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Abstract

In this paper, we present an extensive experimental performance evaluation of the

communication capabilities of the CM-5. We �rst study the communication character-

istics such as startup time, sustainable bandwidth for simple messages as a function

of message size and number of processors, and the e�ect of multiple messages and link

contention on the communication time.

We study the e�ect of dense communication patterns such as complete exchange and

propose four algorithms for scheduling a complete exchange operation. We also consider

the scheduling of irregular communication patterns and present four algorithms for the

same. We have tested these algorithms on many synthetic irregular communication

patterns as well as those arising in real problems such as the conjugate gradient solver

and the Euler solver. Finally, we study the performance and communication aspects of

scienti�c applications such as two-dimensional FFT and Gaussian Elimination on the

CM-5.

These results are based upon a beta version of the software and, consequently, are not necessarily representative of the

performance of the full version of the software.



Experimental Performance Evaluation of the CM-5 1

1 Introduction

The performance of a distributed memory computer depends to a large extent on how fast

inter-processor communication can be performed. Despite signi�cant improvements in de-

sign, scalability and the underlying technology of parallel computers, the improvements in

communication cost have lagged far behind those in the computation power of each node. It

still costs two orders of magnitude or more to access a remote datum than to access a local

datum.

This paper presents an extensive experimental study of the communication capabilities

of Thinking Machines Corporation's Connection Machine 5 (CM-5). We study important

communication characteristics of the CM-5 and the scheduling of regular and irregular com-

munication patterns. Similar studies have been performed for other parallel machines such

as Intel iPSC/2 [2], Intel iPSC/860 [1] and CM-2 [12]. We also study the performance

and communication aspects of some scienti�c applications like two-dimensional FFT and

Gaussian Elimination.

The architecture of the CM-5 is described in Section 2. Section 3 describes the experi-

ments performed to study the communication characteristics of the CM-5 and their results.

We study the e�ect of size, distance, multiplemessages and contention on the communication

time. We discuss four algorithms for scheduling a complete exchange operation in Section

4 and study their performance for various message sizes and number of processors. Sec-

tion 5 presents four algorithms for scheduling irregular communication patterns. We study

the performance of these algorithms on several synthetic communication patterns as well as

those arising in real problems such as the conjugate gradient solver and the Euler solver [9].

Section 6 discusses the performance and communication issues of parallel algorithms for two-

dimensional FFT and Gaussian Elimination on the CM-5. Finally, conclusions are presented

in Section 7. All the experiments in this paper have been performed using the message

passing library CMMD Version 3.0 Beta.

2 The CM-5 Architecture

The CM-5 is a scalable distributed memory multiprocessor system which can be scaled up

to 16K processors [4]. It supports both SIMD and MIMD programming models. Each node
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Figure 1: CM-5 fat tree, courtesy [6]

on the CM-5 is a SPARC processor and has four optional vector processors providing a peak


oating point performance of 128 M
ops. The CM-5 has two internal networks that support

interprocessor communication | the Control Network and the Data Network.

The control network is responsible for communication patterns in which many processors

may be involved in the processing of each datum, such as global reduction operations, parallel

pre�x operations and processor synchronization. The data network supports point-to-point

communication and has a fat tree topology as shown in Figures 1 and 2. It is actually a

4-ary fat tree or quad tree, where each node has four children. Each internal node of the

fat tree is implemented as a set of switches. The number of switches per node depends on

where it is in the tree. Nodes at level 1 have two switches. The number of switches per node

doubles for each higher level till level 3, from where on it quadruples. Each level 1 or level

2 switch has two parents and four children; switches at higher levels have four parents and

four children. The data network has a guaranteed system-wide bandwidth of 5 Mbytes/sec.

The maximumbandwidth possible is 20 Mbytes/sec when communication takes place among

nodes in the same cluster of four processors.

A message is divided into a group of packets. The packet size is 20 bytes, of which

16 bytes are for user data and the remaining 4 bytes contain control information such as

destination and size. The routing algorithm for the data network compares the destination
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Figure 2: CM-5 Data Network with 64 Processing Nodes, courtesy [6]

address with the source address to determine how far up the tree the message must travel.

The message can then take any path up the tree. This allows the switches to perform load

balancing on the 
y. Once the message has reached the necessary height in the tree, it must

follow a particular path down. Further details of the CM-5 architecture can be found in [4].

3 Communication Overhead on the CM-5

Important metrics to measure the communication capabilities of a distributed memory par-

allel computer include startup time, sustainable bandwidth with and without contention,

e�ect of locality, and the time taken to perform communication intensive operations such as

complete exchange.

3.1 Outline of Experiments

The following notation will be used in the rest of the paper. A set of k messages from

multiple sources to multiple destinations is denoted as a set of tuples f(s1; d1); :::; (sk; dk)g,

where (si; di) denotes the (source, destination) pair of the ith message. The following is a

brief description of the experiments performed.
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1. In the �rst experiment, we study what is the maximum bandwidth that can be sus-

tained for a single message traveling the shortest possible distance for message sizes up

to 10 Kbytes. This is done by sending a single message (called \simple send") f(0,1)g.

2. In the second experiment, we study the impact of path length on the communication

time of a simple send.

3. The third experiment presents the e�ects of sending a set of two messages, called

Double Send (DS). The motivation for this experiment is to study if random routing

and alternate paths to the �rst level switching node are e�ectively utilized.

4. The fourth experiment studies the e�ect of contention when maximum number of

messages are sent from one cluster to another. Here, each processor sends a message

to a distinct processor in the destination cluster.

An average of 100 repetitions of each experiment were performed to determine the com-

munication time accurately. The precision of the CM5 clock is 1 microsecond. We determine

the communication time for a send as half the time for a round-trip message (the same

technique has been used in [1]).

3.2 Message Size

In the �rst experiment, we study the communication time for sending a single message to

another node in the same cluster of 4 processors (message set = f(0,1)g), for di�erent message

sizes. This represents the shortest possible distance a message would travel. Figure 3 shows

the communication times for messages of size 0{100 bytes.

We de�ne the startup time as the time taken for sending a message of size 0 bytes, which

is observed to be 64 microseconds. An interesting observation from the �gure is that the

communication time for messages that are a multiple of 16 bytes is di�erent from that for

messages that are not a multiple of 16 bytes. Messages that are a multiple of 16 bytes take

much less time than others, as indicated by the dips in curve of Figure 3. As stated earlier, a

message in the CM-5 is sent as a sequence of packets. Each packet is 20 bytes long, of which

4 bytes are for control purposes and 16 bytes represent user data. If a message packet is

full, i.e. if it contains 16 bytes of user data, the overhead of processing it is smaller than the
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Figure 3: Message Size Varied from 0 to 100 bytes

overhead of processing a message otherwise. Hence, the communication overhead incurred

will be smaller if the user made the message size a multiple of 16 bytes (by padding it if

required). The above behavior is also observed when the message size is varied between 0

and 10,000 bytes as shown in Figure 4.

Using a linear chi-square �t, we obtain the communication time as a function of message

size for communication within a cluster of 4 processors without contention as

tcomm = 0:112 � l + 73 (in �secs:)

where, l is number of bytes and l mod 16 = 0; and

tcomm = 0:112 � l + 83 (in �secs:):

where, l mod16 6= 0.

The above equations give a di�erent time for a message of size 0 bytes than the observed

time of 64 microseconds, because of the non-linearity in the graph in Figure 3 for message

size 0 | 10 bytes.
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Figure 4: Message Size Varied from 0 to 10000 bytes

3.3 Impact of Path Length

Within a cluster of 4 processors, a message will traverse two links, one link up to the switching

node and one link down to the destination processor. We call this two link traversal as path

length of one because link traversals will always be a multiple of two (from the source, up

to the least common ancestor, and down to the destination). Figure 5 shows the e�ect of

distance on the communication time in a 512-node CM-5. The X-axis values 1, 2, 3, 4 and

5 correspond to a message sent by processor 0 to a destination processor in a cluster of

4, 16, 64, 256 or 1024 processors. For the sake of clarity we have shown graphs for four

message sizes, 16, 512, 4K and 8K bytes; a representative message size from each range used

in the previous experiments. In this experiment, only one pair of processors communicate.

We observe that all four plots are perfectly horizontal, from which we conclude that the

communication time is not a�ected by interprocessor distance when there is no contention.
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Figure 5: E�ect of Path Length for Various Message Sizes

3.4 Multiple Messages and Contention

In this set of experiments we compare communication times for two distinct sources to two

distinct destinations within and outside a cluster of four processors. The motivation behind

these experiments is to check if the switching node which is the parent of nodes 0 through 3,

can route two sets of messages with the same speed. Note that the CM-5 provides two paths

for communication within a cluster of four processors, and it employs randomized routing.

Therefore, it is expected that this experiment gives the same performance as the simple send

experiments in the previous subsection.

Figure 6 compares a simple send (SS) f(0,1)g with a set of two messages (DS) f(0,1),(2,3)g.

We observe that there is no signi�cant di�erence in the performance of SS and DS. Hence,

both parent nodes of a cluster are e�ectively used in this type of communication. Similar

results are obtained when simple send (SS) is compared with double send (DS) for commu-

nication between processors that are four hops away (message set = f(0,4),(1,5)g), and that

are six hops away (message set = f(0,16),(1,17)g).
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Figure 6: Comparing a simple send with double sends in a group of 4 processors

3.5 Maximum Number of Messages and Contention

In the following set of experiments, each node in a cluster communicates with a distinct node

in the next cluster. Since all the processors try to communicate simultaneously, there is a

possibility of contention. In the �rst experiment, shown in Figure 7, each processor in the

cluster of processors 0 through 3 simultaneously and repeatedly communicates with nodes 4

through 7 in the neighboring cluster | the message set is f(0,4),...,(3,7)g. Compared to a

simple send of one message, there is no appreciable di�erence in the communication times

for messages of size up to 10 Kbytes. Hence, the presence of possible contention in small

clusters does not a�ect the communication time much. This is because there are enough

links for all processors in a cluster of four processors to simultaneously communicate with

processors in an adjacent cluster of four, without contention.

When the cluster size is increased, the e�ect of contention becomes visible. In the next

experiment, each node of a cluster of size 16 (nodes 0 through 15) communicates with the

corresponding node of the next cluster (nodes 16 through 31) simultaneously and repeat-

edly. In this case the message set is f(0,16), (1,17), ..., (15,31)g. Figure 8 compares the

Northeast Parallel Architectures Center � Syracuse University



Experimental Performance Evaluation of the CM-5 9

0

200

400

600

800

1000

1200

1400

0 2000 4000 6000 8000 10000

Time
(� sec)

Message Size (bytes)

simple (0,4)
max,4

Figure 7: Comparing a simple send with max. no. of messages in a group of 8 procs.

communication times for the above message set with that of a simple send from processor

0 to processor 16. The communication time in the presence of contention is much greater

than that for the simple send. The di�erence in the time also increases with increase in

message size. This is because when a processor needs to communicate with a processor in

a di�erent cluster of 16 processors, messages have to travel 3 levels up the tree. There are

only 8 links from a level 2 node to a level 3 node as can be observed from Figures 1 and 2.

When 16 processors simultaneously try to access 8 links, there is contention which increases

the communication time. A similar bottleneck exists at higher levels in the tree, so similar

results are obtained when the number of processors is increased. Figure 9 shows the results

on a 256 processor system.

4 Complete Exchange

The complete exchange or all-to-all personalized communication pattern arises very often in

many important applications on distributed memory computers [1, 7]. Parallel quicksort,

some implementations of the 2D FFT, matrix transpose, array redistribution etc. require
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Figure 8: Comparing a simple send with max. no. of messages in a 32 proc. system
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Figure 9: Comparing a simple send with max. no. of messages in a 256 proc. system
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complete exchange. This is a communication pattern in which all processors simultaneously

need to exchange data with all other processors. This is clearly the densest form of communi-

cation possible and it stretches the communication capabilities of the interconnection network

to the limit. Hence, it is very important to use e�cient algorithms to schedule a complete

exchange operation, in order to get good performance. In this section we study the behavior

of four algorithms for complete exchange on the CM-5 namely, Linear Exchange (LEX),

Pairwise Exchange (PEX), Recursive Exchange (REX) and Balanced Exchange (BEX).

Each algorithm consists of several steps in which pairs of processors exchange with each

other. The time for an exchange operation at step i can be written as

T = �+ L max(�ex; f(i)�sat)

where

� = startup time

L = message size in each exchange operation

�s = transfer time per byte for a single send with no link con
icts

�ex = transfer time per byte for an exchange with no link con
icts

�sat = transfer time per byte on a saturated link

f(i) = maximum number of messages contending for a link at step i

We assume that con
icting messages share the bandwidth of a network link. The net-

work may have excess bandwidth, enabling multiple messages to traverse a link in the same

direction without con
ict. In other words, �sat < �ex. The number of processors is denoted

by p.

4.1 Linear Exchange (LEX)

The Linear Exchange algorithm is the simplest of the four algorithms. In step i, 0 � i <

p, processor i receives messages from every processor except itself. The algorithm clearly

requires p steps. Since at every step one processor receives from all other processors, there

is a lot of node and link contention. At step i, every processor sends data to processor i.
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Table 1: Communication Schedule for PEX on 8 processors

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

0$ 1 0$ 2 0$ 3 0$ 4 0$ 5 0$ 6 0$ 7

2$ 3 1$ 3 1$ 2 1$ 5 1$ 4 1$ 7 1$ 6

4$ 5 4$ 6 4$ 7 2$ 6 2$ 7 2$ 4 2$ 5

6$ 7 5$ 7 5$ 6 3$ 7 3$ 6 3$ 5 3$ 4

Processor i has two links to its parent node and p� 1 processors simultaneously need to use

these links. Hence, the maximum number of messages contending for a link at any step is

dp�1
2
e. The time taken for any step i is given by

T (i) = �+ Lmax(�s; d
p� 1

2
e�sat)

The cost of LEX is obtained by summing over all steps of the algorithm :

TLEX =
p�1X
i=1

[�+ Lmax(�s; d
p� 1

2
e�sat)] = �(p � 1) + L(p � 1)max(�s; d

p� 1

2
e�sat)

4.2 Pairwise Exchange (PEX)

The communication schedule for this algorithm is as follows. At step i, 1 � i � p � 1, each

processor exchanges a message with another processor determined by taking the exclusive-or

of its processor number with i. Therefore, this algorithm has the property that the entire

communication pattern is decomposed into a sequence of pairwise exchanges. There are

p � 1 steps in a p processor system. The communication schedule of the pairwise exchange

algorithm for 8 processors is given in Table 1. The entry i $ j in the table indicates

that processors i and j exchange messages. This algorithm is known to perform well on

hypercubes and has been used in other studies such as in [1, 6, 13].

On the CM-5, when a processor has to communicate with another processor in its cluster

of 4k processors, k � 1, the message has to travel a maximum of k levels up the tree. The

PEX algorithm has the property that in the �rst 15 steps, processors in a cluster of 16 pro-

cessors exchange completely with each other and from step 16 onwards, they exchange with

processors in other clusters. When a cluster of 16 processors exchange among themselves,
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the messages have to travel either 1 or 2 levels up the tree depending on the source and

destination. There are 32 links from level 0 to level 1 and 16 links from level 1 to 2 for

this cluster, enough for the 16 processors to exchange among themselves without contention.

However, when processors in a cluster of 16 need to exchange with processors in another

cluster of 16, there are only 8 links from a level 2 node to a level 3 node, which results in

16 processors contending for 8 links, as explained in Section 3. A similar bottleneck exists

at higher levels. For example, a level 3 node has 32 links upwards and downwards, and 64

processors in its subtree. Hence, in the �rst 15 steps of PEX there is no link contention.

From step 16 onwards, the maximum number of messages contending for a link is 2 on an

average. The time taken for step i is given by

T (i) =

(
�+ L�ex for 1 � i � 15

�+ Lmax(�ex; 2�sat) for i > 15

The time for the entire PEX algorithm can be obtained by summing over all steps :

TPEX =
15X
i=1

[�+ L�ex] +
p�1X
i=16

[�+ Lmax(�ex; 2�sat)]

which can be simpli�ed to

TPEX = (p � 1)�+ L [15�ex + (p � 16)max(�ex; 2�sat)]

For a complete exchange on 16 processors, this algorithm has no contention.

4.3 Recursive Exchange (REX)

In the Recursive Exchange algorithm, the number of processors is halved in each step and

messages are exchanged over each cut. A processor sends all the data intended for all

processors in another partition to only one processor in that partition, which forwards that

data to the remaining processors in a later step. The number of steps required is lg p and

each message is of size L � p=2. The communication schedule for REX on 8 processors is

given in Table 2. Although this algorithm takes less number of steps than LEX and PEX,

the amount of data exchanged in each step is much higher. Since it is a store-and-forward

type algorithm, each step incurs additional overhead of reshu�ing data [7].
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Table 2: Communication Schedule for REX on 8 Processors

Step 1 Step 2 Step 3

0$ 4 0$ 2 0$ 1

1$ 5 1$ 3 2$ 3

2$ 6 4$ 6 4$ 5

3$ 7 5$ 7 6$ 7

In step i, 1 � i � lg p each processor j exchanges with processor j � p

2i
. Communication

always takes place either entirely within a cluster of 16 processors or entirely across clusters.

In steps 1 to lg p � 4, communication takes place across clusters, so the maximum number

of messages contending for a link is 2. In steps lg p � 3 to lg p, communication takes place

within a cluster of 16 processors, so there is no contention. Hence, the time taken by REX

is

TREX =
lg p�4X
i=1

[�+ L
p

2
max(�ex; 2�sat)] +

lgpX
i=lg p�3

[�+ L
p

2
�ex]

which can be simpli�ed to

TREX = � lg p + L
p

2
[4�ex + (lg p� 4)max(�ex; 2�sat)]

4.4 Balanced Exchange (BEX)

In the PEX algorithm, the communication schedule is such that all processors in a cluster

�rst exchange completely with each other and then exchange with processors in other clus-

ters. In other words, all the communication is either entirely within the cluster or entirely

across clusters. As explained above, this gives rise to contention from step 16 onwards. An

improvement in performance can be expected if there is a balance of local and long distance

communication at every step, which will reduce contention in step 16 onwards. The Balanced

Exchange (BEX) algorithm provides such a schedule. BEX is a simple modi�cation of PEX.

For the purpose of determining the communicating pairs of processors, we de�ne a mapping

between the physical number of a processor and its virtual number as

virtual no = MOD(physical no + 1, p)
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Table 3: Communication Schedule for BEX on 8 Processors

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

0$ 7 0$ 2 0$ 1 0$ 4 0$ 3 0$ 6 0$ 5

1$ 2 1$ 7 2$ 7 1$ 5 1$ 6 1$ 3 1$ 4

3$ 4 3$ 5 3$ 6 2$ 6 2$ 5 2$ 4 2$ 3

5$ 6 4$ 6 4$ 5 3$ 7 4$ 7 5$ 7 6$ 7

Balanced exchange consists of using the pairwise exchange algorithm with this mapping and

the virtual processor numbers. The communication schedule for BEX is shown in Table 3.

The BEX algorithm has the property that in steps 0 to p=2 � 1, 2 processors in each

cluster of size p=2 communicate across clusters while the rest communicate within the cluster.

In steps p=2 to p � 1, 2 processors in each cluster of size p=2 communicate within the

cluster, while the other processors communicate across clusters. In steps 0 to 15, there is no

contention as in the PEX algorithm. In step i > 15, instead of 2blg ic processors contending

for 2blg ic�1 links, there are 2blg ic � 2 processors contending for 2blg ic�1 links. Hence the

maximum contention for any link at step i > 15 is 2blg ic�2

2blg ic�1 on an average. The total time

taken by BEX is

TBEX =
15X
i=1

[�+ L�ex] +
p�1X
i=16

[�+ Lmax(�ex;
2blg ic � 2

2blg ic�1
�sat)]

which can be simpli�ed to

TBEX = (p� 1)� + L [15�ex + (p � 16)max(�ex;
2blg ic � 2

2blg ic�1
�sat)]

4.5 Performance of the Complete Exchange Algorithms

Figure 10 compares the communication time of the four complete exchange algorithms on a

32 node CM-5. The message size is varied between 0 and 2048 bytes. The LEX algorithm

performs much worse than the other algorithms because of the single destination bottleneck,

so we do not consider it any further. For small message sizes, the performance of PEX, REX

and BEX is virtually indistinguishable. However, for large message sizes, PEX performs
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Figure 10: Complete Exchange Algorithms on 32 nodes

much better than REX and BEX performs better than PEX. This is because of the following

reasons. First, even though the number of steps in REX is only lg p, as compared to p � 1

steps in PEX, the message size in REX remains constant at L�p=2, whereas the size of each

message in PEX is L. Also, REX uses a store-and-forward approach in which a message

is sent from source to destination processor through one or more intermediate processors.

Sending a message from source to destination through k intermediate processors costs k

times more than sending it directly. In addition, each node needs to bu�er and reshu�e

data in REX so that appropriate data can be sent to the appropriate node. These two

overheads outweigh the savings in the number of communication steps. BEX performs the

best because it balances local and remote communication at each step.

We selected a few message sizes in di�erent ranges, and measured the communication

times for several machine sizes. Figures 11 and 12 show the communication times for a

machine size up to 256 processors for algorithms REX, PEX and BEX. Clearly for messages

of size 0 byte, REX performs better than PEX and BEX because there is no data shu�ing

involved and it has only lg p exchanges compared to p� 1 exchanges in PEX and BEX. For
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Figure 11: Complete Exchange on di�erent number of processors (message sizes = 0, 256

bytes)

messages of size 256 bytes, PEX performs better than REX for small number of processors

because the overhead of message size and number of steps dominate for REX. As the number

of processors increases, the overhead of the larger number of messages dominates the overhead

of larger message size and reshu�ing in REX, and therefore, REX performs better. BEX

performs the best for messages of size 256 bytes. For a message size of 512 bytes and small

number of processors, BEX and PEX perform better than REX. But for large number of

processors, REX performs the best.

5 Scheduling Irregular Communication Patterns

An irregular problem is one in which the pattern of data access is input-dependent [10, 5].

Hence, when an irregular problem is implemented on message passing machines, the commu-

nication between the processors will also be irregular and will not be known at compile time.

Such irregular communication patterns occur in a large number of computationally intensive

problems such as unstructured mesh methods used to solve problems in computational 
uid
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Figure 12: Complete Exchange on di�erent no. of procs. (message size = 512 Bytes)

dynamics. To optimize communication between processors, the communication patterns in

these problems can be detected and scheduled at runtime. In this section, we discuss al-

gorithms for scheduling irregular communication patterns on the CM-5. Similar work on a

hypercube architecture, using the crystal router, is described in [5]. The performance e�ects

of irregular communication patterns on the CM-2 have been studied in [12].

We implemented four di�erent algorithms for scheduling irregular communication pat-

terns namely Linear Scheduling (LS), Pairwise Scheduling (PS), Balanced Scheduling (BS)

and Greedy Scheduling (GS). We have studied the performance of these algorithms for syn-

thetic communication patterns as well as those arising in real problems such as the Conjugate

Gradient Solver and the Euler Solver for di�erent data sets. A communication pattern is rep-

resented as a two-dimensional array called 'Pattern'. The element Pattern[i][j] indicates the

number of bytes to be sent from processor i to processor j. LS, PS and BS are modi�cations

of the LEX, PEX and BEX algorithms to take into account the irregular communication. At

every step, each processor checks the communication matrix to see whether the operation to

be performed is either an exchange, send, receive or no communication at all. If the matrix
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indicates no communication, the processor remains idle in that step.

In the greedy scheduling algorithm, each processor �rst uses a greedy strategy to deter-

mine the processors it has to communicate with at every step. The greedy strategy consists

of selecting the next available processor in order of processor numbers, with which it needs

to communicate. This schedule is then used to perform the communication. For a complete

exchange operation this algorithm creates the same communication schedule as pairwise ex-

change. But when the communication is irregular, the greedy algorithm creates a di�erent

communication schedule than that by the pairwise scheduling algorithm. This is because in

the greedy algorithm, if processor i does not have to communicate with processor j, it will

communicate with the next available processor with which it needs to communicate. In the

pairwise scheduling algorithm, if a pair of processors [i; j] determined by the algorithm do

not have to communicate, they remain idle in that step.

5.1 Performance Comparison

In many problems, the communication schedule needs to be created only once and can be

used thereafter to perform the communication for as many iterations as required. Hence

the time to compute the schedule can be amortized over all the iterations. We de�ne the

percentage of non-zero entries in the communication matrix as the communication density.

We have created synthetic communication patterns with di�erent communication densities

of 10%, 25%, 50% and 75%, and studied the performance of the above algorithms on these

patterns for message sizes of 256 and 512 bytes on a 32 processor system. The results are

given in Table 4. We see that the linear scheduling algorithm performs the worst in all

cases because of the single destination bottleneck. The performance of the pairwise and

balanced scheduling algorithms is comparable. The greedy algorithm performs the best

for communication densities of less than 50%, because the number of steps involved in the

communication is the minimum of all the algorithms. But when the communication density

is higher than 50%, the greedy algorithmmay require more number of steps than the pairwise

and balanced algorithms, which degrades the performance. In this case, balanced scheduling

performs the best.

The performance of these algorithms on real problems such as the conjugate gradient

solver and Euler solver for unstructured meshes of di�erent sizes, is given in Table 5. The
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Table 4: Perf. of Scheduling Algorithms for Synthetic Irregular Patterns on 32 Procs.

Time (ms.)

Algorithms 10% Pattern 25% Pattern 50% Pattern 75% Pattern

256 bytes 512 bytes 256 bytes 512 bytes 256 bytes 512 bytes 256 bytes 512 bytes

Linear 4.723 6.116 11.67 15.34 29.01 38.27 50.14 66.63

Pairwise 1.595 2.018 3.538 4.569 5.478 7.120 6.653 8.817

Balanced 1.704 2.194 3.287 4.242 5.263 6.834 6.561 8.775

Greedy 1.476 1.905 2.781 3.599 5.201 6.792 7.739 10.31

Table 5: Perf. of Scheduling Algorithms for Real Irregular Patterns on 32 Procs.

Time (ms.)

Algorithms Conj. Grad. 16K Euler 545 Euler 2K Euler 3K Euler 9K

9%, 643 bytes 37%, 85 bytes 44%, 226 bytes 29%, 612 bytes 44%, 505 bytes

Linear 8.046 25.87 48.88 50.78 77.13

Pairwise 6.623 7.374 15.04 19.98 21.91

Balanced 7.188 7.386 15.07 17.57 20.19

Greedy 5.799 5.656 12.30 14.34 17.01

table shows the communication time for each algorithm, the average number of bytes trans-

ferred in each problem and the communication density. The communication density varies

from 9% in the conjugate gradient solver to 44% in the Euler solver for meshes with 2K and

9K vertices. The average number of bytes transferred per communication operation varies

from 85 bytes in the Euler solver for a mesh with 545 vertices to 643 bytes in the conjugate

gradient solver. The performance of the algorithms on the real problems is consistent with

that on the synthetic patterns. Since the communication density is less than 50% in the real

problems, the greedy algorithm performs the best.

6 Some Scienti�c Applications

In this section, we study the communication performance of some scienti�c applications,

such as two-dimensional FFT and Gaussian Elimination, on the CM-5.
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Table 6: Performance of 2D FFT (Time in sec.)

32 Processors 256 Processors

Scheduling Algorithm Scheduling Algorithm

Array Size Linear Pairwise Recursive Balanced Linear Pairwise Recursive Balanced

256� 256 0.215 0.152 0.112 0.114 4.340 0.076 0.077 0.076

512� 512 0.845 0.470 0.467 0.470 4.750 0.120 0.120 0.120

1024� 1024 3.135 2.007 2.480 2.005 5.968 0.314 0.313 0.312

2048� 2048 14.780 9.032 9.245 8.509 18.087 1.738 2.160 1.668

6.1 Two-dimensional FFT

A two-dimensional FFT of size N � N can be implemented by �rst performing a one-

dimensional N -point FFT of each row followed by a one-dimensional N -point FFT of each

column of the intermediate result. We implemented a 2D FFT algorithm with the array

distributed along rows. Each processor performs a 1D FFT of the rows in its partition (no

communication), followed by a transpose of the intermediate results and �nally a 1D FFT of

rows (because the transpose converts columns to rows). The communication required for the

transpose is a complete exchange. So we implemented it using the four complete exchange

algorithms described in Section 4. The performance of this 2D FFT on various sizes of data

is shown in Table 6. The results obtained with the complete exchange algorithms embedded

within a two-dimensional FFT routine are consistent with those obtained for the complete

exchange algorithms individually in Section 4. As we can observe, for a large size 2D FFT,

almost linear (relative) speedup can be obtained when going from 32 to 256 processors for

all algorithms except LEX.

6.2 Gaussian Elimination

We have used the row-column-oriented algorithm with partial pivoting which is described

in [14]. Gaussian Elimination requires a reduction operation to compute pivots in each

iteration and a broadcast/multicast to distribute pivot element and row. Note that the

CM-5 architecture provides hardware support for reduction operations through its control

network. The cost of the reduction and communication operations required for Gaussian

Elimination is given in Table 7 [3]. These times can be used to estimate the performance of

the Gaussian Elimination algorithm. The execution time of each iteration is multiplied by
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Table 7: Cost of operations of Gaussian elimination on 32 node CM-5 (time in ms.)

Operation 64 � 65 128 � 129 256 � 257 512 � 513

Reduction double with max 0.042 0.042 0.042 0.042

Reduction int with max 0.006 0.006 0.006 0.006

Broadcast from node 0.917 1.680 3.206 6.252

Computation 0.266 1.057 4.213 16.823

Time per iteration 1.231 2.785 7.467 23.123

Table 8: Estimated and measured time (ms)

Matrix Size 64 � 65 128 � 129 256 � 257 512 � 513

Estimated Time 78.8 356.5 1911.6 11839.0

Measured Time 72.5 353.45 1848.0 10948.6

the number of iterations to obtain the estimated time. There are N iterations for matrix size

of N � (N + 1). The measured results are compared with the estimated results in Table 8

and are found to be quite accurate. Detailed performance results of Gaussian Elimination

on the CM-5 are given in [3].

7 Conclusions

This paper presented an experimental benchmarking study of the communication capabilities

of the CM-5. Speci�cally, we gave results for communication overhead as a function of

message size, distance, number of messages and contention. We considered the scheduling of

dense communication patterns like complete exchange and also of irregular communication

patterns. Finally, we examined the communication aspects of parallel algorithms for two-

dimensional FFT and Gaussian Elimination.

The startup time of the data network was observed to be 64 microseconds. We also

observed that the communication time for messages that are a multiple of 16 bytes is lower

than for messages that are not, and therefore for better performance, the user should pad

messages to make them a multiple of 16 bytes. For small number of messages, high bandwidth

can be sustained even in large system con�gurations. However, as the message size and the
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number of messages increases, link contention can degrade the performance. Processors

within a cluster of 16 processors, can exchange among themselves without any contention,

but in the case of larger clusters, the e�ect of contention is noticeable.

We studied the communication overhead of four complete exchange algorithms. For

large number of processors, the Recursive Exchange algorithm performs the best because

it requires only lg p steps. For small number of processors and small message sizes, the

performance of PEX, BEX and REX is almost indistinguishable. However, for large message

sizes on small number of processors, BEX performs the best because it maintains a balance

of local and long distance communication at every step. REX does not perform well in this

case because the overhead of large message size and data shu�ing outweighs the savings in

the number of communication steps.

For irregular communication patterns, the greedy algorithm performs the best when the

communication density is less than 50%. The balanced scheduling algorithm performs the

best when the communication density is higher than 50%.

We implemented the two-dimensional FFT using the four complete exchange algorithms

discussed in this paper and the results obtained are consistent with those expected for these

algorithms. The performance of Gaussian Elimination was found to be almost the same as

the estimated performance.
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