
In Proc. of IPPS '94, pp. 561{565

All-to-All Communication on Meshes with Wormhole Routing �

Rajeev Thakur and Alok Choudhary

Northeast Parallel Architectures Center

111 College Place, Rm 3-228

Syracuse University, Syracuse NY 13244

thakur, choudhar @npac.syr.edu

Abstract

This paper describes several algorithms to perform

all-to-all communication on a two-dimensional mesh
connected computer with wormhole routing. We dis-

cuss both direct algorithms, in which data is sent di-

rectly from source to destination processor, and indi-
rect algorithms in which data is sent through one or

more intermediate processors. We propose algorithms

for both power-of-two and non power-of-two meshes
as well as an algorithm which works for any arbitrary

mesh. We have developed analytical models to esti-

mate the performance of the algorithms on the basis
of system parameters. Performance results obtained

on the Intel Touchstone Delta are compared with the

estimated values.

1 Introduction

The need for scalable parallel computers has re-
sulted in the mesh emerging as a popular interconnec-
tion network for distributed memory multicomputers.
The Intel Touchstone Delta, the Intel Paragon and
the Symult 2010 use a two-dimensional mesh while
the MIT J-machine and the Mosaic computer devel-
oped at Caltech use a three-dimensional mesh [5]. All
these machines use wormhole routing, an important
feature of which is that the network latency is almost
independent of the path length when there is no link
contention and the packet size is large. In this pa-
per, we discuss several algorithms to perform all-to-all
communication on a mesh connected computer with
wormhole routing. The all-to-all communication pat-
tern (also known as complete exchange) is one in which
all processors need to communicate with all other pro-
cessors. It occurs in many applications like parallel
quicksort, some implementations of the 2D FFT, ma-
trix transpose, array redistribution etc. It is the dens-
est form of communication which can result in a lot of
link contention. Hence it is necessary to use e�cient
algorithms to perform complete exchange.

�The authors are also with the Dept. of Electrical and Com-

puter Engineering, Syracuse University

Complete exchange algorithms for hypercube and
fat tree architectures are described in [2, 6]. These
algorithms assume that the number of processors is
a power-of-two, which is a valid assumption for those
architectures. The mesh architecture introduces dif-
ferent problems because of high contention and the
fact that the user can allocate a mesh size which need
not be a power-of-two and may even be an odd num-
ber (eg. 5� 5). Previous work on complete exchange
algorithms for a mesh assumes that the number of pro-
cessors is a power-of-two [3, 7]. In this paper, we dis-
cuss algorithms for both power-of-two and non power-
of-two meshes. We have developed analytical models
to estimate the performance of the algorithms. We
present performance results on the Intel Touchstone
Delta and compare them with the predicted values.

Section 2 describes the architecture of the Delta and
the performance model used for the algorithms. Direct
algorithms, in which data is sent directly from source
to destination processor, are described in Section 3.
Section 4 discusses indirect algorithms, in which data
is sent from source to destination through one or more
intermediate processors. The performance of the algo-
rithms on the Delta is discussed in Section 5 followed
by Conclusions in Section 6.

2 Architecture and Performance

Model
The Intel Touchstone Delta is a 16�32 mesh of com-

putational nodes, each of which is an Intel i860/XR
microprocessor. The two-dimensional mesh intercon-
nection network has bidirectional links with wormhole
routing. It uses deterministic XY routing in which
packets are �rst sent along the X dimension and then
along the Y dimension. In wormhole routing, a packet
is divided into a number of its (ow control digits) for
transmission. The size of a it is typically the same as
the channel width. The header it of a packet deter-
mines the route and remaining its follow in a pipeline
fashion. The network latency for wormhole routing is
(Lf=B)D + L=B, where Lf is the length of each it,
B is the channel bandwidth, D is the path length, and

L is the length of the message. Thus, if Lf << L, the
path length D will not signi�cantly a�ect the network
latency provided there is no link contention. Details
of wormhole routing techniques can be found in [5].

To model the performance of the algorithms, we
use an approach similar to that used by Barnett et al
in [1]. The following notations are used in our models

� startup time per message
�ex transfer time per byte for an exchange

with no link conicts
�sr transfer time per byte to send to and receive

from di�erent processors with no link conicts
�sat transfer time per byte on a saturated link
L number of bytes to be exchanged

per processor pair
f(i) maximum number of messages contending

for a saturated link at step i
r number of rows in the mesh
c number of columns in the mesh
p total number of processors = r � c

The time taken for an exchange operation may be
di�erent from the time to send to and receive from
di�erent processors, because in the latter case the in-
coming and outgoing messages may traverse links with
di�erent amount of contention. Hence, we use �ex or
�sr depending on the algorithm. We assume that the
time taken is independent of distance, a property of
wormhole routing. Thus, the time required for an ex-
change step i is given by

T = �+ L max(�ex; f(i)�sat)

We assume that conicting messages share the band-
width of a network link and that there exists some
positive integer such that �ex = 2�sat. For the
Delta, = 1 is a good approximation [1]. In other
words, even if two messages contend for a link, there
is no increase in communication time. Note that since
the Delta has bidirectional links, two messages con-
tend for a link only if they need to travel in the same
direction simultaneously.

3 Direct Algorithms
Scott [7] has shown that a3=4 is the lower bound

on the number of phases required to perform a com-
plete exchange on an a � a mesh such that there is
no link contention in any phase. However, if we al-
low link contention to exist, the operation can be per-
formed in fewer steps. We have adopted this approach
of allowing a small amount of link contention to exist,
thereby reducing the number of steps and keeping all
processors active at every step. This approach takes
advantage of the fact that in machines like the Delta
and the Paragon, the links have excess bandwidth, so
that a small number of contending messages will not

signi�cantly a�ect the communication time. We �rst
discuss three direct algorithms for complete exchange
on a mesh. In direct algorithms, data is sent directly
from source processor to destination processor.

3.1 Pairwise Exchange for Power-of-Two

Mesh (PEX)
The best algorithm for a hypercube architecture is

the pairwise exchange algorithm described in [2, 7], as
it guarantees no link contention in the hypercube at
every step. This algorithm has also been shown to per-
form well on the fat tree architecture of the CM-5 [6].
It requires p�1 steps and the communication schedule
is as follows. In step i, 1 � i � p � 1, each proces-
sor exchanges data with the processor determined by
taking the exclusive-or of its processor number with
i. Therefore, this algorithm has the property that the
entire communication pattern is decomposed into a
sequence of pairwise exchanges. Figure 1 shows the
communication pattern of PEX on a 2� 4 mesh. The
complete exchange requires seven steps. In steps 1, 4
and 5 there is no contention. In steps 2, 3, 6 and 7,
there are two messages contending for a link.

Since each step of PEX involves an exchange be-
tween pairs of processors, the maximum number of
messages contending for a link at any step is limited
bymax(r; c)=2. An exact expression for the maximum
number of messages contending for a link at step i can
be obtained as

f(i) = 2blgfmax(mod(i;c);i=c)gc

Hence, the time taken for step i is

T (i) = �+ Lmax(�ex; f(i)�sat)

The cost of PEX can be determined by summing over
all steps of the algorithm :

TPEX =
Pp�1

i=1 [�+ Lmax(�ex; f(i)�sat)]

= (p� 1)�+ L
Pp�1

i=1 max(�ex; f(i)�sat)

3.2 Pairwise Exchange for General Mesh

(PEX-GEN)
The PEX algorithm cannot be directly used if the

number of processors is not a power-of-two as the
exclusive-or function will not create all the required
processor pairs in p� 1 steps. The Pairwise Exchange
for General Mesh (PEX-GEN) algorithm is an exten-
sion of PEX for non power-of-two meshes. The al-
gorithm �rst �nds the smallest power-of-two (say q)
greater than the number of processors and uses this
number to schedule q � 1 steps of the pairwise ex-
change. In each step, every processor checks to see
if the calculated destination processor number is less
than the actual number of processors. If so, it ex-
changes data with the processor, else it goes ahead
to the next step. Thus, the algorithm requires q � 1
steps where q is the nearest power-of-two larger than

0 1 2 3

5 6 74

0 1 2 3

5 6 74

0 1 2 3

5 6 74

0 1 2 3

5 6 74

0 1 2 3

5 6 74

0 1 2 3

5 6 74

0 1 2 3

5 6 74

*

*

*

*

*

*

*

*

Step 1, No Contention Step 2, Contention Step 3, Contention Step 4, No Contention

Step 5, No Contention Step 6, Contention Step 7, Contention

arrows indicate communication pattern* = 2 contending messages

Figure 1: PEX on 2� 4 mesh

the number of processors. The maximum contention
in each step is upper bounded by that in the PEX
algorithm.

3.3 General Algorithm for any Mesh

(GEN)
For non power-of-two meshes, it would be advanta-

geous to have an algorithm which requires only p � 1
steps for any value of p. In the General Algorithm
for any Mesh (GEN), processor pairs do not exchange
with each other. Instead, at step i, a processor j sends
data to processor mod(j+ i; p) and receives data from
processor mod(j � i + p; p). Clearly, this algorithm
will require only p � 1 steps, for any value of p. The
maximumnumber of messages contenting for a link at
step i can be obtained as

f(i) = min[mod(i; c); c�mod(i; c)]+min[i=c; (p�i)=c]

Hence the total time for all steps is :

TGEN =
Pp�1

i=1 [�+ Lmax(�sr ; f(i)�sat)] =

(p� 1)�+ L
Pp�1

i=1 max(�sr ; f(i)�sat)

4 Indirect or Store-and-Forward Algo-

rithms
In indirect or store-and-forward algorithms, a mes-

sage is sent from source processor to destination pro-
cessor through one or more intermediate processors.
Indirect algorithms either reduce the number of com-
munication steps by increasing the message size per
step, or increase the number of communication steps
in order to reduce link contention.

4.1 Recursive Exchange (REX)
In this algorithm, the mesh is �rst halved in the

x direction and each processor sends all data destined
for the other half of the mesh to its corresponding pro-
cessor in the other half. The mesh is further halved

recursively in the x direction and this process is re-
peated. This takes lg c steps. The mesh is then re-
cursively halved in the y direction and messages are
exchanged over each cut, which takes lg r steps. Thus,
the total number of steps is lg c+ lg r = lg p which is
much less than p � 1. However the message size in
each step is larger (Lp=2). Each step incurs the addi-
tional overhead of reorganizing the data within each
processor. This algorithmworks only for power-of-two
meshes.

Since the mesh is recursively divided by two and
each processor in one partition communicates with
its mirror image in the other partition, the maximum
number of messages contending for a link at step i can
be obtained as

f(i) =

�
c=2i for 1 � i � lg c

r
2i�lg c for lg c < i � lgp

The cost of REX can be determined by summing
over all steps of the algorithm :

TREX =

lg pX
i=1

[�+
L p

2
max(�ex; f(i)�sat)]

which can be expanded to

TREX = � lg p+
L p

2

lg cX
i=1

max(�ex; c=2
i�sat)

+
L p

2

lg pX
i=lg c+1

max(�ex;
r

2i�lg c
�sat)

4.2 Indirect Pairwise Exchange (IPEX)
The Indirect Pairwise Exchange (IPEX) algorithm

aims at reducing link contention in the direct Pairwise

Exchange (PEX) algorithm. In IPEX, each processor
communicates only with the processors in its row and
column. Each exchange along a row is followed by
a complete exchange along a column. During the row
exchange, each processor sends Lr bytes of data to the
destination processor, out of which L(r � 1) bytes are
intended for other processors in the same column as
the destination processor. This is followed by a com-
plete exchange along the columns (involving messages
of L bytes), in which the data received during the row
exchange is sent to the appropriate processors in the
same column. This entire operation requires r(c � 1)
communication steps. Finally, an additional complete
exchange is required along the columns for processors
to exchange their own data directly with processors in
the same column. In this phase, data is sent directly
from source to destination, requiring r � 1 exchange
steps. Hence, the total number of steps required is
r(c� 1) + (r � 1) = rc� 1 = p� 1.

The maximum link contention at any step is the
same as for pairwise exchange along a row or column
which is 2blg ic, where i is the step number along the
row or column. Hence, the total time required for
IPEX is given by :

TIPEX =

c�1X
i=1

[�+ L r max(�ex; 2
blg ic�sat)

+

r�1X
j=1

f�+ Lmax(�ex; 2
blg jc�sat)g]

+

r�1X
i=1

[�+ Lmax(�ex; 2
blg ic�sat)]

5 Performance
We implemented all the algorithms on the Intel

Touchstone Delta and studied their performance for
di�erent mesh con�gurations and message sizes. As
suggested in [4], we use forced messages (which pro-
vide higher bandwidth but also higher startup cost) if
the message size is greater than or equal to 1.5 Kbytes
and unforced messages if the message size is less than
1.5 Kbytes.

Figure 2 shows the performance of the algorithms
on a 16 � 32 mesh for di�erent message sizes. Fig-
ure 3 shows the performance of the algorithms for dif-
ferent mesh sizes, keeping the message size constant
at 16 Kbytes. We observe that REX performs the
worst even though it requires only lg p steps. There
are several reasons for this. First, there is a lot of link
contention in each step. Second, the message size per
step is increased to L p=2 instead of L in the direct
algorithms. Third, the indirect form of communica-
tion requires a lot of data bu�ering and shu�ing in
order to send the appropriate data to the appropriate

0

2

4

6

8

10

12

14

16

18

20

1000 4000 8000 12000 16000

T
i
m
e

(
s
)

Message Size (bytes)

PEX
GEN
REX

IPEX

Figure 2: Performance of algorithms on a 16�32 mesh

0

2

4

6

8

10

12

14

16

18

20

100 200 300 400 500

T
i
m
e

(
s
)

Processors

PEX
GEN
REX

IPEX

Figure 3: Performance for message size 16 Kbytes

node. This algorithm also has high memory require-
ments because the large message size requires more
memory per node.

GEN performs better than PEX for small message
sizes and small number of processors. However, for
large number of processors (� 64) and large message
sizes (> 1 Kbytes) PEX performs better. The GEN
algorithm has a certain amount of asymmetry in the
communication in the sense that each communication
operation consists of a send to one processor and a
receive from some other processor. Thus, the incom-
ing and outgoing messages may traverse a di�erent
number of links with di�erent amounts of contention,
and the path which has the highest amount of con-
tention adversely a�ects the communication time. On
the other hand, in the PEX algorithm, processor pairs
exchange with each other at every step, so the incom-
ing and outgoing messages travel the same number of
links with the same amount of contention. For large
meshes and large message sizes, IPEX performs bet-
ter than PEX. This is because in large meshes, direct

0

0.1

0.2

0.3

0.4

0.5

0.6

1000 4000 8000 12000 16000

T
i
m
e

(
s
)

Message Size (bytes)

PEX-predicted
PEX-observed

GEN-predicted
GEN-observed

Figure 4: Observed and Predicted times (PEX, GEN)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1000 4000 8000 12000 16000

T
i
m
e

(
s
)

Message Size (bytes)

IPEX-predicted
IPEX-observed
REX-predicted
REX-observed

Figure 5: Observed and Predicted times (REX, IPEX)

algorithms result in a lot of link contention. The re-
duction in contention by IPEX is larger than the cost
of sending messages indirectly, hence IPEX performs
better.

We have validated the models developed to predict
the performance of the algorithms by comparing the
predicted times with the actual times observed on the
Delta. For this purpose, we use typical values for the
communication costs on the Delta [4, 1], namely for
unforced messages � = 75�s, �ex = 0:35�s and for
forced messages � = 150�s, �ex = 0:2�s. We assume
that �sr � �ex and 2�sat � �ex, ie. two messages can
travel on a link in the same direction without conict.
Figures 4 and 5 show that the observed and predicted
times agree very closely.

6 Conclusions
In this paper, we have discussed several algorithms

for all-to-all communication on mesh connected com-
puters with wormhole routing. Performance results
on the Intel Touchstone Delta were presented. We ob-

served that when the number of processors is small
(< 64) and message size is small (< 1 Kbytes), the
GEN algorithm performs the best. For larger message
and mesh sizes, PEX performs better than GEN. For
large meshes, direct algorithms result in a lot of link
contention. IPEX performs the best in this case, as it
reduces contention by sending messages indirectly.

The performance of the algorithms can be easily
predicted from the mesh size, message length and some
communication parameters of the system. These algo-
rithms can be used on any mesh connected computer
and the performance models enable us to choose the
best algorithm under the circumstances.

Acknowledgments
This work was supported in part by ARPA under

contract no. DABT63-91-C-0028. The content of the
information does not necessarily reect the position
or policy of the Government and no o�cial endorse-
ment should be inferred. Alok Choudhary's research is
also supported by an NSF Young Investigator Award
CCR-9357840 and a grant from Intel SSD. This re-
search was performed in part using the Intel Touch-
stone Delta System operated by California Institute of
Technology on behalf of the Concurrent Supercomput-
ing Consortium. Access to this facility was provided
by the Center for Research on Parallel Computation.

References
[1] Barnett, M., Little�eld, R., Payne, D., and van

de Geijn, R., \Global Combine on Mesh Archi-
tectures with Wormhole Routing", Proc. of 7th

Int. Parallel Proc. Symp., April 1993.

[2] Bokhari, S., \Complete Exchange on the
iPSC/860", ICASE Technical Report 91-4, 1991.

[3] Bokhari, S., and Berryman, H., \Complete Ex-
change on a Circuit Switched Mesh", Proc. of

Scalable High Perf. Computing Conf., 1992, pp.
300{306.

[4] Little�eld, R., \Tuning Communication", Pro-
ceedings of the Delta Advanced User Training

Class Notes, CCSF Technical Report CCSF-25-
92, July 1992, pp. 99{119.

[5] Ni, L., and McKinley, P., \A Survey of Wormhole
Routing Techniques in Direct Networks", Com-

puter, February 1993, pp. 62{76.

[6] Ponnusamy, R., Thakur, R., Choudhary, A., and
Fox G., \Scheduling Regular and Irregular Com-
munication Patterns on the CM-5", Proc. of Su-
percomputing 92, November 1992, pp. 394{402.

[7] Scott, D., \E�cient All-to-All Communication
Patterns in Hypercube and Mesh Topologies",
Proc. of 6th Distributed Memory Computing

Conf., 1991, pp. 398{403.

