
SHPCC 94

Runtime Array Redistribution in HPF Programs

Rajeev Thakur� Alok Choudhary� Geo�rey Fox y

Northeast Parallel Architectures Center

111 College Place, Rm 3-228

Syracuse University, Syracuse NY 13244

thakur, choudhar, gcf @npac.syr.edu

Abstract

This paper describes e�cient algorithms for run-
time array redistribution in HPF programs. We con-
sider block(m) to cyclic, cyclic to block(m) and the
general cyclic(x) to cyclic(y) type redistributions. We
initially describe algorithms for one-dimensional ar-
rays and then extend the methodology to multidimen-
sional arrays. The algorithms are practical enough
to be easily implemented in the runtime library of an
HPF compiler and can also be directly used in appli-
cation programs requiring redistribution. Performance
results on the Intel Paragon are discussed.

1 Introduction
High Performance Fortran (HPF) is a language de-

signed to support portable high performance program-
ming on a wide variety of machines, including mas-
sively parallel SIMD and MIMD systems and vector
processors [4]. It supports the data parallel program-
ming model and uses Fortran 90 as the base language.
HPF extends Fortran 90 in several areas by provid-
ing data distribution features, data parallel execution
features, extended intrinsic functions and standard li-
brary, and EXTRINSIC procedures. At Syracuse Uni-
versity, we are developing an HPF compiler which
translates HPF to Fortran 77 plus message passing
node programs for distributed memory computers [1].

HPF provides directives (ALIGN and DIS-
TRIBUTE) which specify how arrays should be par-
titioned among the processors of a distributed mem-
ory computer. Arrays are �rst aligned to a template
or index space. The DISTRIBUTE directive speci-
�es how the template is to be distributed among the
processors. In HPF, an array (or template) can be
distributed as block(m) or cyclic(m) [4]. Though the
distribution of an array is speci�ed at compile time,
there are a number of reasons for which it may be nec-
essary to redistribute an array during the execution of

�Also with the Dept. of Electrical and Computer Eng., Syra-

cuse University
yAlso with the Dept. of Computer and Information Science,

Syracuse University

the program.

� HPF has directives REDISTRIBUTE and RE-
ALIGN which require arrays to be remapped.

� It is not practical to write intrinsic and runtime
libraries for all possible distributions. Libraries
can be written for a few common distributions
and for any other distribution it is necessary to
redistribute before calling the subroutine. This
approach also eliminates the need for complex
inter-procedural analysis. After returning from
the subroutine it is necessary to redistribute back
to the original distribution.

� In many applications such as 2D FFT and the
ADI method for solving multidimensional PDEs,
dynamic redistribution can result in signi�cant
performance improvement [2].

Array redistribution is an expensive operation as it
involves data communication as well as computation
of destination processors and addresses. It is necessary
to do redistribution e�ciently, otherwise the overhead
of redistribution itself will o�set the bene�t of using
a di�erent distribution. In this paper, we present al-
gorithms for redistributing arrays e�ciently. We con-
sider block(m) to cyclic, cyclic to block(m) and the
general cyclic(x) to cyclic(y) type redistributions. We
consider the redistribution of one-dimensional arrays
in Sections 3, 4 and 5 and then extend the method-
ology to multidimensional arrays in Section 6. We
have concentrated on making the algorithms practi-
cal enough to be easily implemented in the runtime
library of an HPF compiler. They can also be directly
used in application programs requiring redistribution.
The algorithms make good use of cache and optimize
communication. We do not make any special assump-
tions about the machine architecture or the message
passing paradigm provided on the machine.

2 Notations and De�nitions
The notations used in this paper are given in Fig-

ure 1. We assume that all arrays are indexed starting



N global array size
P number of processors
pi logical processor i
p logical number of the processor

executing the program
ps source processor
pd destination processor
L local array size
m block size

Figure 1: Notations used in this paper

from 1, while processors are numbered starting from
0 and that arrays are identically aligned to the tem-
plate. The algorithms can be easily extended for the
general case. Also, the algorithms do not specify how
to perform data communication because the best com-
munication algorithms are often machine dependent.
These communication algorithms are described in de-
tail in [9, 7]. We do assume that all the data to be sent
from any processor i to processor j has to be collected
in a packet in processor i and sent in one communica-
tion operation, so as to minimize the communication
startup cost. In the rest of this paper, any division
involving integers should be considered as integer di-
vision unless speci�ed otherwise.

The block(m) and cyclic(m) distributions in HPF
are de�ned as follows. Consider an array of size N dis-
tributed over P processors. Let us de�ne the ceiling di-
vision function CD(j; k) = (j+k�1)=k and the ceiling
remainder function CR(j; k) = j�k�CD(j; k). Then
block(m) distribution means that index j of the array
is mapped to logical processor number CD(j;m) � 1.
Note that for a valid block(m) distribution,m�P � N

must be true. Block by de�nition means the same as
block(CD(N;P )). In a cyclic(m) distribution, index
j of the global array is mapped to logical processor
number MOD(CD(j;m)� 1; P ). Cyclic by de�nition
means the same as cyclic(1).

In other words, in a block distribution, contiguous
blocks of the array are distributed among the proces-
sors. In a cyclic distribution, array elements are dis-
tributed among processors in a round-robin fashion.
In a cyclic(m) distribution, blocks of size m are dis-
tributed cyclically. The cyclic(m) distribution with
1 < m < dN=P e is commonly referred to as a block-
cyclic distribution with block size m [5]. Block and
cyclic distributions are special cases of the general
cyclic(m) distribution. A cyclic(m) distribution with
m = dN=P e is a block distribution and a cyclic(m)
distribution with m = 1 is a cyclic distribution. The
formulae for conversion between local and global in-
dices for the di�erent distributions are given in Ta-
ble 1.

3 Block(m) to Cyclic Redistribution
We �rst consider the case of block(m) to cyclic re-

distribution.

Theorem 3.1 Let li1 and li2 be the local array sizes
in processor pi corresponding to block(m) and cyclic
distributions respectively. In a block(m) to cyclic re-
distribution, the number of processors to which pi has
to send data is

P � 1 if li1 � P

li1 or li1 � 1 if li1 < P

The number of processors from which pi has to receive
data is

P � 1 if li2 � P

li2 or li2 � 1 if li2 < P

Proof: Note that if N is not a multiple of P , li1 may
not be equal to li2. If li1 < P , each of the li1 elements
of pi corresponding to a block(m) distribution will lie
in a di�erent processor when the array is distributed
cyclically. At most one of the li1 elements will be
remapped to processor pi itself. Therefore, pi will have
to send data to either li1 or li1 � 1 processors. If
li1 � P , then clearly pi has at least one element to send
to every other processor. The result for the number
of processors from which pi has to receive data can be
proved similarly. 2

The algorithm for block(m) to cyclic redistribution
is given in Figure 2. In the send phase, each proces-
sor only needs to calculate the destination processor
of the �rst element of the local array. The other el-
ements have to be sent to the other processors in a
round-robin fashion. Thus the array is scanned only
once, which makes good use of the cache. In the re-
ceive phase, the data received from other processors
has to be stored in contiguous memory locations in
order of logical processor number. In every processor,
the packet received from processor 0 is stored �rst;
from processor 1 second and so on. Hence addresses
do not need to be calculated. If the amount of data to
be received from all processors is known, the packets
can be directly received into appropriate locations in
the array.

In a block(m) distribution, the last element N

of the global array is mapped to processor pN =
(N�1)=m. If pN < P�1, no elements of the array are
mapped to processors pN+1; pN+2; :::; P�1. The in-
dex of the last element of the local array in processors
p < pN is last index = m. The index of the last ele-
ment in pN is last index = MOD(N �1;m)+1. The
index of the �rst element of ps � pN that is mapped
to p in a cyclic distribution is given by

first index = MOD[p �MODfpsMOD(m;P ); Pg + P;P ] + 1

If m is divisible by P , the �rst element of ps that is
mapped to p is p+1. However, if m is not divisible by



Table 1: Data Distribution and Index Conversion

Note: This assumes that arrays are indexed starting from 1 and processors are numbered starting from 0

CD(j; k) = (j + k � 1)=k and CR(j; k) = j � k �CD(j; k)

BLOCK(m) CYCLIC CYCLIC(m)
global index (g) to p = CD(g;m) � 1 p = MOD(g � 1; P ) p = MOD(CD(g;m) � 1; P )

processor number (p)
global index (g) l = m + CR(g;m) l = (g � 1)=P + 1 l = MOD(g � 1;m) + 1+
to local index (l) (g=(mP ))m
local index (l) to g = l +mp g = (l � 1)P + p+ 1 g = MOD(l � 1;m) + 1+
global index (g) (P ((l � 1)=m) + p)m

P , a shift is introduced in this simple mapping which
is taken into account by the MOD expression in the
above equation. Hence, the number of elements to be
sent from any processor ps to p is

0; if (last index < �rst index)

or (ps > pN )

(last index � �rst index)=P + 1; otherwise

where first index, last index and pN are calculated
as above.

4 Cyclic to Block(m) Redistribution
A cyclic to block(m) redistribution is essentially the

reverse of a block(m) to cyclic redistribution. The
algorithm for cyclic to block(m) redistribution is given
in Figure 4. In a cyclic distribution, the size of the
local array in processor p is

L =

�
dN=P e if MOD(N; P ) = 0; or p < MOD(N; P )

dN=P e � 1 otherwise

In the send phase, each processor p calculates the
destination processor pd and the destination local ad-
dress ld of the �rst element of its local array as
pd = CD(p + 1;m) � 1 and ld = m + CR(p + 1;m).
The �rst (m � ld)=P + 1 elements from ps have to
be sent to pd. The next set of elements starting
from i = (m � ld)=P + 2 have to be sent to pro-
cessor pd1 = CD((i � 1)P + p + 1;m) � 1. The
destination local address of element i is given by
ld1 = m+CR((i�1)P+p+1;m) and so (m�ld1)=P+1
elements starting from i have to be sent to processor
pd1. This process is continued for the remaining ele-
ments of the array. Since all the elements to be sent to
a particular processor are located in contiguous mem-
ory locations, there is no need to create packets.

In the receive phase, the packets received cannot be
directly stored in the array as the data has to be stored
with a stride equal to the number of processors. Hence
the packets have to be stored in a temporary bu�er in
memory. This gives us two choices in implementing
the receive phase :{

1. Synchronous Method: Each processor waits
till it receives packets from all other processors,
before placing any data in the local array. This
increases the memory requirements of the algo-
rithm and also increases the processor idle time.
These problems worsen as the number of proces-
sors is increased, so this method is not scalable.

2. Asynchronous Method: The processors do not
wait for data from all processors to arrive. In-
stead, each processor takes any packet which has
arrived and places the data from that packet into
appropriate locations in the local array. This
method overlaps computation and commu-
nication. Each processor posts non-blocking re-
ceive calls and waits for any packet to arrive. As
soon as a packet is received, it places the data in
appropriate locations in the local array. During
this time, other packets may reach the processor.
When the processor has placed all the data from
the earlier packet into the local array, it takes up
the next packet and so on. This reduces processor
idle time. Since all packets do not have to be in
memory at the same time, it also reduces memory
requirements. This method is scalable as neither
processor idle time nor memory requirements in-
crease as the number of processors is increased.

The array locations where incoming data has to be
stored can be calculated as follows. The source proces-
sor (ps) of the �rst element of the local array is given
by ps = MOD(mp;P ). The next (P � 1) elements
will be received from the remaining processors in or-
der of processor number. This cycle is repeated for all
elements of the local array. If all packets are present in
memory (Synchronous Method), the local array needs
to be scanned only once to be �lled. If the packets
are processed one at a time (Asynchronous Method),
the array elements are �lled with stride P and the
array has to be scanned P times. So, clearly the Syn-
chronous Method makes better use of the cache than
the Asynchronous Method. Figure 3 compares the



Send Phase

1. Create packets to send to other processors.

2. Calculate the destination processor (pd) of the

�rst element of the local array as

pd = MOD(pm; P ).

3. Put the �rst element into the packet for

processor pd .

4. For i = 2 to L do

5. Put element i into the packet for

processor MOD(pd + i; P ).

6. Exchange packets with other processors.

Receive Phase

1. Last processor with data is pN = (N � 1)=m

2. For ps = 0 to pN do

3. If (ps = pN ) then

4. last index = MOD(N � 1;m) + 1

5. Else

6. last index = m

7. The index of the �rst element of ps mapped to p is

first index = MOD[p �MODfpsMOD(m;P ); Pg + P;P ] + 1

8. Number of elements to be received from ps is

0, if (last index < first index)

(last index� first index)=P + 1, otherwise

9. No data is to be received from processors pN + 1; pN + 2; :::; P � 1.

10 Read the incoming data directly into appropriate locations in the array.

Figure 2: Algorithm for Block(m) to Cyclic Redistribution

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

5 10 15 20 25 30

T
i
m
e
 
(
s
)

Processors

Synchronous Method
Asynchronous Method

Figure 3: Cyclic to Block(m) Redistribution

performance of the Synchronous and Asynchronous
Methods on the Intel Paragon for a global array with
1M (220) elements and the number of processors varied
between 2 and 32. We observe that the Asynchronous
Method performs much better than the Synchronous
Method as it overlaps computation and communica-
tion and thus reduces processor idle time. This dif-
ference is larger for a small number of processors be-
cause in this case, the amount of data communicated
per processor is larger.

5 Cyclic(x) to Cyclic(y) Redistribution
For a general cyclic(x) to cyclic(y) redistribution,

there is no direct algebraic formula to calculate the set
of elements to send to a destination processor and the
local addresses of these elements at the destination [6].
Gupta et al [6] propose a virtual processor approach
in which a block-cyclic distribution is considered to be
either a virtual block or a virtual cyclic distribution
using many virtual processors per physical processor.

There has also been some research on a slightly dif-
ferent problem of determining the local addresses and

communication sets for array assignment statements
like A(l1 : h1 : s1) = B(l2 : h2 : s2) where A and B

have di�erent cyclic(m) distributions. Chatterjee et
al [3] present an approach to calculate the sequence of
local memory addresses that a given processor must
access and the corresponding communication sets, us-
ing a �nite state machine model which requires solv-
ing linear Diophantine equations. Stichnoth [8] de�nes
a cyclic(m) distribution as a disjoint union of slices,
where a slice is a sequence of array indices speci�ed
by a lower bound, upper bound and stride (l : h : s).
The processor and index sets are calculated in terms
of unions and intersections of slices which also involves
solving linear Diophantine equations.

We propose a simpler and faster method for the
cyclic(x) to cyclic(y) redistribution, which can be eas-
ily implemented and does not involve the overhead of
solving linear Diophantine equations. We propose spe-
cial methods for the cases where x is a multiple of y
or y is a multiple of x. We use a general method when
there is no particular relation between x and y.

5.1 Special case x = k y

We �rst consider the special case where x is a mul-
tiple of y. Let x = k y.

Theorem 5.1 In a cyclic(x) to cyclic(y) redistribu-
tion where x = k y, if k < P , each processor commu-
nicates with k or k � 1 processors. If k � P , each
processor communicates with all other processors.

Proof: Assume k < P . Since x = k y, each block
of size x is divided into k sub-blocks of size y and
distributed cyclically. Consider any processor pi. As-
sume that it has to send its �rst sub-block of size y
to processor pj. Then the remaining k � 1 sub-blocks
of the �rst block are sent to the next k� 1 processors
in order. The next k(P � 1) sub-blocks of the global
array are located in the other P � 1 processors. This
results in a total of kP sub-blocks. Hence the (k+1)th

sub-block of size y in pi is also sent to pj. Thus all



Send Phase

1. i = 1

2. While (i � L) do

3. Calculate the destination processor (pd) and

destination local address (ld) of element i of

the local array as pd = CD((i � 1)P + p+

1;m) � 1 and ld = m + CR((i� 1)P + p + 1;m)

4. Elements i to i+ (m � ld)=P have to be

sent to processor pd .

5 i = i+ (m � ld)=P + 1

6. Send packets to other processors.

Receive Phase

Synchronous Method:

1. Receive all packets.

2. Get the �rst element of the local array from the packet

received from processor ps = MOD(mp; P ).

3. For i = 2 to L do

4. Get element i of the local array from the packet received

from processor ps = MOD(ps + 1; P ).

Asynchronous Method:

1. Source processor of �rst element of the local array is ps = MOD(mp; P ).

2. Source processor of kth element (2 � k � P ) is MOD(ps + k � 1; P ).

3. For i = 0 to P � 1 do

4. Receive a packet from any processor (say pi)

5. Starting from the location calculated above, place elements from

the packet into the array with stride P .

Figure 4: Algorithm for Cyclic to Block(m) Redistribution

sub-blocks from pi are sent to k processors starting
from pj. One of these processors may be pi itself, in
which case pi has to send data to k�1 processors. For
the receive phase, consider the �rst k P sub-blocks of
size y in the global array corresponding to the �rst P
blocks of size x. Let us number these k P sub-blocks
from 0 to k P � 1. Out of these, the sub-blocks that
are mapped to processor pi in the new distribution are
numbered pi to P (k�1)+pi with stride P . These sub-

blocks come from
fP (k�1)+pig�pi

P
+ 1 = k processors.

One of these processors might be pi itself, in which
case pi receives data from k � 1 processors.

If k � P , each block of size x has to be divided
into k sub-blocks and distributed cyclically, where the
number of sub-blocks is greater than or equal to the
number of processors. So clearly each processor has to
send to and receive from all other processors (all-to-all
communication). 2

The algorithm for cyclic(x) to cyclic(y) redistribu-
tion, where x = k y is given in Figure 5. In the
send phase, each processor p calculates the destina-
tion processor pd of the �rst element of its local array
as pd = MOD(k p; P ). The �rst y elements have to be
sent to pd, the next y to MOD(pd+1; P ), the next to
MOD(pd+2; P ) and so on till the end of the �rst block
of size x. The next k sub-blocks of size y have to be
sent to the same set of k processors starting from pd.
The sequence of destination processors can be stored
and need not be calculated for each block of size x.
In the receive phase there are two cases depending on
the value of k :-

1. (k � P ) and (MOD(P; k) = 0) : In this case,
each processor p calculates the source processor
of the �rst block of size y of its local array as
ps = p=k. The next block of size y will come
from processor MOD(ps+P=k; P ), the next from

MOD(ps + 2(P=k); P ) and so on till the �rst k
blocks. The above sequence of processors is re-
peated for the remaining sets of k blocks of size
x and hence can be stored and used. If the Syn-
chronous Method is used for receiving data, the
local array needs to be scanned only once and
the i

th block, 0 � i � dL=ye � 1, of size y of
the local array will be read from the packet re-
ceived from processor MOD(ps + i(P=k); P ). If
the Asynchronous Method is used, the �rst block
from the packet received from some processor pi
will be stored starting at the location calculated
above. The remaining blocks will be stored with
stride x.

2. If k does not satisfy the above condition, it is
necessary to calculate the source processor of the
�rst element (j = i y + 1) of each block of size
y, 0 � i � dL=ye � 1, of the local array as
ps = MOD[(i P + p)=k; P ]. The block is read
from the packet received from ps. The sequence of
processors does not repeat itself and hence cannot
be stored. In this case, the Synchronous Method
is used.

Figure 6 compares the performance of the Syn-
chronous and Asynchronous Methods on the Intel
Paragon for a cyclic(4) to cyclic(2) redistribution of
a global array with 1M elements. As in the case of
cyclic to block(m) redistribution, we observe that the
Asynchronous Method performs better than the Syn-
chronous Method even though in this case each proces-
sor communicates with at most two other processors.

5.2 Special case y = k x

We now consider the special case where y is a mul-
tiple of x. Let y = k x. This is essentially the reverse
of the case where x = k y. The algorithm for cyclic(x)
to cyclic(y) redistribution, where y = k x, is given in



Send Phase

1. Create packets for communication.

2. Calculate the destination processor (pd) of the

�rst element of the local array as

pd = MOD(k p;P ).

3. For each block of size x in the local array do

4. For i = 0 to k � 1 do

5. Put elements (i y + 1) to (i + 1)y

of the current block of size x into the

packet for processor MOD(pd + i; P ).

6. Exchange packets with other processors.

Receive Phase

1. If (k � P ) and (MOD(P; k) = 0) then

2. Calculate the source processor (ps) of the

�rst element of the local array as ps = p=k.

Synchronous Method:

3. Receive packets from all processors.

4. For j = 1 to dL=xe do

5. For i = 0 to k � 1 do

6. Read the next block of size y from the packet

received from processor MOD(ps + i(P=k);P ).

Asynchronous Method:

3. The ith block of size y, 0 � i � k � 1, will be

received from processor MOD(ps + i(P=k);P ).

4. For i = 0 to k � 1 do

5. Receive a packet from any processor pi.

6. Place the �rst block of size y starting from the location

calculated above and the other blocks with stride x.

7. Else

8. Receive packets from all processors.

9. For i = 0 to dL=ye � 1 do

10. Calculate the source processor (ps) of the �rst element (j = i y + 1)

of this block of size y as ps = MOD[(i P + p)=k;P ]

11. Read the block from the packet received from ps.

Figure 5: Algorithm for Cyclic(x) to Cyclic(y) Redistribution, where x = k y

0

0.5

1

1.5

2

2.5

3

5 10 15 20 25 30

T
i
m
e
 
(
s
)

Processors

Synchronous Method
Asynchronous Method

Figure 6: Cyclic(k y) to Cyclic(y) Redistribution

Figure 7. In the send phase, there are two cases de-
pending on the value of k :-

1. (k � P ) and (MOD(P; k) = 0) : In this case, each
processor p calculates the destination processor
of the �rst block of size x of its local array as
pd = p=k. The next block of size x has to be
sent to processor MOD(pd + P=k; P ), the next
to MOD(pd + 2(P=k); P ) and so on till the �rst
k blocks. The above sequence of processors is
repeated for the remaining sets of k blocks of size
x, and hence need not be calculated again.

2. If k does not satisfy the above condition, it is
necessary to individually calculate the destination

processor of each block i of size x, 0 � i � dL=xe�

1, as pd = MOD[(i P + p)=k; P ].

In the receive phase, each processor p calculates the
source processor of the �rst element of its local array
as ps = MOD[k p; P ]. If the Synchronous Method
is used to receive data, for each block of size y of the
local array, the k sub-blocks of size x are read from the
packets received from the k processors starting from
ps in order of processor number. If the Asynchronous
Method is used, we know that the ith block of size x
of the local array, 0 � i � k� 1, will be received from
processor MOD(ps + i; P ). Thus the local index of
the �rst block received from any source processor can
be calculated. The remaining blocks have to be stored
with stride y.

5.3 General Case
In a general cyclic(x) to cyclic(y) redistribution in

which there is no particular relation between x and
y, there is no direct way to determine which indices
have to be sent to which processor and where in the
local array to place incoming data. For this case, the
following general method is proposed. In the send
phase, each processor p scans the local array and cal-
culates the destination processor of each element i as
pd = MOD[fMOD(i � 1; x) + (P ((i� 1)=x) + p)x +
yg=y � 1; P ]. The element is put in a packet for that
processor. In the receive phase, each processor p cal-
culates the source processor ps for each element i in
the local array as ps = MOD[fMOD(i�1; y)+(P ((i�
1)=y)+p)y+xg=x�1; P ]. After the packets from other
processors are received, the processor fetches each el-
ement from the appropriate packet in order.



Send Phase

1. Create packets for communication.

2. If (k � P ) and (MOD(P; k) = 0) then

3. Calculate the destination processor (pd) of

the �rst element of the local array as pd = p=k.

4. For j = 0 to dL=ye � 1 do

5. For i = 0 to k � 1 do

6. Place the next block of size x of the

local array into the packet for

processor MOD(pd + i(P=k); P ).

7. Else

8. For i = 0 to dL=xe � 1 do

9. Calculate the destination processor

(pd) of the �rst element (j = i x + 1) of

this block of size x as

pd = MOD[(i P + p)=k;P ].

10. Place this block into the packet for pd .

11 Exchange packets with other processors.

Receive Phase

1. Calculate the source processor (ps) of the �rst element of

the local array as ps = MOD[k p; P ].

Synchronous Method:

3. Receive packets from all processors.

4. For each block of size y in the local array do

5. For i = 0 to k � 1 do

6. Read elements (i x + 1) to (i + 1)x of the current block of

size y from the packet received from processor MOD(ps + i; P ).

Asynchronous Method:

3. The ith block of size x, 0 � i � k � 1, will be

received from processor MOD(ps + i; P ).

4. For i = 0 to k� 1 do

5. Receive a packet from any processor pi .

6. Place the �rst block of size x starting from the location

calculated above and the other blocks with stride y.

Figure 7: Algorithm for Cyclic(x) to Cyclic(y) Redistribution, where y = k x

6 Redistribution of Multidimensional

Arrays
The redistribution of two and higher dimensional

arrays can be classi�ed into two types :-

1. Shape Retaining: The shape of the local array
remains unchanged after the redistribution, eg.
(block,block) to (cyclic,cyclic).

2. Shape Changing: The shape of the local array

changes after the redistribution, eg. (block,*) to
(*,block) where '*' indicates that the correspond-
ing dimension is collapsed. This type of redistri-
bution is required very often for multidimensional
FFT and the ADI method.

The shape retaining and shape changing redistribu-
tions are quite di�erent from each other and require
di�erent algorithms.

6.1 Shape Retaining Redistributions
A shape retaining redistribution may involve redis-

tribution in only one dimension feg. (block,block)
to (cyclic,block)g or more than one dimension feg.
(block,block) to (cyclic,cyclic)g. If the redistribution
is only along one dimension, it is similar to the redis-
tribution of one-dimensional arrays and the same al-
gorithms described earlier can be used. If both dimen-
sions have to be redistributed, it can either be done
directly or indirectly as a series of one-dimensional
redistributions. In the indirect method, the array is
redistributed separately along each dimension. For
example, if an array has to be redistributed from
(block,block) to (cyclic,cyclic), it is �rst redistributed
to (block,cyclic) and then to (cyclic,cyclic). This
method has the advantage that all the optimizations
developed for one-dimensional arrays in the previous
sections can be easily extended to multidimensional

arrays. The order in which the dimensions are re-
distributed does not a�ect the performance. This is
because the order of dimensions chosen only results
in a di�erent set of data values being communicated,
and does not a�ect the amount or type of communi-
cation. So, one could also do the above redistribution
as (block,block) to (cyclic,block) to (cyclic,cyclic).

In the direct method, data is sent directly to the
destination processor corresponding to the new dis-
tribution. Hence the optimized algorithms developed
for the one-dimensional case cannot be used. This
method requires di�erent algorithms for di�erent num-
ber of dimensions and di�erent types of redistribu-
tions and these algorithms cannot be optimized much.
However data needs to be communicated only once
in the direct method. Figure 8 compares the perfor-
mance of the direct and indirect methods for redis-
tributing an array of size 1K � 1K from (block,block)
to (cyclic,cyclic) on the Intel Paragon. The indirect
method is found to perform much better even though
data is communicated twice. This is because the al-
gorithms for one-dimensional redistribution are highly
optimized and a lot of the communication during each
one-dimensional redistribution actually takes place in
parallel. We have observed similar results for other ar-
ray sizes also. Hence the indirect method is preferred.

6.2 Shape Changing Redistributions

This type of redistribution occurs when at least one
dimension of the array is collapsed before or after the
redistribution. Consider the redistribution from (X,*)
to (*,Y) or vice-versa, where X and Y can be either
block, cyclic or cyclic(m). This is basically a collapsed
to distributed type of redistribution in one of the di-
mensions which is done as follows. Each processor di-
vides the local array into packets along the collapsed
dimension, depending on the type of the new distri-



0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20 25 30

T
i
m
e
 
(
s
)

Processors

Direct Method
Indirect Method

Figure 8: Redistribution of 2D arrays

bution Y. The processors then exchange packets with
other processors. At the receiving end, packets are
placed in the local array in order of source processor
number. Data from the received packets may have to
be placed in the local array either contiguously or with
a stride, depending on the type of distributions X and
Y.

The other type of redistribution involving change of
shape of the local array is of the type (X,*) or (*,X)
to (Y,Z), or vice versa. That is, in either the source
or target distributions, one of the dimensions is col-
lapsed and in the corresponding target or source dis-
tributions, both the dimensions are distributed. Each
case of this type requires a di�erent algorithm and so
has to be considered separately.

7 Conclusions
Runtime array redistribution is required very often

in HPF programs and it needs to be done e�ciently
in order to get good performance. We have described
e�cient algorithms for block(m) to cyclic, cyclic to
block(m) and the general cyclic(x) to cyclic(y) type
redistributions. The algorithms try to minimize ad-
dress calculation and communication, and make good
use of the cache. They are also practical enough to be
easily implemented in the runtime library of an HPF
compiler, or directly in application programs requir-
ing redistribution. We have tested the performance
of the algorithms on the Intel Paragon and observed
that the Asynchronous Method performs better than
the Synchronous Method as it overlaps computation
and communication.

Acknowledgments
This work was sponsored in part by ARPA under

contract no. DABT63-91-C-0028. The content of the
information does not necessarily reect the position or
policy of the Government and no o�cial endorsement
should be inferred. Alok Choudhary's research is also

supported by an NSF Young Investigator Award CCR-
9357840 with a matching grant from Intel SSD.

References
[1] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, and

S. Ranka. Fortran 90D/HPF compiler for dis-
tributed memory MIMD computers: Design, im-
plementation, and performance results. In Pro-
ceedings of Supercomputing '93, pages 351{360,
November 1993.

[2] A. Carle, K. Kennedy, U. Kremer, and J. Mellor-
Crummey. Automatic data layout for distributed
memory machines in the D programming environ-
ment. Technical Report CRPC-TR93298, Center
for Research on Parallel Computation, Rice Uni-
versity, February 1993.

[3] S. Chatterjee, J. Gilbert, F. Long, R. Schreiber,
and S. Teng. Generating local addresses and com-
munication sets for data parallel programs. In
Proceedings of Principles and Practices of Parallel
Programming (PPoPP) '93, pages 149{158, May
1993.

[4] High Performance Fortran Forum. High Perfor-
mance Fortran Language Speci�cation. Version
1.0, May 1993.

[5] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel,
U. Kremer, and C. Tseng. Fortran D language
speci�cations. Technical Report COMP TR90-141,
Rice University, 1990.

[6] S. Gupta, S. Kaushik, S. Mufti, S. Sharma,
C. Huang, and P. Sadayappan. On the genera-
tion of e�cient data communication for distributed
memory machines. In Proceedings of International
Computing Symposium, Taiwan, pages 504{513,
1992.

[7] R. Ponnusamy, R. Thakur, A. Choudhary, and
G. Fox. Scheduling regular and irregular communi-
cation patterns on the CM-5. In Proceedings of Su-
percomputing '92, pages 394{402, November 1992.

[8] J. Stichnoth. E�cient compilation of array state-
ments for private memory multicomputers. Tech-
nical Report CMU-CS-93-109, School of Com-
puter Science, Carnegie Mellon University, Febru-
ary 1993.

[9] R. Thakur and A. Choudhary. All-to-all communi-
cation on meshes with wormhole routing. In Pro-
ceedings of the 8th International Parallel Process-
ing Symposium, April 1994.


