration.

The performance of the Laplace equation solver on the
Intel Touchstone Delta is given in Table 1. We compare the
performance of the three methods | direct �le access, ex-
plicit communication and explicit communication with data
reuse. The array is distributed in one dimension along columns.
We observe that the direct �le access method performs the
worst because of contention for disks. The best performance
is obtained for the explicit communication method with data
reuse as it reduces the amount of I/O by reusing data al-
ready fetched into memory. If the array is distributed in
both dimensions, the performance of the direct �le access
method is expected to be worse because in this case each
processor, except at the boundary, has four neighbors. So,
there will be four processors contending for a disk when they
try to read the boundary values.

We also consider an out-of-core LU decomposition pro-

389

Table 1: Performance of Laplace Equation Solver (time in sec. for 10 iterations)

Array Size: 2K � 2K Array Size: 4K � 4K
32 Procs 64 Procs 32 Procs 64 Procs

Direct File Access 73.45 79.12 265.2 280.8
Explicit Communication 68.84 75.12 259.2 274.7
Explicit Communication 62.11 71.71 253.1 269.1

with data reuse

Table 2: Performance of LU Decomposition (1K�1K array)

Processors 16 32 64
Time (sec.) 1256.5 1113.9 1054.5

gram without pivoting. The HPF code for this is given in
Figure 12 and the pseudo-code for the translated program is
given in Figure 13. The array is distributed cyclically along
columns for load balancing purposes. In the translated pro-
gram, for each column, every processor has to reduce some
of the rows in its out-of-core local array. This requires the
local array to be fetched from the disk. Hence, it is necessary
to perform I/O as many times as the number of columns.
The performance of the translated code on the Touchstone
Delta for an array of size 1K�1K is given in Table 2. Since
the problem size is small, the I/O costs dominate. We were
not able to study the performance for larger arrays because
of system constraints.

6 Conclusions

We have described the design of a compiler and associated
runtime support to translate out-of-core programs written
in a data-parallel language like HPF into node programs for
distributed memory machines with explicit communication
and parallel I/O. Such a compiler is necessary for compiling
large scienti�c applications written in a data parallel lan-
guage. These applications typically handle large quantities
of data which results in the program being out-of-core.

We have discussed the basic model of out-of-core compi-
lation and the various transformations which the compiler
makes. We have also described the runtime support used
by the compiler for communication and I/O. The work-
ing of the compiler was illustrated using two applications,
namely a Laplace Equation solver and LU decomposition.
For fetching o�-processor data, the Explicit Communica-
tion method is found to perform better than the Direct File
Access method as it reduces contention for disks. An im-
provement in performance is also obtained by reusing data
already fetched in memory, which reduces the amount of
I/O.

All the runtime routines described in this paper have
already been implemented. A subset of the compiler has
been implemented and a full implementation is in progress.
We believe that this paper provides an important �rst step
in techniques for automatically translating out-of-core data
parallel programs.

do k=1, n

if (column k lies in mynode) then
C get the slab containing column k from LAF

call read vec(unit, A, OCAD, i1, j1, start col,
end col, stride)

do i=k+1, n
A(i,pivot col) = A(i,pivot col)/A(k,pivot col)

mult(i) = A(i,pivot col)
end do

Broadcast the multipliers to other processors

do j=pivot col+1, end incore col
do i=k+1, n

A(i,j) = A(i,j) { A(k,j)�A(i,pivot col)
end do

end do
call write vec(unit, A, OCAD, i2, j2, start col,

end col, stride)
C get remaining slabs from LAF and reduce the rows

do slab=slab no+1, no of slabs
call read vec(unit, A, OCAD, i3, j3, start col,

end col, stride)
do j=1, end incore col

do i=k+1, n
A(i,j) = A(i,j) { A(k,j)�mult(i)

end do
end do

call write vec(unit, A, OCAD, i3, j3, start col,
end col, stride)

end do
else

Read the column of multipliers broadcast by the
owner of column k

C fetch the columns after k from LAF and reduce
C appropriate rows

do slab=slab no+1, no of slabs
call read vec(unit, A, OCAD, i4, j4, start col,

end col, stride)
do j=1, end incore col

do i=k+1, n
A(i,j) = A(i,j) { A(k,j)�mult(i)

end do
end do

call write vec(unit, A, OCAD, i4, j4, start col,
end col, stride)

end do
end if

end do

Figure 13: Translated code for LU Decomposition

390

Acknowledgments

We would like to thank Geo�rey Fox, Ken Kennedy, Chuck
Koelbel, Ravi Ponnusamy and Joel Saltz for many enlighten-
ing discussions. We also thank our compiler group at Syra-
cuse University for their help with the basic infrastructure of
the HPF compiler. This work was sponsored in part by NSF
Young Investigator Award CCR-9357840 with a matching
grant from Intel SSD, and also by ARPA under contract no.
DABT63-91-C-0028. The content of the information does
not necessarily reect the position or policy of the Govern-
ment and no o�cial endorsement should be inferred. This
research was performed in part using the Intel Touchstone
Delta System operated by Caltech on behalf of the Con-
current Supercomputing Consortium. Access to this facility
was provided by CRPC.

References

[1] Ahmad, I., Bordawekar, R., Bozkus, Z., Choud-
hary, A., Fox, G., Parasuram, K., Ponnusamy,

R., Ranka, S., and Thakur, R. Fortran 90D Intrin-
sic Functions on Distributed Memory Machines: Im-
plementation and Scalability. In Proceedings of 26th

Hawaii International Conference on System Sciences
(January 1993).

[2] Bodin, F., Beckman, P., Gannon, D., Narayana,
S., and Yang, S. Distributed pC++: Basic Ideas
for an Object Parallel Language. In Proceedings of
the First Annual Object-Oriented Numerics Conference
(April 1993), pp. 1{24.

[3] Bordawekar, R., and Choudhary, A. Language
and Compiler Support for Parallel I/O. In IFIP
Working Conference on Programming Environments
for Massively Parallel Distributed Systems (Apr. 1994).

[4] Bordawekar, R., Choudhary, A., and del

Rosario, J. An Experimental Performance Evalua-
tion of Touchstone Delta Concurrent File System. In
Proceedings of International Conference on Supercom-
puting, Tokyo, Japan (July 1993).

[5] Bordawekar, R., del Rosario, J., and Choud-

hary, A. Design and Evaluation of Primitives for
Parallel I/O. In Proceedings of Supercomputing '93
(November 1993), pp. 452{461.

[6] Bozkus, Z., Choudhary, A., Fox, G., Haupt, T.,
and Ranka, S. Fortran 90D/HPF Compiler for Dis-
tributed Memory MIMD Computers: Design, Imple-
mentation, and Performance Results. In Proceedings of
Supercomputing '93 (November 1993), pp. 351{360.

[7] Bozkus, Z., Choudhary, A., Fox, G., Haupt, T.,
Ranka, S., Thakur, R., and Wang, J. Scalable Li-
braries for High Performance Fortran. In Proceedings of
Scalable Parallel Libraries Conference (October 1993),
Mississippi State University.

[8] Brezany, P., Gerndt, M., Mehrotra, P., and
Zima, H. Concurrent File Operations in a High Perfor-
mance Fortran. In Proceedings of Supercomputing '92
(November 1992), pp. 230{238.

[9] Chen, M., and Cowie, J. Prototyping Fortran-90
Compilers for Massively Parallel Machines. In Proceed-
ings of the Conference on Programming Language De-
sign and Implementation (1992), pp. 94{105.

[10] Corbett, P., Feitelson, D., Prost, J., and Bay-
lor, S. Parallel Access to Files in the Vesta File Sys-
tem. In Proceedings of Supercomputing '93 (November
1993), pp. 472{481.

[11] DeBenedictis, E., and del Rosario, J. nCUBE

Parallel I/O Software. In Proceedings of 11th Interna-
tional Phoenix Conference on Computers and Commu-
nications (April 1992), pp. 117{124.

[12] del Rosario, J., and Choudhary, A. High Per-
formance I/O for Parallel Computers: Problems and
Prospects. IEEE Computer (March 1994), 59{68.

[13] Gupta, M. Automatic Data Partitioning on Dis-
tributed Memory Multicomputers. PhD thesis, Dept.
of Computer Science, University of Illinois at Urbana-
Champaign, September 1992.

[14] High Performance Computing and Communica-
tions: Grand Challenges 1993 Report. A Re-
port by the Committee on Physical, Mathematical and
Engineering Sciences, Federal Coordinating Council for
Science, Engineering and Technology.

[15] High Performance Fortran Forum. High Perfor-
mance Fortran Language Speci�cation. Version 1.0,
May 1993.

[16] J. Li and M. Chen. Compiling Communication-
E�cient Programs for Massively Parallel Machines.
IEEE Transactions on Parallel and Distributed Systems
(July 1991), 361{376.

[17] Pierce, P. A Concurrent File System for a Highly

Parallel Mass Storage Subsystem. In Proceedings of 4th

Conference on Hypercubes, Concurrent Computers and
Applications (March 1989), pp. 155{160.

[18] Ponnusamy, R., Saltz, J., and Choudhary, A.

Runtime-Compilation Techniques for Data Partitioning
and Communication Schedule Reuse. In Proceedings of
Supercomputing '93 (November 1993), pp. 361{370.

[19] Saini, S., and Simon, H. Enhancing Applications Per-
formance on Intel Paragon through Dynamic Memory
Allocation. In Proceedings of the Scalable Parallel Li-
braries Conference, Mississippi State University (Octo-
ber 1993).

[20] Snir, M. Proposal for IO. Posted to HPFF I/O Forum
by Marc Snir, July 1992.

[21] Su, E., Palermo, D., and Banerjee, P. Auto-
matic Parallelization of Regular Computations For Dis-
tributed Memory Multicomputers in the PARADIGM
Compiler. In Proceedings of International Conference
on Parallel Processing (August 1993), pp. II{30|II{38.

[22] Tseng, C. An Optimizing Fortran D Compiler for
MIMD Distributed Memory Machines. PhD thesis,
Dept. of Computer Science, Rice University, January
1993.

[23] Wolfe, M. Optimizing Supercompilers for Supercom-
puters. The MIT Press, Cambridge, MA, 1989.

[24] Zima, H., and Chapman, B. Supercompilers for Par-
allel and Vector Computers. ACM Press, New York,
NY, 1991.

391

