
HPF with Parallel I/O Extensions �

Rajesh Bordawekar Alok Choudhary

Dept. of Electrical and Computer Engineering & NPAC,

3-228 CST, Syracuse Univ., Syracuse, NY 13244

SCCS Technical Report

�This work was sponsored by ARPA under contract # DABT63-91-C-0028 and by an NSF Young Investigator Award CCR-

9357840 (Alok Choudhary) with matching support from Intel SSD. The content of the information does not necessarily re
ect

the position or the policy of the Government and no o�cial endorsement should be inferred.

0



HPF with Parallel I/O Extensions 1

1 Introduction

High Performance Fortran (HPF) has been designed to be an informal standard programming language

for a variety of high-performance computers, such as vector machines and massively parallel MIMD and

SIMD multiprocessors [10, 8]. HPF uses data distribution and alignment for mapping and decomposing

the computational domain on processors. HPF provides data distribution directives which can be used by

the user to e�ectively declare and map distributed arrays. Important directives include PROCESSORS,

TEMPLATE, DISTRIBUTE and ALIGN. Arrays can be distributed in either in BLOCK or CYCLIC form

in each dimension.

A large number of scienti�c problems including many grand challenge problems are I/O intensive [1].

Therefore, in order to achieve good scalability in speed and problem size, support for high performance I/O

to perform reads/writes and out-of-core computations is necessary. Currently, HPF does not provide any

support for explicit parallel I/O, although some proposals were made [10, 2].

This paper proposes some directives for parallel I/O that can be used in conjunction with other HPF

directives. These directives have proven to be useful in the initial implementation of runtime and compiler

support for parallel I/O in our HPF compiler [9].

2 Parallel I/O Directives

Currently, we are addressing two parallel I/O problems; 1) parallel reads/writes from �les, and 2) support

for out-of-core computations. A brief description of the directives to support these problems is as follows.

� DISKS: This directive is used for describing the logical mapping of disks over which one or more

�les may be distributed and/or which are used to distribute scratch �les for out-of-core computations. The

syntax for this directive is similar to the PROCESSORS directive in HPF.

For example,

DISKS D(8,8)

indicates that disks are logically arranged as a two-dimensional logical grid of size 8�8. This directive

aids a compiler associate a disk (or a set of disks) with processors for �le distributions and out-of-core

computations. Many processors are allowed to be associated with one disk and many disks are allowed to

be associated with one processor. For example, if processor grid size id 16�16, each disk can be associated

to maintain scratch �les of a 2�2 processor sub-array.

� FILEPROC: This directive is also similar to the PROCESSORS directive in HPF except that it

speci�es the processors which really participate in performing I/O. From our earlier studies [4, 7], we observed

that the best performance need not necessarily be obtained when all processors performing computations

also perform I/O. Thus, this provides the user the 
exibility to specify a set of processors to perform I/O.

This directive is optional, and if not speci�ed, the default is the number of processors speci�ed in the

PROCESSORS directives.

1



HPF with Parallel I/O Extensions 2

For example,

FILEPROC FP(2,2)

speci�es that a 2�2 array of processors participates in I/O.

� FILEDISTR: This directive declares a �le-template and distributes it over the speci�ed number of

disks declared in the DISK directive. It also uses the optional FILEPROC parameter. This directive uses

names declared in DISKS and FILEPRC as pointers to the corresponding topologies. For example,

FILEDISTR F(D,[FP])

declares a �le-template F which is distributed over D disks, and it associates this template with the

processors declared in FP. Thus a �le distributed over a set of disks can be associated with di�erent sets of

processors by using this directive. For example, when declared together,

FILEDISTR F(D, FP1)

FILEDISTR F(D, FP2)

permit two di�erent processor con�gurations to access �les on the same set of disks.

� FILEALIGN: This directive is similar to the ALIGN directive of HPF. FILEALIGN aligns the list

of associated �les to the template declared using FILEDISTR directive. However, there is a fundamental

di�erence between ALIGN and FILEALIGN. File may not have a size at declaration time. Thus the same

�le may be aligned to more than one �le-templates as illustrated above. This is quite logical since a �le can

be opened by two di�erent processor grids. Following example illustrates the FILEALIGN directive.

FILEALIGN F :: F1, F2, F3

� ASSOCIATE: This directive describes the relationships between an array's and the corresponding

�le's mapping. That is, the ASSOCIATE directive associates a �le-template with the corresponding

array template. ASSOCIATE directive has the following form

ASSOCIATE :: (�le-template, array-template)

For example,

ASSOCIATE :: (F,A),(,),...

associates the �le-template F with the array-template A.

Thus, this directive provides an HPF compiler a list of �les to be used for I/O for a set of arrays aligned

to the corresponding array template.

� OUT OF CORE: This directive declares an array as an out-of-core array. Following example declares

array A as an out-of-core array.

2



HPF with Parallel I/O Extensions 3

File
Template 1

ALIGNMENT

DISKS PROCS PROCS

FILES ARRAYS

Distribution

Template

ASSOCIATION

ALIGNMENT

FP

F1 F2

A

F

C D

D

Figure 1: File Distribution and Association in HPF

OUT OF CORE :: C

Figure 1 illustrates the relationships between these directives. File-template declares an abstract template

(F), which is distributed over (logical) disks (D) and processors (FP). Note that FP speci�es a set of processors

which may be a subset of processors declared in the processor directive or a may be a di�erent set (e.g.,

I/O nodes). Implementation, therefore, may vary from one architecture to another. Files to be accessed in

the HPF program are aligned to this template F. Array template, to which arrays C and D are aligned, is

distributed over a set of processors (PROCS). As illustrated, the array template A and �le template F are

associated using the associate directive. Thus a set of �les mapped to the a �le-template will have a set of

arrays (may have di�erent sizes) associated with them. As a result, a compiler can optimize the parallel

accesses (e.g., read/write) of distributed arrays from/to the associated �les using various strategies (e.g.,

[7]).

3



HPF with Parallel I/O Extensions 4

3 Compiler and Runtime Support for Parallel I/O

Information provided by the compiler directives is used to extract parameters about array and �le distribu-

tions, which in turn are used in the runtime primitives. In the following we brie
y discuss the primitives

and how they are used by the compiler.

Input and output operations include reading/writing arrays from/to �les. The cost of reading/writing

�les in parallel may vary tremendously as a function of the distribution of data on compute nodes [4, 7].

We have developed a set of runtime primitives to perform parallel read and write operations [3, 5].

These primitives provide consistent (and high) performance independent of the type of distribution [5]. The

parallel I/O primitives include parallel read (pread), parallel write operation (pwrite) and several supporting

primitives including popen, pclose, array map and proc map.

We have developed compiler support in our HPF compiler [9] to automatically embed the runtime prim-

itives in the compiler code (F77+MP+I/O) using the directives and constructs speci�ed in the source HPF

program. Figure 2 illustrates a set of directives and HPF code fragment as well as the corresponding

compiled code in F77+MP+I/O. We only show the pertinent code for the sake of brevity. Note that in

the source HPF code, the user uses very simple constructs called pread and pwrite (�gure 2(I)) which are

automatically converted into the appropriate calls to the runtime routines. Also, the compiler performs all

the necessary transformations 1.

4 Summary

The main goal of this paper was to describe directives which, based on our experience, are useful to perform

parallel I/O from HPF programs. We also described how these directives are used to embed parallel I/O

runtime primitives in the generated code.

We have also developed runtime primitives for out-of-core computations. These include communication

and the corresponding optimizations for out-of-core data as well as read and write routines to perform

accesses to scratch �les. One of the important features of these routines in the they use access pattern

information (to be provided by the compiler) to enhance the I/O performance.

Acknowledgments

We would like to thank Ken Kennedy for keeping the parallel I/O problem in the limelight. The OUT-OF-

CORE directive has been borrowed from his terminology. We also thank Chuck Koelbel for various helpful

discussions. Finally, we would like to acknowledge the contributions of Marc Snir (and his group) and the

Vienna Fortran Group (P. Mehrotra, H. Zima and B. Chapman) for parallel I/O in the �rst round of the

HPF de�nition e�ort.

1If accepted, in the full paper we will provide details of the transformations and performance results on some codes

4



HPF with Parallel I/O Extensions 5

(I) HPF Program

real A(64,64),B(64,64),C(64,64)

CHPF$ processors p(1,4)

CHPF$ template R(64,64)

CHPF$ distribute R(block,block)

CHPF$ align (I,J) with R(I,J) :: A,B

CHPF$ disks d(8,8)

CHPF$ �leproc H(1,4)

CHPF$ �ledistr F(H,d)

CHPF$ �lealign F :: F1,F2

CHPF$ associate :: F,R

CHPF$ out of core :: A

call popen(3,'F1',SEQUENTIAL,UNFORMATTED,OLD)

call pread (A,3)

call pwrite(A,3)

(II) F77+MP+I/0 Program

REAL A (64, 16), B (64, 16), C (64, 64)

INTEGER array map,map info(1536)

INTEGER size info(7),proc info(7),distr info(7),block size(7)

COMMON /INFO/F INFO, P INFO, A INFO

[Initialize the data structures]

CALL popen (3,'F1', 0, 0, 1, disks, procs)

TT3temp = array map (A, size info, distr info, block size, proc info, proclist)

CALL pread (A, 64, 16, TT3temp, 3, TT2temp, 1024, 1024)

CALL pwrite (A, 64, 16, TT3temp, 3, TT4temp, 1024, 1024)

Figure 2: (I) shows a sample HPF io program fragment which uses the proposed I/O directives. Disks

are logically arranged as an 8�8 logical grid (D) and I/O processors are arranged as 1�4 grid (H). File-

template F is distributed over H and D. Files F1 and F2 are aligned to the �le-template F. Finally, �le-

template F is associated with array template A. Array A is declared out of core. HPF compiler automatically

generates F77+MP+IO code (Shown in (II)). Various parameters in the routines are used for bu�ers and

other information and will be explained in detail in the full paper.

5



HPF with Parallel I/O Extensions 6

References

[1] Juan Miguel del Rosario, and Alok Choudhary. High Performance I/O for Parallel Computers: Problems

and Prospects. To appear in IEEE Computer.

[2] S. Benkner, B. Chapman, and H. Zima. Vienna Fortran 90. Scalable High Performance Computing Con-

ference, April 1992.

[3] Rajesh Bordawekar. Issues in Software Support for Parallel I/O. Master's Thesis, ECE. Dept., Syracuse

University, May 1993.

[4] Rajesh Bordawekar, Juan Miguel del Rosario, and Alok Choudhary. An Experimental Performance Eval-

uation of Touchstone Delta Concurrent File System. ICS'93, pages 367-377, July 1993.

[5] Rajesh Bordawekar, Juan Miguel del Rosario, and Alok Choudhary. Design and Evaluation of Primitives

for Parallel I/O. To be presented in Supercomputing'93, November 1993.

[6] Rajesh Bordawekar and Alok Choudhary. Compiler and Language Support for Parallel I/O. To be pre-

sented in Fourth Workshop on Compilers for Parallel Computers, Delft, The Netherlands, December

1993.

[7] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. Improved parallel I/O via a two-

phase run-time access strategy. The 1993 IPPS workshop on Input/Output in Parallel Computer Systems,

April 1993.

[8] Geo�rey Fox, Seema Hiranandani, Ken Kennedy, C. Koelbel, Uli Kremer, and Chau-Wen Tseng. Fortran

D Language Speci�cation. Technical Report Rice COMP TR90-141. Rice University, December 1990.

[9] Zeki Bozkus, Alok Choudhary, Geo�rey Fox, Tomasz Haupt, and Sanjay Ranka. Fortran 90D/HPF

Compiler for Distributed Memory MIMD Computers: Design, Implementation, and Performance Results.

Supercomputing'93 (to appear), November 1993.

[10] High Performance Fortran Forum. High Performance Fortran Language Speci�cation Version 1.0. Tech-

nical Report CRPC-TR92225. CRPC, Rice University, January 1993.

6


