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Abstract

This paper presents research into parallel block-diagonal-bordered sparse Choleski factoriza-

tion algorithms developed with special consideration to irregular sparse matrices originating

in the electrical power systems community. Direct block-diagonal-bordered sparse Choleski

algorithms exhibit distinct advantages when compared to general direct parallel sparse

Choleski algorithms. Task assignments for numerical factorization on distributed-memory

multi-processors depend only on the assignment of data to blocks, and data communi-

cations are signi�cantly reduced with uniform and structured communications. Choleski

factorization algorithms for block-diagonal-bordered form matrices require a specialized or-

dering step coupled to an explicit load balancing step in order to generate this matrix form

and to uniformly distribute the computational workload for an irregular matrix throughout

a distributed-memory multi-processor. Matrix orderings are performed using a diakoptic

technique based on node-tearing-nodal analysis, which permits load balancing on either

the number of calculations in the factorization step or the number of calculations in the

forward reduction and backward substitution phase. Empirical performance measurements

for real power system load-ow matrices are presented for an implementation of a par-

allel block-diagonal-bordered Choleski algorithm run on a distributed memory Thinking

Machines CM-5 multi-processor.



1 Introduction

Solving sparse linear systems practically dominates scienti�c computing, but the perfor-

mance of direct sparse matrix solvers have tended to trail behind their dense matrix coun-

terparts [14]. Parallel sparse matrix solver performance generally is less than similar dense

matrix solvers even though there is more inherent parallelism in sparse matrix algorithms

than dense matrix algorithms. Parallel sparse linear solvers can simultaneously factor entire

groups of mutually independent contiguous blocks of columns or rows without communi-

cations; meanwhile, dense linear solvers can only update blocks of contiguous columns or

rows each pipelined communication cycle. The limited success with e�cient sparse matrix

solvers is not surprising, because general sparse linear solvers require more complicated data

structures and algorithms that must contend with irregular memory reference patterns. The

irregular nature of these problems has aggravated the task of implementing scalable sparse

matrix solvers on vector or parallel architectures: e�cient scalable algorithms for these

classes of machines require regularity in available data vector lengths and in interprocessor

communications patterns [3]. Nevertheless, when scalability of sparse linear solvers is exam-

ined using real irregular sparse matrices, the available parallelism in the sparse matrix can

be as much the reason for poor parallel e�ciency as the parallel algorithm or implementation

[15].

In this paper we examine the applicability of parallel direct block-diagonal-bordered

sparse solvers for real power system load-ow applications that require the solution of

symmetric positive de�nite sparse matrices. Parallel block-diagonal-bordered sparse linear

solvers o�er the potential for regularity often absent from other parallel sparse solvers. Load

ow analysis entails the solution of non-linear systems of simultaneous equations, which are

performed by repeatedly solving sparse linear equations. For power system load-ow ap-

plications, however, the limited size of the matrices and load imbalance due to limited

parallelism in the matrix structure signi�cantly limits the number of processors that can

be used e�ciently for a single parallel Choleski solver. This fact will be evident in the

empirical data collected on the CM-5. Our research into specialized matrix ordering tech-

niques has shown that it is possible to order actual power system matrices readily into

block-diagonal-bordered form, but load imbalance becomes excessive beyond four proces-

sors, limiting potential parallelism for a single parallel Choleski solver within an application.

Nevertheless, other dimensions exist in electrical power system applications that can be ex-

ploited to e�ciently make use of large-scale multi-processors. We believe that this research

also has utility for other irregular sparse matrix applications where the data is hierarchical.

Other sources of hierarchical matrices exist, for example, electrical circuits, that have the

potential for larger numbers of equations than power system matrices.
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In this paper, we examine the performance of a block-diagonal-bordered Choleski solver

to be incorporated within electrical power system applications. Because we are considering

software to be embedded within a more extensive application, we examine e�cient parallel

forward reduction and backward substitution algorithms in addition to parallel Choleski fac-

torization algorithms. Due to the reduced amount of calculations in the triangular solution

phases of solving a system of symmetric positive de�nite equations, these algorithms are

often ignored when parallel Choleski algorithms are presented in the literature. We not only

include a discussion of these algorithms, we also include an analysis of load balancing as a

function of either solution phase: sparse block-diagonal-bordered Choleski factorization and

forward reduction/backward substitution. Interprocessor communications costs would be

too high to redistribute the data from an optimal load balance data/processor assignment

for parallel Choleski factorization to an optimal load balance data/processor assignment for

parallel forward reduction and backward substitution, so performance is examined for both

factorization and triangular solutions with each load balance data/processor assignment.

Block-diagonal-bordered sparse matrix algorithms require modi�cations to the normal

preprocessing phase described in numerous papers on parallel Choleski factorization [9, 10,

11, 14, 22, 23, 24, 25, 26, 30]. Each of the numerous papers referenced above use the

paradigm to order the sparse matrix and then perform symbolic factorization in order to

determine the locations of all �llin values so that static data structures can be utilized for

maximum e�ciency when performing numerical factorization. We modify this commonly

used sparse matrix preprocessing phase to include an explicit load balancing step coupled

to the ordering step so that the workload is uniformly distributed throughout a distributed-

memory multi-processor and parallel algorithms make e�cient use of the computational

resources.

This paper is organized as follows. In section 2, we introduce the electrical power

system applications that are the basis for this work. In section 3, we briey review Choleski

factorization and forward reduction/backward substitution and present a review of the

literature concerning general parallel Choleski factorization algorithms. This is followed

by a theoretical derivation of the available parallelism in both the Choleski factorization

and forward reduction/backward substitution phases when solving block-diagonal-bordered

form sparse matrices. Paramount to exploiting the advantages of this parallel linear solver

is ordering the irregular sparse power system matrices into this form in a manner that

balances the workload among multi-processors. In section 5, we describe the three-step

preprocessing phase used to generate matrix ordering for block-diagonal-bordered matrices

with uniformly distributed processing load. In this section, we present pseudo-factorization

and we review minimum degree ordering and pigeon-hole load balancing algorithms. We

present the node-tearing algorithm developed to order matrices into block-diagonal-bordered
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form in section 6. In section 7, we describe our block-diagonal-bordered sparse Choleski

algorithm that has been implemented on the CM-5. Analysis of the performance of these

ordering techniques for actual power system load ow matrices from the Boeing-Harwell

series are presented in section 8. Lastly, we present our conclusions concerning block-

diagonal-bordered Choleski solvers for electrical power system applications in section 9.

2 Power System Applications

The underlying impetuous for our research is to improve the performance of electrical power

system applications to provide real-time power system control and real-time support for

proactive decision making. Our research has focused on load-ow and transient stability

applications [2, 29]. Sparse linear solvers are employed in both applications and linear

solvers account for the majority of oating point operations encountered. Scalability, or

the ability to apply more processors to larger problems, is desired when developing multi-

processor implementations because load-ow and transient stability applications have the

potential to be utilized across di�erent sized geographical areas, from single electrical power

utilities to regional power authorities.

Load-ow analysis examines steady-state equations based on the positive de�nite net-

work admittance matrix that represents the power system distribution network. Load-ow

analysis is used for identifying potential network problems in contingency analyses, for

examining steady-state operations in network planning and optimization, and also for de-

termining initial system state in transient stability calculations [29]. Load ow analysis

entails the solution of non-linear systems of simultaneous equations, which are performed

by repeatedly solving sparse linear equations. Load ow is calculated using the network

admittance matrices, which are symmetric positive de�nite and have sparsity de�ned by the

power system distribution network. The size of these matrices is limited because individual

power systems generally use networks with less than 2,000 sparse complex equations in their

operations centers, while regional power authority operations centers would also be limited

to sparse load-ow matrices with less than 10,000 sparse complex equations. Power sys-

tems planning studies often incorporate larger networks as lower voltage distribution lines

are included in these studies. Sparse matrices employed in planning studies can have from

10,000 to 50,000 sparse equations. This paper presents data for power system networks of

1,723, 5,300, and 9,430 nodes. The last network is from a power system planning study.

Transient stability analysis is a detailed simulation of the power system, that models the

dynamic behavior of the electrical distribution networks, electrical loads, and the electro-

mechanical equations of motion of the interconnected generators [2]. Transient stability

analysis can be used to perform selective detailed analyses of generator commitment stabil-
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Figure 1: Ordering the Admittance Sub-Matrix in the Transient Stability Di�erential-

Algebraic Equations

ity, and to support crisis decision-making during network recovery. The transient stability

problem is modeled by di�erential algebraic equations (DAEs) with di�erential equations

representing the generators and non-linear algebraic equations representing the power sys-

tem network that interconnects the generators. The DAEs are in natural non-symmetric

block-diagonal-bordered form, with diagonal blocks of generator equations coupled by the

power system distribution network. In this representation, there are as many coupling

equations as the entire sparse admittance matrix. However, it it possible to order the ad-

mittance matrix to block-diagonal-bordered form to order to increase available parallelism.

This is illustrated in �gure 1. The size of the sparse matrices representing the DAEs have

as many as 10,000 complex equations for an individual power system, while regional power

authorities could have as many as 50,000 sparse complex equations in the matrix formed

from the DAEs.

The parallel block-diagonal-bordered Choleski algorithm, presented in this paper, ad-

dresses the most di�cult of these application to implement on multi-processors. Load-ow

has the smallest matrices and the fewest calculations due to symmetry and lack of require-

ments for pivoting to ensure numerical stability. Load-ow calculations are included in

decoupled solutions to transient stability di�erential-algebraic equations. Instead of the

common practice of decoupling the generator and network calculations in a transient stabil-

ity simulation, we will examine using more powerful di�erential-algebraic equation solvers

for transient stability analysis that do not decouple the generator and network equations.
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The di�erential-algebraic equations will o�er more potential for good load balancing and

o�er substantially more calculations because

� the matrices are larger,

� a large portion of these matrices are non-symmetric and require calculations in both

the upper and lower triangular portions of the diagonal blocks,

� pivoting will be required in the diagonal blocks containing the generator equations to

ensure numerical stability.

3 Choleski Factorization

We are considering the direct solution of the linear system

Ax = b; (1)

where A is an N � N sparse matrix. The sparse matrix A can be numerically factored

into two separate triangular matrices, one sparse matrix being lower triangular, L, and the

other sparse matrix being upper triangular, U :

Ax = LUx = b; (2)

A lower triangular matrix, L, has all zeros above the diagonal and an upper triangular

matrix, U , has all zeros below the diagonal [4].

If the matrix A is an N �N symmetric positive de�nite sparse matrix, then a special

form of LU factorization can be used that exploits the symmetry and inherently numerical

stable characteristics of this matrix form [4]. Our analysis of the available parallelism

in block-diagonal-bordered Choleski factorization, presented in section 4, is an extension of

the analysis of available parallelism in block-diagonal-bordered LU factorization. Additional

discussions on the state of the literature for Choleski factorization are presented below.

For a brief review, the symmetric positive de�nite sparse matrix A can be numerically

factored into a single lower triangular matrix L:

Ax = LLTx = b; (3)

A lower triangular matrix, L, has all zeros above the diagonal. Equation 3 is solved by

setting LTx = y, and substituting y for LTx. The numerical solution for Ly = b is found by

forward reduction, and the numerical solution for x is calculated by backward substitution

in the equation LTx = y. Triangular linear systems can be readily solved numerically by

solving for the �rst value in the triangular linear system and substituting that value into

subsequent equations.
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for k = 1 to N /* for all elements along the diagonal */

for each i 2 [k;N ]

for each j 2 [1; k� 1] such that Ai;j 6= 0 and Aj;k 6= 0

Ai;k  Ai;k � (Ai;j �Aj;k)

endfor

endfor

Ak;k  
p
Ak;k

for each i 2 [k + 1; N ]

Ak;j  (Ak;j=Ak;k)

endfor

endfor

Figure 2: Sparse Choleski Factorization

Sparse Choleski factorization can mirror any dense Choleski factorization algorithm,

although generally a sparse matrix algorithm has only one explicit for loop, which can be

for any single index in the dense case. The remaining indices are examined only for non-zero

values in the original matrix or for non-zero values that will occur from �llin in the matrix.

Sparse matrix �llin occurs when a value that formally was zero becomes non-zero in the

process of factoring the matrix. Fillin can be controlled in sparse Choleski factorization by

ordering the matrix before performing the factorization [4].

As we continue the review of Choleski factorization, we present a general sequential

sparse factorization algorithm based upon the column Choleski factorization algorithm [14],

which is similar to the factorization algorithms commonly attributed to Crout and Doolittle.

This sequential sparse factorization algorithm is presented in �gure 2. In addition, we

present general sequential sparse forward reduction and backward substitution algorithms

in �gures 3 and 4 respectively. In the backward substitution algorithm, the calculations are

performed by implicitly transposing L.

3.1 Ordering Sparse Matrices

Symmetric sparse matrices can be represented by graphs with elements in equations corre-

sponding to undirected edges in the graph [4, 14]. Ordering a symmetric sparse matrix is

actually little more than changing the labels associated with nodes in an undirected graph,

however, this simple task can drastically e�ect the amount of calculations involved when

factoring a sparse matrix. For symmetric positive de�nite matrices, there is much latitude

in the order to perform the calculations, because there is no requirement for pivoting for
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for k = 1 to N /* for all elements along the diagonal */

yk  (bk=Lk;k)

for each i 2 [k + 1; N ] such that Li;k 6= 0

Li;k  Li;k � (yk � Li;k)

endfor

endfor

Figure 3: Sparse Forward Reduction

for k = N to 1 by �1 /* for all elements along the diagonal */

xk  (yk=Lk;k)

for each j 2 [1; k� 1] such that Lj;k 6= 0

Lj;k  Lj;k � (xk �Aj;k)

endfor

endfor

Figure 4: Sparse Backward Substitution

numerical stability and the only e�ect of modifying the order of calculations might result

from changes in round-o� errors [14]. There is a graph-theoretical interpretation for �llin;

factoring a node is equivalent to removing the node from the graph, however, any path

through the factored node to adjacent edges must remain and must now be explicitly listed.

This phenomenon is illustrated in �gure 5 for a segment of a graph. In this example, the

node with the least number of edges is selected for factoring, and two of three possible new

edges are created. Only two new edges are created because there is an existing edge already

connecting a pair of nodes. Fillin causes the number of edges in the remaining nodes to

increase, often drastically increasing the number of calculations. The amount of �llin gen-

erated when any node is factored is bounded by the binomial coe�cient of the number of

edges at a node choose 2 or

fk �

0
@ �k

2

1
A =

�k !

2� (�k � 2)!
=

(�k � (�k � 1))

2
; (4)

where:

fk is the number of �llin when factoring node k.

�k is the number of edges at node k.
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Figure 5: Graph Theoretical Explanation of Fillin

There are several notable techniques to minimize �llin, with one of the commonly used

techniques being minimum-degree ordering. Minimum degree ordering is used in conjunc-

tion with the node-tearing-based ordering technique to generate block-diagonal-bordered

form sparse matrices. Additional detail on minimum degree-based sparse matrix ordering

is presented in appendix A.

Modifying the ordering of a sparse matrix is simple to perform using a permutation

matrix P of all zeros and ones that simply generates elementary row and column exchanges.

Applying the permutation matrix P to the original linear system in equation 1 yields the

linear system

(PAPT )(Px) = (Pb); (5)

that is solved by factoring PAPT into the Choleski factor �L in �L�LT and then performing

forward reduction, backward substitution, and undoing the permutation on the x vector.

These steps would require the solutions of:

�L = Pb; �LTz = y; x = PT z: (6)

As long as the symmetric matrix A is ordered with the permutation matrix P to PAPT ,

the resultant matrix after ordering remains symmetric positive de�nite.

3.2 A Survey of the Literature

Signi�cant research e�ort has been expended to examine parallel matrix solvers | for both

dense and sparse matrices. Numerous papers have documented research on parallel dense
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matrix solvers [3, 27, 28], and these articles illustrate that good e�ciency is possible when

solving dense matrices on multi-processor computers. The calculation time complexity of

dense matrix LU factorization is O(N3), and there are su�cient, regular calculations for

good parallel algorithm performance. Some implementations are better than others [27, 28],

nevertheless, performance is deterministic for:

� the algorithm,

� the multi-processor architecture,

� the number of processors,

� the matrix size.

Direct sparse matrix solvers, on the other hand, have computational complexity signi�cantly

less than O(N2), and actual power system sparse matrices used in this work have order of

complexity ranging fromO(N1:3) toO(N1:5). These orders of complexity are consistent with

matrices from circuit analysis applications that have complexities ranging from O(N1:2) to

O(N1:5) [18]. With signi�cantly less calculations than dense direct solvers, and lacking

uniform, organized communications patterns, direct parallel sparse matrix solvers often

require detailed knowledge of the application to permit e�cient implementations.

The bulk of recent research into parallel direct sparse matrix techniques has centered

around symmetric positive de�nite matrices, and implementations of Choleski factorization.

A signi�cant number of papers concerning parallel Choleski factorization for symmetric

positive de�nite matrices have been published recently [9, 10, 11, 14]. These papers have

thoroughly examined many aspects of the parallel direct sparse matrix solver implemen-

tations, symbolic factorization, and appropriate data structures. Techniques to improve

interprocessor communications using block partitioning methods have been examined in

[23, 24, 25, 26]. Techniques for sparse Choleski factorization have even been developed for

single-instruction-multiple-data (SIMD) computers like the Thinking Machines CM-1 and

the MasPar MPP [16]. This discussion is by no means an exhaustive literature survey, al-

though it does represent a signi�cant portion of the direct sparse matrix research performed

for vector and multi-processor computers.

References [9, 10, 11, 14, 23, 24, 25, 26] have kept with a general two step preprocessing

paradigm for parallel sparse Choleski factorization:

1. order the matrix to minimize �llin,

2. symbolic factorization to identify �llin and set up static data structures,
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In this paper, we break from this two step pre-processing paradigm and introduce a new

three-step preprocessing phase that includes ordering, pseudo-factorization, and explicit

load balancing. Our three-step preprocessing phase is described in section 5.

4 Available Parallelism in Block-Diagonal-Bordered Form

Matrices

The most signi�cant aspect of parallel sparse Choleski factorization is that the sparsity

structure can be exploited to o�er more parallelism than is available with dense matrix

solvers. Parallelism in dense matrix factorization is achieved by distributing the data in a

manner that the calculations in one of the for loops can be performed in parallel. Sparse

factorization algorithms have inadequate calculations in any row or column for e�cient par-

allelism; however, sparse matrices o�er additional parallelism as a result of the nature of the

data and the precedence rules governing the order of calculations. Instead of just paralleliz-

ing a single for loop as in parallel dense matrix factorization, entire independent portions of

a sparse matrix can be factored in parallel | especially when the sparse matrix has been or-

dered into block-diagonal-bordered form. The description of parallelism presented here has

some things in common with elimination graphs and super-nodes described in [14]; however,

this work adds a two-dimensional avor to these concepts. Provided that the matrix can

be ordered into block-diagonal-bordered form, then the parallel sparse Choleski algorithm

can reap additional bene�ts, such as the elimination of task graphs for distributed-memory

multi-processor implementations. Minimizing or eliminating task graphs is signi�cant be-

cause the task graph can contain as much information as the representation of the sparse

matrix for more conventional parallel sparse Choleski solvers [8].

There are several distinct ways to examine the available parallelism in block-diagonal-

bordered form matrices. The �rst way to consider available parallelism in a block-diagonal-

bordered sparse matrix is to consider the graph of the matrix. Figure 6 represents the

form of a graph with four mutually independent sub-matrices (subgraphs) interconnected

by shared coupling equations. No graph node in a subgraph has an interconnection to

another subgraph except through the coupling equations. It should be intuitive that data

in columns associated with nodes in subgraphs can be factored independently up to the

point where the coupling equations are factored. While this graph o�ers intuition into the

available parallelism in block-diagonal-bordered sparse matrices, it is possible to examine

the theoretical mathematics of matrix partitioning to clearly identify available parallelism

in this sparse matrix form. By partitioning the block-diagonal-bordered matrix into:

� a block-diagonal matrix
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� an upper border

� a lower border

� a last block

and calculating the Shur complement [4], it is possible to identify available parallelism by

proving a theorem that states the Choleski factors of a block-diagonal-bordered matrix are

also in block-diagonal-bordered form. A supporting lemma stating that the Choleski factors

of a block-diagonal matrix are also block-diagonal form is required to complete the proof of

the theorem. A similar version of this derivation can be used to identify the parallelism in

general LU factorization.

De�ne a partition of A = LLT as

A =

0
@ A1;1 A

T
2;1

A2;1 A2;2

1
A =

0
@ L1;1 0

L2;1 L2;2

1
A
0
@ L

T
1;1 L

T
2;1

0 L
T
2;2

1
A = LLT (7)

where:

A1;1 and L1;1 are of size n1 � n1

A2;1 and L2;1 are of size n2 � n1

A
T
2;1 and L

T
2;1 are of size n1 � n2

A2;2 and L2;2 are of size n2 � n2.

The Shur complement of the partitioned matrices in equation 7 can be calculated by simply
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performing the matrix multiplication on the LLT partitions which yields:

A =

0
@ A1;1 A

T
2;1

A2;1 A2;2

1
A =

0
@ L1;1L

T
1;1 L1;1L

T
2;1

L2;1L
T
1;1 L2;1L

T
2;1 + L2;2L

T
2;2

1
A (8)

By equating blocks in equation 8, we can easily identify how to solve for the partitions:

A1;1 = L1;1L
T
1;1 ) L1;1L

T
1;1 = A1;1

A
T
2;1 = L1;1L

T
2;1 ) L

T
2;1 = L

�1
1;1A

T
2;1

A2;1 = L2;1L
T
1;1 ) L2;1 = A2;1(L

T
1;1)

�1

A2;2 = L2;1L
T
2;1 + L2;2L

T
2;2 ) L2;2L

T
2;2 = A2;2 � L2;1L

T
2;1

(9)

Before we can proceed and prove the theorem that the LLT factors of a block-diagonal-

bordered (BDB) symmetric sparse matrix are also in block-diagonal-bordered form, we must

de�ne additional matrix partitions in the desired form and prove a Lemma that the LLT

factors of a block-diagonal (BD) matrix are also in block-diagonal form. At this point, we

must de�ne additional partitions of A that represent the block-diagonal-bordered nature of

the original A matrix:

ABDB =

0
@ A1;1 A

T
2;1

A2;1 A2;2

1
A =

0
BBBBBBBBB@

A1;1 0 ATm;1

A2;2 ATm;2

0
. . .

...

Am�1;m�1 ATm;m�1

Am;1 Am;2 � � � Am;m�1 Am;m

1
CCCCCCCCCA

(10)

LBDB =

0
@ L1;1 0

L2;1 L2;2

1
A =

0
BBBBBBBBB@

L1;1

L2;2 0

0
. . .

Lm�1;m�1

Lm;1 Lm;2 � � � Lm;m�1 Lm;m

1
CCCCCCCCCA

(11)

LTBDB =

0
@ L

T
1;1 L

T
2;1

0 L
T
2;2

1
A =

0
BBBBBBBBB@

LT1;1 0 LTm;1

LT2;2 LTm;2

0
. . .

...

LTm�1;m�1 LTm;m�1

LTm;m

1
CCCCCCCCCA

(12)
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A1;1 = ABD =

0
BBBBBB@

A1;1 0

A2;2

0
. . .

Am�1;m�1

1
CCCCCCA

(13)

A
T
2;1 =

0
BBBBBB@

ATm;1

ATm;2
...

ATm;m�1

1
CCCCCCA

(14)

A2;1 =
�
Am;1 Am;2 � � � Am;m�1

�
(15)

A2;2 = Am;m (16)

Lemma | The LLT factors of a block-diagonal matrix are also in block-diagonal form

Proof:

Let:

ABD =

0
@ A1;1 0

0 A2;2

1
A =

0
@ L1;1 0

L2;1 L2;2

1
A
0
@ L

T
1;1 L

T
2;1

0 L
T
2;2

1
A = LBDL

T
BD (17)

By applying the Shur complement to equation 17, we obtain:

A
T
2;1 = L1;1L

T
2;1 = 0) LT2;1 = L

�1
1;10 = 0 (18)

and

A2;1 = L2;1L
T
1;1 = 0) L2;1 = 0(LT1;1)

�1 = 0 (19)

If ABD is non-singular and has a numerical factor, then L
�1
1;1 and (LT1;1)

�1
must exist and

be non-zero: thus

ABD =

0
@ A1;1 A

T
2;1

A2;1 A2;2

1
A =

0
@ L1;1 0

0 L2;2

1
A
0
@ L

T
1;1 0

0 L
T
2;2

1
A = LBDL

T
BD (20)

This lemma can be applied recursively to a block-diagonal matrix with any number of diago-

nal blocks to prove that the LLT factorization of a block-diagonal matrix preserves the block

structure.

Theorem | The LLT factors of a block-diagonal-bordered matrix are also in block-

diagonal-bordered form. To restate this theorem, we must show that ABDB = LBDBL
T
BDB.

Proof:

First the matrix partitions A2;1 and A
T
2;1 have simply been further partitioned to match

the sizes of the diagonal blocks. Meanwhile, the matrix partition A2;2 has been left un-

changed. In the lemma, we proved that the factors of A1;1 are block-diagonal if A1;1 is

block-diagonal. Consequently, ABDB = LBDBL
T
BDB.
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As a result of this theorem, it is relatively straight forward to identify available par-

allelism by simply performing the matrix multiplication in a manner similar to the Shur

complement. As a result we obtain:

1. Diagonal Blocks: A1;1 = L1;1L
T
1;1 )

8>>><
>>>:

A1;1 = L1;1L
T
1;1

A2;2 = L2;2L
T
2;2

...

2. Lower Border: A2;1 = L2;1L
T
1;1 )

8>>><
>>>:

Am;1 = Lm;1L
T
1;1

Am;2 = Lm;2L
T
2;2

...

3. Last Block:

A2;2 � L2;1L
T
2;1 = L2;2L

T
2;2 )

8<
:Am;m �

(m�1)X
i=1

Lm;iL
T
m;i = Lm;mL

T
m;m

If the matrix blocks Ai;i and Ai;m (1 � i � (m � 1)) are assigned to the same processor,

then there are no communications until the last block is factored. At that time, only

sums of sparse matrix � sparse matrix products are sent to the processors that hold the

appropriate data in the last block. This data-assignment to processors is similar to column-

oriented sparse Choleski algorithms, although a signi�cant di�erence exists with block-

diagonal-bordered form matrices. Data in block-diagonal-bordered form sparse matrices

have a two-dimensional blocked nature that groups calculations and should permit e�cient

parallel operations.

This derivation identi�es the parallelism in the Choleski factorization step of a block-

bordered-diagonal sparse matrix. The parallelism in the forward reduction and backward

substitution steps also bene�ts from the aforementioned data/processor distribution. By

assigning data in a matrix block and its associated border section to the same processor,

no communications would be required in the forward reduction phase until the last block

of the factored matrix, L, is updated by the product of a dense vector partition ym � the

sparse matrix Ai;m (1 � i � (m � 1)). No communications is required in the backward

substitution phase after the values of xm are broadcast to all processors holding the matrix

blocks Ai;i and Ai;m (1 � i � (m� 1)).

Figure 7 illustrates both the Choleski factorization steps and the reduction/substitution

steps for a block-diagonal-bordered sparse matrix. In this �gure, the strictly lower diagonal

portion of the matrix is L, and the strictly upper diagonal portion of the matrix is LT .

This �gure depicts four diagonal blocks, and processor assignments (P1, P2, P3, and P4)

are listed with the data block.
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Figure 7: Block Bordered Diagonal Form Sparse Matrix Solution Steps

5 The Three-Step Preprocessing Phase

For parallel sparse block-diagonal-bordered matrix algorithms to be e�cient when factoring

irregular sparse matrices, the following three step preprocessing phase must be performed:

� order the matrix into block-diagonal-bordered form while minimizing the number of

calculations,

� pseudo-factorization to identify both �llin and the number of calculations for all di-

agonal blocks and corresponding portions of the borders, and

� load balance to uniformly distribute the calculations among processors.

The �rst step determines the block-diagonal-bordered form and the ordering of nodes within

diagonal blocks to minimize calculations; the second step determines the locations of �llin

values for static data structures and also determines the number of calculations in indepen-

dent blocks for the load balancing step; and the third step determines a mapping of data to

processors for e�cient implementation of the algorithm for the user speci�ed data. These

three steps may be incorporated into an optimization framework that uses the three-step

preprocessing phase to produce matrix orderings with optimal overall performance for a par-

ticular version of the block-diagonal-bordered sparse matrix factorization algorithm. For

this paper, the optimization was performed by hand | various values of input parameters
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for the node-tearing routine were examined and the block-diagonal-bordered form sparse

matrix with the best load balance and least numbers of operations were chosen for collecting

performance benchmarks.

The metric for load balancing or the metric for an optimization routine to determine

the most e�cient overall ordering technique must be based on the actual workload required

by the individual processors. This number may di�er substantially from the number of

equations assigned to processors because the number of calculations in an independent

sub-block is a function of the number and location of non-zero matrix elements in that

block | not the number of equations in a block. For dense matrices, the computational

complexity of factorization is O(N3), however, the computational complexity for factor-

ing entire sparse matrices used in later parallel algorithm performance studies varies from

O(N1:30) to O(N1:55). Determining the actual workload requires a detailed simulation of

all processing for the factorization and triangular solution phases, which we refer to as

pseudo-factorization.

5.1 Ordering

The ordering portion in the preprocessing phase must identify diagonal matrix blocks while

also attempting to minimize the amount of �llin during factorization. Few matrices can

be readily ordered into block-diagonal-bordered form with equal workload in each block.

The exception to this rule are highly regular matrices from the structural analysis commu-

nity, where the nested dissection ordering algorithm can produce balanced block-diagonal-

bordered matrices on some regular matrices [14]. Recursive spectral bisection can be used

to partition irregular matrices [1, 17, 20], and subsequently, the coupling equations can be

extracted. Unfortunately, this technique, as well as nested dissection, relies on dividing the

matrix into m equal sized partitions, without considering the coupling equations or consid-

ering the number of calculations in each diagonal block. Load-imbalance limits the potential

for using recursive spectral bisection, because the number of calculations for factorization or

forward reduction/backward substitution are higher than linear order complexity, even for

sparse matrices [15]. A third method to order a sparse matrix into block-diagonal-bordered

form is referred to as node tearing [4, 19], which is a specialized form of diakoptics [13]. This

technique attempts to extract the natural structure in the matrix or graph, and generally

produces many irregularly sized blocks, while minimizing the number of coupling equations

or the size of the lower border and last diagonal block. Load balancing techniques must

be used after the node tearing matrix ordering step to uniformly distribute the processing

load onto a multi-processor. As proven in section 4, diagonal blocks can be assigned to any

processor without requirements for interprocessor communications to factor the diagonal
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block and associated portion of the lower border.

There are several notable techniques to minimize �llin when factoring a sparse ma-

trix, with one of the commonly used techniques being minimum-degree ordering. Mini-

mum degree ordering is used in conjunction with the node-tearing-based ordering technique

to generate block-diagonal-bordered form sparse matrices. Additional detail on minimum

degree-based sparse matrix ordering is presented in appendix A.

We are looking for an ordering technique that limits the number of coupling equations for

irregular problems and also limits �llin while ordering matrices into block-diagonal-bordered

form. Minimizing the number of coupling equations minimizes the number of calculations

and also minimizes the size of the nearly dense last block in a parallel block-diagonal-

bordered sparse matrix solver; however, the amount of potential parallelism may su�er if

the workload for factoring the diagonal blocks cannot be distributed uniformly throughout

a multi-processor. Moreover, the distribution of workload between diagonal blocks and the

last block must be considered. The last block will be nearly dense, and if the size of the

last block of the matrix can be adequately constrained, the number of calculations can

be drastically reduced. When determining the optimal ordering for a sparse matrix, the

minimum total number of calculations may be traded for the optimal ordering that yields

the most parallelism. The node-tearing ordering algorithm has the ability to adjust the

characteristics of the ordering by varying an input parameter. A sample of the variety of

matrix ordering possible with real irregular sparse admittance matrices is presented later in

section 8. Nevertheless, the �nal measure of merit for matrix ordering is the performance

of the parallel Choleski solver.

5.2 Pseudo-factorization

As stated above, the metric for performing load balancing or for comparing the performance

of ordering techniques must be based on the actual workload required by the processors in a

distributed-memory multi-computer. Consequently, more information is required than just

the locations of �llin as in previous work that used symbolic factorization to identify �llin

for static data structures [11, 14, 23].

To accomplish the two-fold requirement for both identifying the location of �llin and

determining the amount of calculations in each independent block, we utilize a pseudo-

factorization step as part of the preprocessing phase. Pseudo-factorization is merely a

replication of the numerical factorization process without actually performing the calcula-

tions. Counters are used to tally the numbers of calculations to factor the independent data

blocks and the numbers of calculations to update the last block using data from the bor-

ders. In addition, while performing the pseudo-factorization step, it is also simple to keep
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track of the number of operations that would be required when performing the triangular

solutions. By collecting this data, it provides an option to order the matrix to optimize the

number of calculations per processor in the factorization step, or to optimize the number of

calculations in the triangular solution steps. Often the LLT matrix calculated by factoriza-

tion is utilized multiple times in dishonest iterative numerical solutions. As a result, some

applications may require special attention to maximum e�ciency in the forward reduction

and backward substitution steps.

There is no way to avoid the computational expense of this preprocessing step, because

the computational workload in factorization is not correlated with the number of equations

in an independent block. The number of calculations when factoring an independent sub-

block is a function of the number and location of non-zero matrix elements in that block |

not necessarily the number of equations in the block. E�cient parallel sparse matrix solvers

require that any disparities in processor workloads be minimized in order to minimize load

imbalance overhead, and consequently, to maximize processor utilization.

5.3 Load Balancing

The load balancing step of the preprocessing phase can be performed with a simple pigeon-

hole type algorithm that uses one of several metrics based on the numbers of calculations

determined in the pseudo-factorization step. There are three distinct steps in the proposed

block-diagonal-bordered matrix solver:

� factor independent blocks,

� update the last block using data from the borders,

� factor the last block.

Load balancing as implemented for factorization of the diagonal blocks and the lower bor-

der emphasizes the uniform distribution of the processing workload in the �rst two steps.

The parallel calculations in the last diagonal block are load balanced separately, which is

simple, because we are using a parallel blocked kij-saxpy Choleski algorithm to factor the

last diagonal block [28]. Our research into this area has emphasized uniformly distributing

the workload to separate processors based on the number of calculations when factoring

both the independent blocks and calculating the updates of the last block from data in

the borders [15]. The second factorization step, updating the last block using data in the

borders, requires that partial sums be accumulated from multiple processors and sent to

the processor that holds the data for an element in the last block. However, the indepen-

dent nature of calculations in the diagonal blocks and the border permit a processor to

start the second phase as soon as that processor has completed factoring the independent
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blocks. No processor synchronization is required between these steps and it is assumed that

communications will occur independent of the calculations. Consequently, the sum total of

all calculations in the diagonal blocks and corresponding border sub-matrices can be used

when load balancing for factoring.

When load balancing for the triangular solutions, we chose as a metric the number of

non-zero elements (including �llin) in all rows except the last diagonal block. This e�ectively

emulates the total number of calculations, although the forward reduction of the last block

requires processor synchronization. As a result, there may be some room for variation in

this load-balancing metric.

Regardless of which metric is used for load-balancing, there is an important point to

note. These metrics do not consider indexing overhead, which can be rather extensive when

sparse matrices are stored in an implicit form. The data structure used in our solver has

explicit links between non-zero values in a column and stores the data in any row as a sparse

vector. This data structure should minimize indexing overhead at the cost of additional

memory required to store the sparse matrix when compared with other sparse data storage

methods [5]. The implementation of the parallel block-diagonal-bordered Choleski solver is

discussed in greater detail in section 7.

The load-balancing algorithm is a simple greedy assignment algorithm that distributes

objective function values to multiple pigeon-holes in a manner that minimizes the disparity

between the sums of objective function values in each pigeon-hole. This is performed in a

three-step process. First the objective function values for each of the independent blocks are

placed into descending order. Second, the Nprocs greatest values are distributed to a pigeon-

hole for each processor, where Nprocs is the number of processors in a distributed-memory

multi-computer. Then the remaining objective function values are selected in descending

order and placed in the pigeon-hole with the least aggregate workload. This algorithm

is straightforward and minimizes the disparity in aggregate workloads between processors.

This algorithm �nds an optimal distribution for workload to processors, however, actual

disparity in processor workload is dependent on the irregular sparse matrix structure. This

algorithm works best when there are minimal disparities in the workloads for independent

blocks or when there are signi�cantly more independent blocks than processors. In this

instance, the workloads in multiple small blocks can sum to equal the workload in a single

block with more computational workload.

The pseudo-factorization step incurs signi�cantly more computational cost than sym-

bolic factorization in previous sparse matrix solvers. Additionally, the ordering phase is

more costly than minimum degree ordering, and load balancing is often not explicitly consid-

ered. Consequently, block-diagonal-bordered sparse matrix solvers have signi�cantly more

overhead in the preprocessing phase, and consequently, the use of this technique will be
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limited to problems that have static matrix structures that can reuse the ordered matrix

and load balanced processor assignments multiple times in order to amortize the cost of the

preprocessing phase over numerous matrix factorizations.

6 Node-tearing Nodal Analysis

Node-tearing nodal analysis partitions a graph into independent subgraphs and a coupling

network, which corresponds to determining the diagonal blocks and lower border in a block-

diagonal-bordered form matrix. We have selected node-tearing nodal analysis because this

algorithm examines the natural structure in the matrix while providing the means to mini-

mize the number of coupling equations. Tearing here refers to breaking the original problem

into smaller sub-problems whose partial solutions can be combined to give the solution of

the original problem. Node-tearing nodal analysis is a specialized form of diakoptic analysis

[13] that was developed especially for power system network analysis [19]. In general, node-

tearing analysis is superior to conventional diakoptic analysis because node-tearing simply

orders the network graph and does not generate new nodes in the power distribution graph,

The corresponding ordered admittance matrices retain their symmetry and positive de�nite

nature. For this analysis, we are also interested in node-tearing because this algorithm

identi�es independent diagonal blocks in the matrix to generate block-diagonal-bordered

form matrices, Examples in reference [19] illustrate that the technique also has validity for

general structural analysis matrices.

6.1 The Node-tearing Algorithm

To describe node-tearing in rigorous mathematical terms, let the set N denote the nodes

of a graph G and let E denote the edges in G, or G = (N ; E). Partition the node set N into

two arbitrary subsets N1 and N2, and partition the edge set E into two subsets E1 and E2

such that:

1. E1 contains all edges in E that touch nodes in N1,

2. E2 contains all other edges of E .

Two conditions exist to ensure that the partitioned graph is suitable for tearing. The topo-

logical condition speci�es the form into which we partition the graph, and the edge-coupling

condition speci�es limits on the connectivity of edges in graph partitions. Before de�ning

the topological condition concerning the connected nature of the graph, we introduce the

concept of a section graph.
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De�nition | Section Graph Given a graph G, let S � G, then a section graph is

de�ned as:

G(S) � (S; ES); (21)

where: ES � f" 2 E j " is incident only with Sg [19].

The topological condition for graph connectivity requires that the section graph GN1

can be partitioned into m, (m > 1) disconnected sub-graphs such that:

G
1
1 � (N 1

1 ; E
1
1)

G
2
1 � (N 2

1 ; E
2
1)

...

G
m
1 � (Nm

1 ; E
m
1 ):

(22)

Given the topological condition, we can de�ne the two partitions of the node set N:

N1 � [
m
i=1N

i
1

N2 � N �N1

(23)

where:

N1 is the set of nodes in the mutually independent sub-blocks

N2 is the set of nodes in the coupling equations

In the case of block-diagonal-bordered form matrices, N1 equates to the diagonal blocks,

and N2 equates to those block-diagonal-bordered matrix rows in the lower border and the

last diagonal block.

The edge-coupling condition simply requires that the edges in E i1 are not connected

to edges in E
j
1 8 i 6= j and i; j = 1; 2; : : : ; m. Consequently, Gi1 has no edges in common

with G
j
1, 8i 6= j, and there are no edges directly interconnecting any nodes in N i

1 and N
j
1 ,

8i 6= j. Connectivity between Gi1 and G
j
1, 8i 6= j, is not direct and must go through nodes in

N2. Reference [19] contains the straight forward proof that these conditions yield a block-

diagonal-bordered form matrix when the corresponding graph G is ordered by node-tearing.

In addition to ordering matrices into block-diagonal-bordered form using node-tearing,

we require that the number of coupling equations, j N2 j, is minimized over all distinct

partitions fN1;N2g of G. The tearing optimization problem attempts to minimize j N2 j

given that:

1. the topological condition holds,

2. the edge coupling condition holds,

3. jN k
1 j � maxDB, k = 1; 2; : : : ; m.
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Figure 8: Sample Contour Tableau for the kth Diagonal Block

The last constraint for the tearing optimization problem permits some control of the maxi-

mum size of diagonal blocks, maxDB, which can prove quite useful when tearing a graph for

factoring on multi-processors. By modifying this parameter, control can be exercised over

the shape of the ordered sparse matrix | yielding narrow bandwidth blocked-diagonal-

bordered form matrices when maxDB is small and limiting the size of the borders in a

block-diagonal-bordered matrix when maxDB is large. The e�ects of varying the value of

maxDB is illustrated in section 8.2. This optimization problem belongs to the family of

NP-complete problems [19]. We expect to apply node-tearing to order large sparse matrices

into block-diagonal-bordered form, so the use of an exact exponentially-bounded-complexity

algorithm is not feasible, and the following e�cient heuristic algorithm has been developed,

The technique chosen to solve the graph optimization problem is based on examining

the contour of the graph [19], by developing a contour tableau to identify independent sub-

graphs. A contour-tableau consists of three columns as illustrated in �gure 8 and a separate

contour-tableau is developed for each diagonal block. The leftmost column contains the

iterating sets or the potential elements of a set of nodes in the sub-graph N k
1 . The middle

column contains the adjacency set, which contains the set of nodes adjacent to, but not

including any elements in the corresponding iterating set. The remaining column contains

the contour number or the cardinality of the corresponding adjacency set.

The contour tableau is constructed by selecting the initial iterating set element �1 and

placing �1 in I
k
1 . Next, all nodes adjacent to �1, �(�1), are stored in A

k
1 : then jA

k
1j is placed

in ck1. The next iterating set is constructed by forming the union of the previous iterating

set and the next iterating node:

I
k
(i+1) = I

k
i [ f�(i+1)g: (24)

The adjacency set is updated by the formula:

A
k
(i+1) = A

k
i [ �(�(i+1))� f�(i+1)g; (25)
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and

ck(i+1) = jA
k
(i+1)j: (26)

What remains to be described are the methods to select an initial node, select the next

node, and to select an independent graph partition from the contour tableau. Because the

algorithm is attempting to minimize jN2j, it can be shown that the selection of both the

initial node and the next node should always be the node with the smallest number of

adjacent nodes or select �(i+1) such that

�(�(i+1)) = min
8�2N�Ik

i

�(�) (27)

If there are ties, then a node is selected arbitrarily. Lastly, the criteria to select an indepen-

dent graph partition from the contour tableau requires identifying the iterating set Iki that

has a local minimum value of cki , i � maxDB. This selection criteria is obvious because at

any location in the contour tableau, three disjoint sets are speci�ed:

1. Iki | the iterating set,

2. Aki | the adjacency set,

3. Zki = N � I
k
i � A

k
i | the remaining nodes in G.

In this representation, no node in Iki is adjacent to a node in Zki , and A
k
i represents the

coupling equations between the two sets. The number of elements in the set Aki varies as

a function of i. One constraint in this optimization problem is to minimize the number of

coupling equations, j N2 j, so a greedy algorithm that uses the heuristic for building the kth

independent partition, N k
1 , by minimizing the cardinality of Aki should yield an acceptable

solution in a polynomial algorithm. Moreover, when a partition is selected, nodes remaining

in Aki are placed directly into the set N2,

N2 = N2 [ A
k
i (28)

because Aki represents the nodes adjacent to but not included within the set Iki . According

to the topological condition, these nodes must be part of the coupling equations.

An example illustrating the node-tearing technique is presented in appendix B.

6.2 The Node-tearing Implementation

The software implementation to perform node-tearing nodal analysis utilizes the basic con-

cept of building a contour tableau to identify independent sub-matrices and the coupling

equations in an undirected graph representing a sparse matrix. In our implementation,

the search for the local minimum of the contour number is limited to within the range
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G  the symmetric graph representing the sparse matrix

while G 6= � do

while i � maxDB do

select �i 2 A
k
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Figure 9: The Node-Tearing Algorithm

(� �maxDB) � i � maxDB, 0 < � < 1. When an independent sub-matrix is found, this

iterating set is moved into a set N k
1 , where j N

k
1 j= i. After the sets N1 = fN

1
1 ; : : : ;N

m
1 g

and N2 are determined, the equations corresponding to the sets N 1
1 ; : : : ;N

m
1 and N2 are

further ordered using the minimum-degree ordering algorithm.

Figure 9 illustrates the major steps in the node-tearing ordering algorithm that produces

block-bordered-diagonal form matrices with minimized �llin. The algorithm examines all

nodes essentially once, where the size of the independent sub-blocks are limited to maxDB.

The computational complexity of this algorithm is

O(max
8 i
jA

k
i j � n) (29)

due to the fact that all nodes in the graph must be examined, and for each element in the

contour tableau | all elements of the adjacency set must be examined for the next node.

The value of max8 i jA
k
i j must be less than n, and because the graphs will be sparse, the

maximum number in the adjacency set will be substantially less than n.
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7 Sparse Matrix Solver Implementations

Implementations of a block-diagonal-bordered sparse Choleski solver have been developed

primarily in the C programming language for the Thinking Machines CM-5 multi-computer

using message passing and a host-node paradigm. Portions of our implementation use

existing FORTRAN routines to factor and solve the last diagonal block of the matrix. A

version of the software is available that runs on a single processor on the CM-5 to provide

empirical speed-up data to quantify multi-processor performance. Empirical performance

data has been gathered for a range of numbers of processors and real power systems sparse

load-ow matrices. This empirical data is presented in the next section. Our block-diagonal-

bordered sparse Choleski solver can be viewed as having the following distinct sections where

blocks are de�ned in section 4:

1. Choleski factorization

� factor the mutually independent diagonal blocks and associated portions of the

border | Ai;i = Li;iL
T
i;i and Am;i = Lm;iL

T
i;i for (1 � i � (m� 1))

� update the last diagonal block using the data in the borders |

Am;m = Am;m �
P(m�1)
i=1 Lm;iL

T
m;i

� factor the last diagonal block | Am;m = Lm;mL
T
m;m

2. forward reduction

� calculate the y vector partition corresponding to the mutually independent

diagonal blocks | yi for (1 � i � (m� 1))

� update the b vector partition corresponding to the last diagonal block |

bm = bm �
P(m�1)
i=1 yiLm;i

� calculate the y vector partition corresponding to the last diagonal block | ym

3. backward substitution

� calculate the x vector partition corresponding to the last diagonal block | xm

� calculate the x vector partition corresponding to the mutually independent di-

agonal blocks | xi for ((m� 1) � i � 1)

The parallel implementation presented in this section has been developed as an instru-

mented proof-of-concept to examine the e�ciency of each section of the code described

above. The host processor is used to gather and tabulate statistics on the multi-processor

calculations. Statistics are gathered in a manner that do not impact the total empirical

measures of performance for factorization, forward reduction, or backward substitution.
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The last diagonal block can be factored in various manners, using either parallel dense or

parallel sparse codes. Because the last block is generally relatively dense, this parallel im-

plementation uses a parallel dense pipelined blocked kij-saxpy-based Choleski factorization

algorithm. This algorithm uses both LAPACK and generalized BLAS routines for this por-

tion of the algorithm [6]. When this algorithm is run on a single processor, a dense Choleski

factorization algorithm from the LAPACK library and non-blocked forward reduction and

backward substitution are utilized.

7.1 The Hierarchical Data Structure

This block-diagonal-bordered sparse Choleski solver uses implicit hierarchical data struc-

tures based on vectors of C programming language structures to e�ciently store and retrieve

data for a symmetric block-diagonal-bordered sparse matrix. These data structures provide

good cache coherence, because non-zero data values and row and column location indicators

are stored in adjacent physical memory locations. This data structure is static, consequently,

the locations of all �llin must be determined before memory is allocated for the data struc-

tures. There is no requirement for pivoting in Choleski factorization algorithms because

the sparse matrices are by de�nition positive de�nite and numerically stable. Due to the

static nature of the data structure, explicit pointers to subsequent data locations have been

used in order to reduce indexing overhead. Row location indicators are explicitly stored as

are pointers to subsequent values in columns that are required when updating values in the

matrix. The use of additional memory in the data structures is traded for reduced index-

ing overhead. Modern distributed memory multi-processors are available with substantial

amounts of random access memory at each node, so this research examines data structures

that are designed to optimize processing speed at the cost of increased memory usage when

compared to other compressed storage formats. We compare the memory requirements for

these data structures to the memory requirements for the more conventional compressed

data structures below.

The hierarchical data structure is composed of �ve separate parts that implicitly store

a block-diagonal-bordered sparse matrix. The hierarchical nature of these structures store

only non-zero values, especially in the borders where entire rows may be zero. Five separate

C language structures are employed to store the data in a manner that can e�ciently be

accessed with minimal indexing overhead. Static vectors of each structure type are used

to store the block-diagonal-bordered sparse matrix. Figure 10 graphically illustrates the

hierarchical nature of the data structure, where the �ve separate C structure elements

presented in that �gure are:

1. diagonal block identi�ers,
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Figure 10: The Hierarchical Data Structure

2. matrix diagonal elements,

3. non-zero values in the lower triangular diagonal matrix blocks (arranged by rows),

4. non-zero row identi�ers in the lower border,

5. non-zero values in the lower border (arranged by rows),

At the top of the hierarchical data structure is the information on the storage locations

of independent diagonal blocks, and the lower borders. The next layer in the data structure

hierarchy are the matrix diagonal and the identi�ers of non-zero border rows. Data values

on the original matrix diagonal are stored in the diagonal portion of the data structure,

however, most of the remaining information stored along with each diagonal element are

pointers so that data in related columns or rows can be rapidly accessed.

Data in the strictly lower triangular portion of the matrix is stored as sparse row vec-

tors. This data storage scheme minimizes the e�ort to �nd non-zero Ai;k | Aj;k pairs used

to modify Ai;j by consecutively storing values in lower triangular rows. However, column-

oriented Choleski factorization algorithms require access to the next non-zero value in the

same column, so pointers are used to permit direct access to those values without requiring

searching for the data as is required in compressed storage formats. This data structure pro-

vides the bene�ts of a doubly linked data structure in order to minimize indexing overhead.

The value corresponding to any diagonal element has pointers to the �rst non-zero element

in the lower triangular row and to the �rst non-zero element in the lower border. This data

structure trades memory utilization for speed by storing indicators to all non-zero column

values. In addition, the combination of adjacent storage of non-zero row values and the
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explicit storage of column identi�ers, greatly simplify the forward reduction and backward

substitution steps.

Conventional compressed data formats require less storage than this data structure; how-

ever, additional memory has been traded for reduced indexing overhead. The compressed

data format requires

Sc = (�fp+ �int)� �(A) + (�int � n) (30)

bytes to store the A matrix implicitly. Likewise, the hierarchical data structure used in this

implementation requires

Sh = (�fp+ (3� �int))� �(A) + (�int � n) + ((3� �int)�Nblocks) + (�int �Nborder) (31)

bytes to store the same matrix implicitly.

where:

Sc is the storage requirements in bytes for the compressed data structure.

Sh is the storage requirements in bytes for the hierarchical data structure.

�fp is the length if a oating point data type.

�int is the length if an integer data type.

�(A) is the number of non-zero values in the matrix.

n is the order of the matrix.

Nblocks is the number of independent blocks.

Nborder is the number of non-zero row and column segments in the borders.

For double precision oating point or single precision complex representations of the actual

data values and single word integer representations of all pointers, the hierarchical data

structure takes approximately twice the data storage of the compressed data structure. By

doubling the storage requirements, row data is available in sparse vectors for ready access

when updating a column value and subsequent values in the column are directly addressable.

When using conventional compressed data structures, indexing information is stored only

on a single dimension and values along the other dimension must be found by searching

through the data structures to �nd the next values to update. To �nd a value in a row or

column, the average number of operations in the search will be one-half the average number

of values in the row or column. Given that this costly search must be performed for nearly

every non-zero value in the matrix, substantial indexing overhead is required when using the

implicit compressed storage format. By using this data structure and doubling the storage,

there is a signi�cant decrease in indexing overhead.
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7.2 The Parallel Algorithm

Implementation of the parallel block-diagonal-bordered sparse matrix solver has been de-

veloped primarily in the C programming language for the Thinking Machines CM-5 multi-

processor using a host-node paradigm with message passing. A pseudo-code representation

of the Choleski factorization algorithm is presented in �gure 11. The same implicit hierar-

chical data structure used in the parallel implementation can be readily used in a sequen-

tial implementation, although the sparse matrix data is no longer physically allocated to

the distributed memory located with the various processors. This block-diagonal-bordered

Choleski factorization implementation solves the last block using a dense blocked kij-saxpy

Choleski algorithm [28]. E�orts have been relatively successful to minimize the size of the

last diagonal block; consequently, this block is relatively dense | often 20% to 35% dense.

The reduced indexing overhead and regularity in data access justify the use of parallel dense

Choleski algorithms for this relatively small partition of the overall matrix.

By distributing the factorization of the last block to all active node processors, partial

sums of updates for values in the borders in the second phase of the factorization step must

also be distributed to all processors. Only those nonzero rows in the last block are examined

when calculating the required partial sum values, which signi�cantly limits the amounts of

calculations in this phase. In order to minimize communications times in this factorization

step, care is taken to minimize the length of the interprocessor communications messages;

and separate vectors containing only information for a particular processor are sent to each

machine. Because of the sparsity of the rows in the border, there has been no attempt at

parallel reduction of the partial sums of updates from the borders.

The remaining steps in the parallel algorithm are forward reduction and backward substi-

tution. The parallel version of these algorithms take advantage of the fact that calculations

can be performed in one of two distinct orders that preserve the precedence relation in the

calculations. The combination of these techniques is utilized to minimize communications

times when solving for the last diagonal block. Pseudo-code versions of the algorithms for

parallel forward reduction and parallel backward substitution are presented in �gures 12

and 13 respectively.

8 Empirical Results

A stated goal of this block-diagonal-bordered Choleski solver is to simplify the task organiza-

tion of the parallel Choleski algorithm and have interprocessor communications signi�cantly

reduced and regular. The performance of this block-diagonal-bordered Choleski solver is de-

pendent on the ability to order the real power systems sparse matrices into the appropriate
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Node Program

/* factor the independent blocks and corresponding borders */

for those independent blocks l assigned to this processor

for all elements k along the diagonal in block l

Update the kth column in the lth lower diagonal block

Update the kth column in the lth lower border section

endfor

endfor

/* calculate updates to the last block */

for those independent blocks l assigned to this processor

for all non-zero rows i2

for all non-zero rows i1 such that i1 � i2

for each j such that Li1;j and Li2;j 6= 0

p P(i1; i2) /* the function P() maps the (i1; i2) tuple to the processor location p */

�i1;i2;p  �i1;i2;p + (Li1;j � Li2;j)

endfor

endfor

endfor

endfor

/* update the last block */

for all processors ip

if (ip == me)

for all processors jp starting with (ip + 1) around a ring in ascending order

Send the sparse vector of partial sums

endfor

Update the data in the last diagonal block on this processor

end if

Receive the sparse vector of partial sums

Update the data in the last diagonal block on this processor

endfor

/* factor the last block */

Factor the last diagonal block using a parallel blocked kij-saxpy dense Choleski algorithm

Figure 11: Parallel Block-diagonal-Bordered Sparse Choleski Factorization
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Node Program

/* reduce the independent blocks */

for all independent blocks l assigned to this processor

for all rows i in block l

yi  (bi=Li;i)

Update bi using yj and Li;j values in the independent diagonal blocks

endfor

endfor

/* calculate updates to the last block */

for all independent blocks l assigned to this processor

for all non-zero rows i in the lower border of this block

for each j such that Li;j 6= 0

p P(i1; i2) /* the function P() maps the (i1; i2) tuple to the processor location p */

�i;p  �i;p + (yi � Li;j)

endfor

endfor

endfor

/* update the last block */

for all processors ip

if (ip == me)

for all processors jp starting with (ip + 1) around a ring in ascending order

Send the sparse vector of partial sums

endfor

Update the data in the last diagonal block on this processor

end if

Receive the sparse vector of partial sums

Update the data in the last diagonal block on this processor

endfor

/* reduce the last block */

Forward reduce the last block using a parallel blocked algorithm

Figure 12: Parallel Sparse Forward Reduction
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Node Program

/* backward substitute the last block */

Backward substitute the last block using a parallel blocked algorithm

Broadcast the x-values to the node processors as blocks are substituted

/* backward substitute in the independent blocks and the border */

for all independent blocks l in descending order

for all rows i in block l

Update yj using xj and Lj;i values in the border

xi  (yi=Li;i)

Update yj using xi and Uj;i values in the independent diagonal blocks

endfor

endfor

Figure 13: Parallel Sparse Backward Substitution

form with both uniformly distributed data in the diagonal blocks and a minimum number

of equations on the lower border. In this section of the paper, we �rst examine the perfor-

mance of the Choleski solver for generated test data that has perfect load balance, in order

to understand the performance potential of the block-diagonal-bordered Choleski solver.

We then report on the performance of the node-tearing nodal analysis and the performance

of the block-diagonal-bordered sparse Choleski solver. In section 8.2, we illustrate the

ordering capabilities of the node-tearing nodal analysis by presenting both pseudo-images

of selected sparse load-ow matrices and data collected on the load imbalance as a function

of the number of processors. But the real performance test of the node-tearing algorithm

will occur when the performance of the block-diagonal-bordered sparse Choleski solver is

examined for real power system load-ow matrices in section 8.3.

8.1 Empirical Results | Sparse Choleski Solver with Machine Generated

Test Data

The �rst step in understanding the performance potential of this block-diagonal-bordered

Choleski solver is to examine the parallel algorithm performance with machine generated

test data that has perfect load balance for all processors. This data has equal numbers of

calculations in diagonal-blocks to eliminate requirements for load balancing. The pattern

of the matrices is a recursive block-diagonal-bordered form as illustrated in �gure 14. This

�gure depicts the sparsity structure in the test matrix, where non-zero values are black
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Figure 14: Machine Generated Test Matrix

and the remainder of the matrix is comprised of zero-values. A bounding box has also

been placed around the example matrix. This matrix has been used in tests to examine

speedup and sources of parallel processing overhead. The block-diagonal-bordered Choleski

solver has been run on this machine generated matrix using one to sixteen processors on

the Thinking Machines CM-5. This matrix has sixteen separate major diagonal blocks,

each with 128 diagonal elements. The last diagonal block also has 128 diagonal elements,

with eight columns per diagonal block in the lower border. The size of this matrix was

chosen to be similar to the BCSPWR09 test matrix, although it has a substantially higher

computational complexity than the BCSPWR09 matrix, O(N1:85) versus O(N1:38)

Performance data have been collected for distinct operations in the factorization and

triangular solution of block-diagonal-bordered matrices to examine the speedup of each

portion of the algorithm. Data was collected in such a manner as not impact the overall

measures of performance. Performance of the multi-processor algorithms are illustrated

using graphs plotting relative speedup versus the number of processors (one to sixteen).

De�nition | Relative Speedup Given a single problem with a sequential algorithm

running on one processor and a concurrent algorithm running on p independent processors,

relative speedup is de�ned as

Sp �
T1

Tp
; (32)

where T1 is the time to run the sequential algorithm as a single process and Tp is the time

to run the concurrent algorithm on p processors.
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Figure 15: Speedup for Generated Test Data | 2, 4, 8, and 16 Processors

A graph of speedup calculated from empirical performance data for the test matrix is

provided in �gure 15. This �gure has a family of three curves that show speedup for:

1. Choleski factorization

2. forward reduction and backward substitution (triangular solve)

3. a combination of factorization and a single forward reduction and backward substitu-

tion

In general this speedup graph shows that the block-diagonal-bordered Choleski solver has

signi�cant potential for e�cient operations, because speedups of over eleven were obtained

with sixteen processors. This equates to a processor utilization e�ciency of 70%. When

examining the runtime timing data for each processor, near perfect speedup (speedup equal

to the number of processors) is not achieved because of overhead that occurs during those

portion of the algorithm that use asynchronous pipelined communications. The following

sections of the block-diagonal-bordered Choleski solver use asynchronous pipelined commu-

nications:

� the update of data in the last block using data from the lower border

� the dense blocked kij-saxpy based Choleski factorization of the last block

� the update of data in the b-vector partition using data from the lower border

� the forward reduction of the last block

� the backward substitution of the last block
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Figure 16: Speedup for Choleski Factorization Algorithm Components | 2, 4, 8, and 16

Processors

As a result of the regularity in this test matrix, it is possible to examine the performance

of each portion of the parallel block-diagonal-bordered Choleski factorization algorithm. A

graph illustrating speedup calculated from the empirical performance data is presented in

�gure 16. In this graph, the speedup for factorization of the diagonal blocks show perfect

speedup, which is not unexpected because there is no communications in this step. How-

ever, the measured speedup for the two sections of the Choleski factorization algorithm that

require communications, is not as impressive, due to communications overhead. As we use

more processors, there is more communications and less work for each processor. It takes

longer to �ll communications pipelines and there are less calculations per processor to help

mitigate the cost of communications. Consequently, there are performance limits to this

algorithm. These limits are not a function of a sequential component of the parallel calcu-

lations (Amdahl's Law) [7], but rather the limits are a function of what percentage of the

calculations are perfectly parallel and what percentage of the calculations have asymptotic

performance limits due to communications overhead.

Parallel block-diagonal-bordered Choleski factorization algorithm performance can be

viewed as a linear combination of the individual performance of these three portions of the

algorithm.

Sp = (�DB � SDB;p + (�U � SU;p) + (�LB � SLB;p) (33)

where:

Sp is the p processor speedup for block-diagonal-bordered Choleski factorization.

SDB;p is the p processor speedup for factoring of the diagonal blocks.

SU;p is the p processor speedup for updating the data in the last block using data in the border.

SLB;p is the p processor speedup for factoring the last block.
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�DB is the fraction of time spent factoring of the diagonal blocks.

�U is the fraction of time spent updating the data in the last block using data in the border.

�LB is the fraction of time spent factoring the last block.

�DB + �U + �LB = 1

Our empirical data shows that SpDB � p because this step has no communications, so

the performance of this factorization algorithm on a problem using other block-diagonal-

bordered sparse matrices can be estimated as a function of the percentage of calculations in

the diagonal blocks. Similar analyses can be performed for forward reduction and backward

substitution. Parallel performance of those sections of the triangular solution algorithms

that require pipelined communications will have less speedup potential than the triangular

solution of data in the diagonal blocks. Unfortunately, the calculations in the diagonal

blocks for the triangular solution will be of a lesser computational complexity than the

calculations in the factorization step. Consequently, poorer parallel performance, lower

speedup, would be expected in forward reduction and backward substitution than can be

obtained in block-diagonal-bordered factorization.

There are two basic forms of communications used in this algorithm.

1. Pipelined broadcasts for those portions of the algorithm that factor or solve the last

diagonal block

2. Pipelined, asynchronous, everyone-to-everyone communications in both factorization

and forward reduction when sums of matrix � matrix products or vector � matrix

products from data in the lower border are used to update the last diagonal block or

the b-vector partition associated with the last diagonal block.

In both instances, the pipelined communications appears to data-starve and not hide com-

munications behind the calculations. This is not surprising in the forward reduction of

the last block, but this phenomenon also occurs in the block factorization step. Experi-

ments with adjusting the block size o�ered little improvement. While the communications

have been made regular in the other communications steps, it appears that communica-

tions times are so large relative to calculations in the same processing step, that little

bene�t can be made of hiding communications behind calculations. Further research into

other asynchronous communications techniques such as active messages [21] may be able to

signi�cantly improve performance in this area.

This analysis has been performed on data that had no load imbalance overhead. Ad-

ditional sources of overhead would degrade potential performance of the algorithm [7]. We

have discussed the e�ects of communications overhead, nevertheless, other sources of par-

allel processing overhead are possible. They include indexing overhead and load imbalance
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overhead. Indexing overhead is the extra computational cycles required to set up loops

with multiple processors. Care has been exercised in the development of this algorithm

to minimize indexing overhead. While it is not possible to eliminate the cost of repeat-

ing the process of setting up loops on each processor, the amount of calculations required

to keep track of the values as a function of individual multi-processors can be minimized.

Many of the sources of indexing overhead have been accounted for in the preprocessing

stage that prepares a matrix form for processing by this algorithm. The computational

cost of the preprocessing stage is expected to be amortized over multiple uses of the block-

diagonal-bordered Choleski, thus the costs incurred in this stage are not addressed here.

Load imbalance overhead is also addressed in the preprocessing stage, although the sources

of load imbalance overhead are a function of the interconnections in the real data sets. In

the preprocessing phase, we use load-balancing to attempt to order the data as to minimize

this source of overhead in our parallel algorithm. We will show in section 8.3 that even with

attempts at load balancing, this source of overhead cannot be entirely removed.

8.2 Empirical Results | Ordering

Performance of our block-diagonal-bordered Choleski solver will be analyzed with three

separate power systems matrices:

� Boeing-Harwell matrix BCSPWR09 | 1723 nodes and 4117 edges in the graph [5]

� Boeing-Harwell matrix BCSPWR10 | 5300 nodes and 13571 edges in the graph [5]

� data obtained from Niagara Mohawk Power Corporation | 9430 nodes and 14001

edges in the graph

Matrices BCSPWR09 and BCSPWR10 are from the Boeing Harwell series and represent

real electrical power system networks from the Western and Eastern US respectively. These

matrices have an edge-to-node-ratio of approximately 2.5. The data obtained from the

Niagara Mohawk Power Corporation is substantially sparser, with an edge-to-node-ratio of

only 1.5. While this data has more nodes than either of the Boeing-Harwell matrices, the

reduced sparsity equates to lesser calculations than the BCSPWR10 matrix.

A detailed ordering analysis has been performed on the BCSPWR09 data to illustrate

the ability of the node-tearing ordering algorithm. To contrast the performance of this

ordering technique, �gure 17 illustrates a minimum degree ordering of the BCSPWR09

matrix without ordering. Note that the matrix is the most sparse in the upper left-hand

corner, while the matrix is less sparse in the lower right-hand corner. When factoring

this matrix, the number of zero values that become non-zero while factoring the matrix,

is 2,168. Original nonzero values are represented in this �gure in black, �llin locations are
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Figure 17: Minimum Degree Ordering | BCSPWR09

represented in gray, and all remaining zero values are white. A bounding box has been

placed around the sparse matrix. Our block-diagonal-bordered Choleski solver requires

that the BCSPWR09 matrix be ordered into block-diagonal-bordered form with uniformly

distributed workload at each of the processors. A single speci�ed input parameter, the

maximum partition size, de�nes the shape of the matrix after ordering using the node-

tearing algorithm. Examples of applying the node-tearing algorithm to the BCSPWR09

matrix are presented in �gures 18, 19, and 20 respectively for maximum diagonal block

sizes (maxDB) of 32, 64, and 128 nodes. The number of �llin for these block-diagonal-

bordered form matrices is 2,765, 3,248, and 3,838 respectively, with a substantial portion

of the �llin occurring in the lower right-hand corner, or the last diagonal-block.

The general performance of node-tearing-based ordering is dependent on the maximum

number of nodes in a diagonal block, and the intended number of processors to which

the mutually independent diagonal blocks will be distributed. The number of coupling

equations and the size of the last block is dependent only on the maximum number of

nodes in a diagonal block, which is illustrated in �gure 21. Note that the maximum size

of the diagonal blocks is inversely related to the size of the last diagonal block. This is

intuitive, because as diagonal matrix blocks are permitted to grow larger, multiple smaller

blocks can be incorporated into a single block. Not only will the two blocks be consolidated

into the single block, but in addition, any elements in the coupling equations that are unique

to those network partitions could also be moved into the larger block. Another interesting
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Figure 18: Node-Tearing-Based Ordering | BCSPWR09 | maxDB = 32

Figure 19: Node-Tearing-Based Ordering | BCSPWR09 | maxDB = 64
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Figure 20: Node-Tearing-Based Ordering | BCSPWR09 | maxDB = 128

point with the relationship between maximum size of the diagonal block and the size of the

last block, is that the percentage of non-zeros and �llin in the last diagonal block increases

signi�cantly as the size of the last block decreases. This makes the use of parallel dense

Choleski factorization techniques even more desirable for the last diagonal block when the

selection of the maximum size of the diagonal blocks is chosen to minimize the size of the

last diagonal block.

It is desirable to minimize the size of the last block, but this can cause load imbalance as

the number of processors increases. Load imbalance is de�ned as the ratio of the di�erence of

the maximum and minimum numbers of oating point operations divided by the maximum

number of oating point operations per processor and illustrates the percentage of time

that the processor with the least amount of work is inactive. Families of curves illustrating

load imbalance as a function of the number of processors is presented in �gure 22. The load

imbalance data presented in this �gure are calculated only for the number of operations

required to calculate the Choleski factor of the matrix. For all ordering with di�erent size

diagonal blocks, there is perfect load-balancing for four processors, however, as the number

of processors increases, so does load imbalance.

For the BCSPWR09 matrix, we have selected a maximum diagonal block size of 128 as

the trade-o� between load balance and minimum size of the last block. Figure 23 depicts

a reordered version of the matrix presented in �gure 20 with diagonal blocks assigned to a

processor ordered to make those blocks contiguous. The ordering of the matrix to reect
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Figure 23: BCSPWR09 | Load Balancing on Factoring | 4 Processors

contiguous diagonal blocks within each processor is performed by simple row and column

exchanges, and has no e�ect on either the positive de�nite nature of the matrix or on the

number of �llin. This is just a modi�cation to the permutation matrix used in equation 5. In

this �gure, the measure of merit for the pigeon-hole load balancing algorithm is the number

of factorization (multiply and addition) operations. In contrast, �gure 24 depicts the same

matrix after node-tearing with the exception that the load balancing has been performed

as a function of the number of multiply and addition operations encountered in forward

reduction and backward substitution. Note the obvious di�erences in block assignments

to processors P2 and P4. In �gures 23 and 24, the assignments of matrix partitions to

processors have been denoted. Figure 25 presents plots of load imbalance verses numbers

of processors for the BCSPWR09 matrix ordered with a maximum of 128 nodes. Two load

imbalance curves are presented | one for load balancing on the number of calculations in

the factorization step and the second curve represents load-imbalance for load balancing

on the number of calculations in the triangular solution phase. The number of processors

range from two through 32 and it is clear that the load imbalance becomes signi�cant for

greater than eight processors. This graph shows that there is only a signi�cant amount

of additional load imbalance encountered for eight processors. Load imbalance for other

numbers of processors is quite similar.

Similar ordering analyses have been performed for the BCSPWR10 and Niagara Mohawk

load ow matrices. Examples of these matrices after applying the node-tearing algorithm
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Figure 24: BCSPWR09 | Load Balancing on Triangular Solutions | 4 Processors
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Figure 25: Load Imbalance for Factoring BCSPWR09
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Figure 26: BCSPWR10 | Load Balancing on Factoring | maxDB = 256 | 4 Processors

and ordering both into block-diagonal-bordered form and for load-balancing are presented

in �gures 26 through 28. Figure 26 illustrates the block-diagonal-bordered form achievable

when ordering the BCSPWR10 matrix with maximum block size of 256, while �gures 27

and 28 illustrate the block-diagonal-bordered matrix form achievable when ordering the

Niagara Mohawk data for maximum block sizes of 256 and 512 nodes respectively. The

number of graph nodes or diagonal elements in the BCSPWR10 and Niagara Mohawk

matrices are 5300 and 9430 respectively. The BCSPWR10 matrix in �gure 26 has 476

equations in the lower border and last block while the Niagara Mohawk matrices in �gures 27

and 28 have 402 and 313 equations in the coupling equations respectively. These graphs

illustrate load balancing for four processors based on the number of calculations to perform

the factorization. The Niagara Mohawk power system network graphs are similar to the

BCSPWR09 power system graph in that they can be readily ordered into block-diagonal-

bordered form, there are some interesting and substantial di�erences. Summary statistics

are presented in table 1 for the three matrices and various maximum diagonal block sizes.

The BCSPWR10 matrix has substantially more edges per node than the BCSPWR09

matrix, which results in a signi�cantly greater computational complexity for the factoriza-

tion of the matrix. Meanwhile, the computational complexity of the triangular solution (4)

is similar to the BCSPWR09 matrix. Greater computational complexity means more work,

and if that work can be distributed uniformly to all processors, then there is the potential

for greater parallel implementation e�ciency. Our goal is to develop scalable algorithms
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Figure 27: Niagara Mohawk Data | Load Balancing on Factoring | maxDB = 256 | 4

Processors
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Figure 28: Niagara Mohawk Data | Load Balancing on Factoring | maxDB = 512 | 4

Processors
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Last 4

Graph Nodes Edges maxDB Fillin Block Factor Solve

BCSPWR09 1,723 4,117 32 2,765 190 O(N1:31) O(N1:21)

64 3,248 153 O(N1:35) O(N1:22)

128 3,486 128 O(N1:38) O(N1:23)

BCSPWR10 5,300 20,596 128 26,234 578 O(N1:51) O(N1:23)

256 29,420 476 O(N1:55) O(N1:24)

512 38,880 511 O(N1:62) O(N1:24)

NiMo 9,430 14,001 128 20,398 553 O(N1:22) O(N1:19)

256 20,706 402 O(N1:30) O(N1:20)

512 21,375 313 O(N1:31) O(N1:20)

Table 1: Summary Statistics

for Choleski factorization; however, parallelism in sparse Choleski algorithms is heavily de-

pendent on the available parallelism in the actual sparse matrix. In section 8.3, it will be

shown that the additional computations in BCSPWR10 (when compared to BCSPWR09)

permits reasonable e�ciencies when factoring this matrix with four processors. Meanwhile,

the solver for BCSPWR09 simply does not have adequate calculations to overcome the

e�ects of limited amounts of calculations.

The matrix from Niagara Mohawk, labeled NiMo in table 1, has similar computational

complexity as BCSPWR09, however, it has nearly 5:5 times as many diagonal elements and

4:7 times as many non-zero elements and �llin. Careful examination of �gures 27 and 28

show that for four processors, the load balancing has placed a single diagonal block on one

of four processors. This block has only 247 nodes, however, it has 62% of the factorization

operations. The computation complexity of this block is O(N2:08) for factorization and

O(N1:61) for the triangular solution phase. It is possible to divide that diagonal matrix

block by decreasing the maximum size of the diagonal blocks, Unfortunately, when the

maximum size of a diagonal block is reduced from 247 to 128, two situations arise that

generate less than optimal solutions. First, the size of the last block increases by 77%,

which increases the number of computations in the last block by over 550%. While the last

diagonal block is solved in parallel, the pipelined parallel dense Choleski solver used is not

su�ciently scalable to be able to overcome such a large increase in number of operations

by applying additional processors. Second, even when the size of the diagonal blocks are

limited to a size that forces this block in question to be divided into separate matrices, the

number of operations in a single block remains 31% of the total number of operations in the
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diagonal blocks and borders. Load imbalance would occur at greater than three processors.

Further examination of table 1 shows that the computational complexity of the forward

reduction and backward substitution phases are similar in magnitude regardless of the choice

of matrix. It is di�cult to obtain good speedup on large multi-processors for algorithms

with strong precedence in the calculations, especially when the computational complexity

is so close to unity.

8.3 Empirical Results | Sparse Choleski Solver

The performance of the block-diagonal-bordered Choleski algorithm was tested with the

following maximum diagonal block size for the respective matrices:

� BCSPWR09 | maxDB = 128

� BCSPWR10 | maxDB = 256

� Niagara Mohawk data | maxDB = 512

Examples of each of these block-diagonal-bordered sparse matrices were presented in sec-

tion 8.2 with load balancing for four processors. These ordered matrices have been used

because they o�ered the best performance for a particular load-ow matrix. Performance

data has been collected for individual operations to examine the speedup of each distinct

portion of the algorithm. The data was collected in such a manner as to have no impact on

the overall measures of performance. Performance data has been collected while running

the sparse block-diagonal-bordered solver on from one to sixteen CM-5 node processors.

Performance of the multi-processor algorithms are illustrated using graphs plotting rela-

tive speedup versus the number of processors. Relative speedup has been de�ned above in

section 8.1.

Graphs of speedup calculated from empirical performance data are provided in �gures 29

through 31 for the three matrices. Each �gure has a family of three curves that show speedup

for:

1. Choleski factorization

2. forward reduction and backward substitution

3. factorization and a single forward reduction and backward substitution

In general these speedup graphs illustrate that for the real power system load-ow matrices

from the Boeing-Harwell series and the Niagara Mohawk data, speedup appears to be limited

to approximately 2.7 regardless of the number of processors used to solve the problem.

Careful analysis of the performance data shows that the following data trends.
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Figure 29: Speedup for BCSPWR09 Data | 2, 4, and 8 processors
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Figure 30: Speedup for BCSPWR10 Data | 2, 4, 8, and 16 processors
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Figure 31: Speedup for Niagara Mohawk Data | 2, 4, 8, and 16 processors
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For all three matrices, the performance data showed no signi�cant di�erence between

load balancing on the number of operations in factorization or the number of operations

in the triangular solution. The time to factor, forward reduce, or backward substitute the

data in the last diagonal block dominates the calculations for these matrices because of the

low order of computational complexity in the diagonal block partitions of the matrix. These

algorithms use pipelined communications that data-starve quickly with the small sizes of

the last diagonal blocks. On the other hand, solutions with di�erent values of the maximum

diagonal block size yield larger last diagonal blocks. However, while better speedups are

achieved, the actual run times are not improved.

The performance of the block-diagonal-bordered sparse Choleski solver using the BC-

SPWR10 matrix shows some improvement when compared to the solver performance on

the BCSPWR09 matrix. The additional operations in the BCSPWR10 matrix permit im-

provements in speedup and e�ciencies of 60% for four processors, although speedup remains

nearly constant while additional processors are used. The Niagara Mohawk data o�ered

a considerably larger matrix, although the number of calculations were less than the BC-

SPWR10 matrix and this matrix su�ered from load imbalance even for four processors.

The time to factor the mutually independent diagonal blocks showed that this portion of

the calculations are embarassingly parallel for the two matrices from the Boeing-Harwell

series. In the Niagara Mohawk data, the time to factor the the mutually independent blocks

stays constant for four or more processors. As discussed above, attempts at selecting the

maximum size of the diagonal blocks to minimize the load imbalance caused the size of the

last diagonal block to increase so signi�cantly that subsequent execution times were greater

than for a matrix ordering that su�ered with load imbalance.

9 Conclusions

In general, solving load-ow matrices from real-power systems has proven to be a very di�-

cult challenge for parallel sparse Choleski solvers. As we have illustrated, the computational

complexity of the actual data matrices is su�ciently low, even for matrix factorization, that

the speedup performance of the parallel block-diagonal-bordered Choleski solver is limited

by computational starvation and in some instances, load imbalance.

In this paper we present research into parallel block-diagonal-bordered sparse Choleski

factorization algorithms developed with special considerations to irregular sparse matrices

originating in the electrical power systems community. Available parallelism in the block-

diagonal-bordered matrix structure o�ers promise for simpli�ed implementation and also

o�ers a simple decomposition of the problem into clearly identi�able subproblems. Parallel

block-diagonal-bordered Choleski solvers require a three step preprocessing phase that is
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reusable for static matrices. The matrix is ordered into block-diagonal-bordered form,

pseudo-factored to identify the location of all �llin and obtain operations counts in the

mutually independent diagonal blocks and corresponding portions of the borders, and the

load-balanced to uniformly distribute operations (when possible).

We developed an implementation that o�ered e�ciencies of 60% for Choleski factor-

ization with four processors, although the implementation was not e�cient beyond four

processors with any of the power system load-ow matrices examined. Further exami-

nations into techniques to better solve the last diagonal block could signi�cant improve

performance. While a dense Choleski solver was used in this implementation, due to the

available parallelism in block-diagonal-bordered form matrices, any technique can be used

to solve this sub-matrix, including iterative techniques.

The parallel block-diagonal-bordered Choleski algorithm, presented in this paper, ad-

dresses one of the most di�cult power systems applications to implement on a multi-

processor. Load-ow has the smallest matrices and the fewest calculations due to sym-

metry and lack of requirements for pivoting to ensure numerical stability. In the near

future, we will investigate applying block-diagonal-bordered LU factorization to transient

stability analysis simulations. These matrices have substantially more available parallelism

due to the increased number of the diagonal blocks corresponding to the addition of the

generator equations to the block-diagonal-bordered network equations.
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A Minimum-Degree Ordering

Minimum-degree ordering has been used in our research in a two-fold manner:

1. to order symmetric power system admittance matrices to provide baseline orderings

with which to compare the performance of other ordering techniques

2. to order the independent sub-matrices in recursive spectral bisection and node-tearing

ordering techniques

Minimum degree ordering is a greedy algorithm that selects a node with a minimum number

of connected edges in the graph for factoring next. This algorithm is not optimal because

truly e�cient techniques do not exists to resolve ties and numerous rows have equal numbers

of elements. The minimum-degree ordering algorithm is based on the iterative application

of the following equation to solve for i for all rows in a matrix:

r
(k)
i = min

t
r
(k)
t ; (34)

where:

r
(k)
i is the number of variables in row i when factoring the kth row.

r
(k)
t is the number of variables in row t when factoring the kth row

When factoring the kth row, the row with the minimum number of variables is selected,

moved by elementary row and column exchange rules to the kth row, and then factored.

Algorithms to implement this iterative formula are best described using the graph theoret-

ical explanation of �llin presented in �gure 5. Let G be an undirected graph and � a node

in G, then let �G(�) describe the set of nodes adjacent to � and let j�G(�)j represent the

degree of node �. The last concept required to develop a concise minimum-degree algorithm

is the concept of an elimination graph [12]. Given a graph G, the elimination graph G� is

the resulting graph after the node � is factored. Elimination graphs get their name because

of the close relationship of LU factorization and Gaussian elimination. The rudimentary

minimum-degree algorithm used throughout this work is presented in �gure 32. The outer

loop examines each node in the graph, and the inner loop searches through all remaining

nodes in the present graph to select a node with the minimum degree. After a minimum-

degree node is selected, the edges at adjacent nodes must be updated to reect factorization.

As illustrated in �gure 5, the addition of new edges in the elimination graph G� is limited

to those nodes in �G(�). For � 2 �G(�), then

�G� (�) = (�G(�)[ �G(�))� f�; �g: (35)
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G the symmetric graph representing the sparse matrix

while G 6= � do

select a node � 2 G with minimum degree

order � next

/* calculate the elimination graph G� */

for all nodes � 2 �G(�)

�G� (�) (�G(�)[ �G(�))� f�; �g

end for

G G�

end while

Figure 32: The Minimum-Degree Algorithm

Given the two nested loops that can examine all nodes in the original sparse graph, the

computational order of this algorithm is O(n2), although a signi�cant portion of the work-

load is required to calculate the elimination graph G� [12]. As stated above, in formula 4,

the total amount of calculations in the loop to update the elimination graph G� is bounded

by the binomial coe�cient of the number of edges at a node choose 2 or j�G(�)j chose 2.

See equation 4 for details on calculating the binomial coe�cient. It is important to note

that the location of all �llin can be determined when using this classical implementation of

minimum degree ordering.

This version of the minimum-degree algorithm has been used in our research in a two-

fold manner: to order symmetric power systems admittance matrices to provide baseline

orderings with which to compare the performance of other ordering techniques, and to order

the independent sub-matrices obtained with node-tearing ordering techniques.
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B A Node-tearing Example

An example illustrating node-tearing nodal analysis is presented in �gures 33 through 36.

The example graph, presented in �gure 33, has two distinct portions connected at node �4.

Node �1 meets the selection criteria for the �rst node, and the contour tableau is presented

in �gure 34. There is a distinct local minimum in the contour number at c4 which identi�es

node �4 as the node that couples the two mutually independent graph partitions. Figure 35

illustrates the ordered graph, note that only the labels on the modes have changed from

�gure 33. To illustrate the e�ect of ordering the matrix, the matrix sparsity structure for

the original and ordered graphs are presented in �gure 36. In these �gures, original data

values are represented with + symbols while �llin are denoted with F characters. Within

the sub-blocks, the values would be ordered with a minimum-degree ordering algorithm.

For this sample matrix, minimum degree ordering for the entire matrix would yield the

same results.

ν1

ν2

ν3

ν4

ν5

ν6

ν7

FIRST

NODE

COUPLING

NODE

Figure 33: Graph for a Node-Tearing Example

Iterating Sets Adjacency Sets Contour Number

1 f�1g f�2; �3; �4g 3

2 f�1; �2g f�3; �4g 2

3 f�1; �2; �3g f�4g 1

4 f�1; �2; �3; �4g f�5; �6; �7g 3

5 f�1; �2; �3; �4; �5g f�6; �7g 2

6 f�1; �2; �3; �4; �5; �6g f�7g 1

7 f�1; �2; �3; �4; �5; �6; �7g f�g 0

Figure 34: Example Contour Tableau
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Figure 35: Relabeled Example Graph

+ + + 0 0 0 +
+ + + 0 0 0 +
+ + + 0 0 0 +
0 0 0 + + + +
0 0 0 + + + +
0 0 0 + + + +
+ + + + + + +

+ - 
0 - 
F - 

non-zero value
zero value
fillin

independent
sub-matrix

(a) Original Matrix (b) Ordered Matrix

+ + + + + + + 
F F F + + + +
F F F + + + +
F F F + + + +

+ + + + F F F
+ + + + F F F
+ + + + F F F

Figure 36: Matrix Representation of the Example Graphs
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