
Parallel Wol� Cluster Algorithms

S. Bae and S. H. Ko

School of Computer Science, Syracuse University,

111 College Place, Syracuse, NY 13244, U.S.A.

P. D. Coddington

Northeast Parallel Architectures Center, Syracuse University,

111 College Place, Syracuse, NY 13244, U.S.A.

March 28, 1994

Abstract

The Wol� single-cluster algorithm is the most e�cient method known

for Monte Carlo simulation of many spin models. Due to the irregular

size, shape and position of the Wol� clusters, this method does not

easily lend itself to e�cient parallel implementation, so that simula-

tions using this method have thus far been con�ned to workstations

and vector machines. Here we present two parallel implementations of

this algorithm, and show that one gives fairly good performance on a

MIMD parallel computer.

1 Introduction

Monte Carlo simulation is widely used in studying the statistical mechanics of spin models

of magnetism [1]. Unfortunately, traditional Monte Carlo algorithms for these models, such

as the commonly used Metropolis algorithm [1, 2], su�er from critical slowing down [1, 3],

which means the computational e�ciency of these methods decreases rapidly as the size of

the system is increased. Algorithms have been developed by Swendsen and Wang [4] and

Wol� [5] that make large-scale, non-local changes in the spin con�gurations, and greatly

reduce critical slowing down for certain types of spin models. In these so-called cluster

algorithms, clusters of spins (rather than single spins) are collectively updated at each step

of the Monte Carlo procedure. The clusters are formed by generating bonds connecting

neighboring sites, using a probabilistic procedure that varies between di�erent spin models

and algorithms (for reviews of cluster algorithms, see Refs. [3, 6, 7, 8]).

Here we will consider the simplest of spin models, the two dimensional Ising model [1],

for which the spin at any site of the lattice can take only two values, +1 or �1. The parallel

algorithms we will present are, however, easily generalizable to any dimension and any spin

model for which a Wol� cluster algorithm can be de�ned.

In the Swendsen-Wang algorithm for the Ising model, bonds are placed with probability

1� e
�2� between all neighboring sites of the lattice that have the same spin value, where

� is the inverse temperature parameter. This procedure creates clusters of bonded sites of

the same spin. The spins are updated by assigning a random spin value to each cluster.

In the Wol� algorithm, only a single cluster is created. A site is chosen at random and

a cluster is constructed around it, using the same bond probabilities as for the Swendsen-

Wang algorithm. All the spins in this cluster are then
ipped, that is, collectively changed

to the alternate spin value.

The performance of a Monte Carlo algorithm is best measured in terms of statistically

independent con�gurations produced per unit (computer) time. Using this measure, cluster

algorithms can easily outperform the Metropolis algorithm on sequential computers, with

the Wol� algorithm generally better than Swendsen-Wang [5, 7, 9, 11, 12, 13, 14]. However

this may not be the case on supercomputers, which have vector and/or parallel architectures.

Very e�cient vector and parallel programs can be written for the Metropolis algorithm, since

it is regular and local. Cluster algorithms, which are highly irregular and non-local, are

much more di�cult to implement e�ciently on vector and parallel machines. Unless e�cient

vector or parallel cluster algorithms can be developed, cluster algorithms may give inferior

1

performance to the Metropolis algorithm on supercomputers [9].

2 Computational algorithms

The major computational task for the Swendsen-Wang algorithm is the identi�cation and

labeling of the clusters of connected sites, given the con�guration of bonds. This is an

instance of a connected component labeling problem for an undirected graph [10], where

the vertices are the lattice sites and the edges are the bonds between connected sites. The

goal of the component labeling algorithm is to end up with the same label on all connected

sites, and di�erent labels for all disconnected clusters.

A number of methods have been developed for implementing the Swendsen-Wang algo-

rithm on parallel [15, 16, 17, 18, 19, 20, 21, 22] and vector [23] computers. Most of these

methods are variations on parallel algorithms that were developed for the general problem of

connected component labeling of a graph [24, 25, 26]. Parallel Swendsen-Wang algorithms

can be quite e�cient, especially for large lattice sizes on coarse-grain MIMD machines. The

Swendsen-Wang algorithm seems inherently better suited to a parallel implementation than

the Wol� algorithm, since clusters are constructed for all the sites in the lattice, so a data

parallel algorithm using standard domain decomposition [29] can be used. This is not the

case for the Wol� algorithm, for which only a (random) subset of the sites are updated

at every iteration, so a standard domain decomposition would give extremely poor load

balance between processors.

Constructing (or labeling) a single cluster of connected sites is done sequentially by a

simple breadth-�rst-search algorithm [5, 10, 17, 27, 28]. Two data structures are used: a

list C of sites that belong to the cluster;1 and a queue Q of sites that have been added to the

cluster but not yet used in the search. The algorithm is described by the pseudo-code in

Fig. 1. The sites in the queue can be visualized as a \wavefront" expanding outwards from

the initial site. It is possible to rewrite the loop over sites in the queue as a double loop: one

loop over all sites in a particular wavefront, and another loop over successive wavefronts.

We will refer to these successive wavefronts as generations of sites, with the �rst site being

the parent (the �rst generation), the set of sites connected by a bond to this site being its

children (the second generation), the set of sites connected to these children (and not already

part of the cluster) being the next generation, and so on [17, 27]. In this algorithm, the loop

over all sites in a particular generation can be done in parallel [17, 27, 28]. We implement this

1It is actually more e�cient to store this information as a logical array with a TRUE or FALSE value for

each site in the lattice, to save searching the list, but here we will consider it as a list of sites in the cluster.

2

parallel breadth-�rst-search by splitting the queue Q into two data structures, the current

generation G and the next generation G0. The algorithm is described by the pseudo-code in

Fig. 2.

For the Wol� algorithm only nearest-neighbor information is required, so the commu-

nication overhead for the parallel algorithm is not great. However this method performs

poorly on the type of �ne-grain, massively parallel SIMD machine for which it was origi-

nally proposed [27]. This is because at any point in the algorithm, the current generation

of sites will occupy at most O(L) sites of a lattice of size L�L, and much less than that

in the early generations when the cluster is small (see Fig. 3). If there is a single processor

per lattice site, the load balance will be extremely poor. The situation is little better for

a coarse-grain parallel machine with many sites per processor, as can be seen in Fig. 3.

This parallel breadth-�rst-search algorithm is well suited to a vector machine, for which the

degree of parallelism (the vector length of the machine) is much smaller [28]. However on a

Cray YMP this method achieves speed-ups of less than 10 over non-vectorized algorithms

that realize only the scalar performance of the machine [11, 28].

Methods for implementing the Wol� algorithm in parallel on MIMD machines have so far

been con�ned to the trivial parallelism of running independent simulations, with di�erent

parameters or random number streams, on di�erent processors [16, 17]. In this case the size

of the system that can be simulated is limited by the memory and speed of a single node of

the parallel machine. In the next two sections we introduce two methods for parallelizing

a single simulation over many processors using domain decomposition. The second method

performs well on coarse-grain MIMD parallel computers.

3 The single-cluster Swendsen-Wang algorithm

The Swendsen-Wang algorithm requires the identi�cation of clusters of connected sites. This

is done using a connected component labeling algorithm to give each site a number which

labels the cluster to which it belongs. All of the parallel connected component labeling

algorithms use an iterative procedure for updating the cluster label of each site. At the

end of each iteration, a test is performed to see if the label of any site has been changed.

If no change has been made, then all sites have received the label of their cluster, and the

procedure terminates.

A parallel Wol� algorithm can be implemented using a simple change to a parallel

Swendsen-Wang algorithm, which creates a single-cluster version of the algorithm. As in

the sequential Wol� algorithm, a random site is chosen, around which the cluster will grow.

3

The iterative procedure mentioned above remains the same, however now the termination

condition is not that the labels of all sites are unchanged, but rather the labels of all sites

in the single cluster containing the initial random site are unchanged. This allows all sites

of the Wol� cluster to be worked on in parallel, rather than just the expanding wavefront.

However in this method the computation is being done for all clusters at the same time,

not just the single Wol� cluster, so there is a lot of wasted e�ort.

This method was implemented using a SIMD Swendsen-Wang program [21] written

in CMFortran [30] for the Thinking Machines CM-5 computer. We had planned to also

implement this method in a message passing language using a MIMD programming model,

which can better handle this type of irregular problem and is known to provide much

better performance than SIMD algorithms [17, 21]. However we instead developed and

implemented an improved MIMD algorithm.

4 The scattered strip partitioning algorithm

Parallel algorithms with local data dependencies generally use a regular domain decomposi-

tion in order to minimize communications. However for some dynamic irregular problems,

the computational load tends to be concentrated in di�erent regions of the domain at dif-

ferent times. In order to balance the load, some kind of dynamic data partitioning is often

required. However in some cases a much simpler static approach can be adopted, in which

the data in neighboring regions is scattered among the processors. This scattered domain

decomposition has a higher communications cost since data locality is sacri�ced, however

this may be more than compensated for by the improvement in load balance when the

computational load is concentrated in a certain region of the domain, since now all pro-

cessors contain part of that domain. This method has been very e�ective in many parallel

algorithms, including certain types of matrix solvers, irregular �nite element problems, and

problems with dynamic data distributions [29].

Scattered domain decomposition has also been e�ective in a parallel implementation of

Lee's maze routing algorithm [31]. Maze routing is an algorithm used for routing wires

in VLSI circuits [32]. The model is basically that of a regular grid where some paths are

blocked and some are allowed. The problem is to �nd the shortest allowed path to place

a wire between two points. The maze routing algorithm performs a breadth-�rst-search of

the space, starting from the initial point, and following all allowed paths until one path

reaches the �nal point. It is therefore very similar to the growth of a cluster in the Wol�

cluster algorithm.

4

Fang et al. [31] found that the most e�ective domain decomposition for a parallel maze

routing algorithm was scattered strip partitioning (this is often referred to as a cyclic or

column-cyclic data distribution, for example in the High Performance Fortran language

speci�cation [33]). In this scheme, the lattice is split into N partitions, where N is chosen

to be an integer multiple of the number of processors P to ensure load balancing. Each

partition containsW columns of the lattice (we shall refer toW as the partition width). Thus

for a lattice of size L�L, L = WN and W must be in the range 1 � W � L=P . Partition

M is assigned to processor M mod P (see Fig. 4). The mapping of data to processors is:

� Global lattice coordinate (i; j) is assigned to processor (j mod WP) div W

� Local lattice coordinate (a; b) is given by

a = i

b = (j mod WP) mod W + W � (j div WP)

An example of the distribution of data after a scattered strip partitioning is shown in Fig. 5.

The load balance is still far from perfect, but it is much better than for the standard domain

decomposition in Fig. 3. As W becomes smaller, we can expect better load balancing, but

a larger communications overhead due to non-locality of data. It is therefore important to

�nd the optimal partition width W .

We have implemented this algorithm in a MIMD message-passing paradigm. The fol-

lowing is an outline of the steps required:

1. Lattice partitioning

Do a scattered strip (column-cyclic) partitioning of the lattice, so that the portion of

the lattice allocated to each processor has L=(WP) partitions of width W , i.e. L=P

columns and L
2
=P sites in total.

2. Selection of an initial random site

One of the processors (processor 0) selects the initial random site and broadcasts the

information to the other processors.

3. Local expansion of the cluster

Each processor maintains a queue that stores those sites in the local lattice that are

in the current generation, and also maintains a communication bu�er to collect all

communication requests.

Each local site in the current generation is fetched from the queue, and used as a

5

parent site to expand the cluster.

Bonds are made with the appropriate probability between the parent site and all its

neighboring sites, unless the neighboring site is already an element of the cluster.

At this time, if the parent site is on the boundary (the left or right edge) of a partition,

communication with the left or right processor may be needed. Such communication

requests are saved into the communication bu�er for collective communication.

All local connected sites are added to the cluster and the queue for the next generation

of sites, and the spin values at these sites are updated.

4. Collective communication

Any communication requests are collected from the communication bu�er and sent to

the destination processors.

5. Remote expansion of the cluster

Each site in the received bu�er is checked to see whether it is already an element of

the cluster.

If not, the site is added to the local cluster list and the queue for the next generation,

and its spin value is updated.

6. Check for Termination

The �nal step checks whether there are any sites in the new generation. This can be

done easily by using a global reduction function such as logical AND. If every processor

has the empty queue, the algorithm halts. If not, steps 3, 4 and 5 are repeated.

The parallel code to implement this message passing program was written in C for the

CM-5, using CMMD [35] reduction functions for global communications (steps 2 and 6) and

Active Messages [35, 36] for point-to-point communications (step 4).

This algorithm should be easily implementable in High Performance Fortran (HPF)

using a column-cyclic data distribution [33]. The HPF program would be much simpler

than the message passing program we have implemented, since there would be no need to

set up communications bu�ers and the reading and writing of messages to access non-local

data { this would be handled by the compiler.

6

5 Results

The two algorithms have been run on a 32-node Thinking Machines CM-5 using lattices of

size 1282 to 20482. The results were compared with a sequential program written in C and

run on a single node of the CM-5. The inverse temperature � was taken to be the critical

inverse temperature �c = log(1 +
p
2)=2 � 0:4406868, where the clusters are most irregular

in size and shape.

To measure the average execution time, we performed 100 iterations to thermalize the

system, and then measured the execution time for at least 100 (and usually 1000) iterations.

The time for each iteration depends on the size of the cluster that is grown, which can be any

size from a single site to many thousands of sites. In order to make a sensible comparison

to other Monte Carlo algorithms such as Metropolis and Swendsen-Wang, for which every

site is updated at each iteration, the execution time for the Wol� algorithm is given as the

time per spin update, rather than the time per iteration.

We measured the performance using both the scalar processor and the vector processors

on the CM-5. As expected, using the vector units greatly improves the performance of the

SIMD algorithms, so the results shown for these are using the vector units. However, for

the sequential and MIMD algorithms, the vector units are not e�ective, and in fact the

program runs slower if they are used, presumably due to the overhead of loading the data

onto the vector registers. For these algorithms the times used are without vector units.

For the scattered strip partitioning algorithm, we tested various partition widths W

to �nd the optimal width for each lattice size. Fig. 6 shows the scaled time for di�erent

values of W . The performance is very sensitive to the partition width. Larger widths mean

smaller communications overhead, but greater load imbalance. Since load imbalance is less

of a problem for larger generation sizes (and hence larger lattice sizes), the optimal width

starts at W = 1 for small lattices and slowly increases with lattice size.

The timings and e�ciencies (taken relative to the sequential Wol� algorithm run on a

single processor) for the single-cluster Swendsen-Wang algorithm, the full Swendsen-Wang

algorithm from which it is derived, and the scattered-strip partitioning algorithm with

W = 2, are shown in Table 1 for a 32 node CM-5.

Reasonable speed-ups of around 10 are obtained for the MIMD algorithm for the larger

lattice sizes. The corresponding e�ciencies of around 35% are not particularly good, but

perhaps better than expected for this highly irregular and dynamic problem.

Even using the vector units, the e�ciencies for the SIMD algorithms are very low. This

7

is partly because this irregular problem is not well-suited to SIMD methods, but partly

because the CMFortran compiler is not very e�cient at implementing this type of algorithm,

for which the ratio of computation to communication is low. The same SIMD algorithms

programmed in a message-passing paradigm using CMMD would be much more e�cient.

The amount of parallelism that can be extracted from the scattered-strip partitioning

algorithm depends on the average number of sites in each generation. Fig. 7 shows the

average generation (or wavefront) size G as a function of the linear lattice size L for the 2-d

Ising model. We would expect G to scale slower than
p
C, where C is the average cluster

size. Since C for the Wol� algorithm is an estimator of the susceptibility [12, 34], we have

C � L

=� , where
=� = 1:75 is the �nite-size scaling result for the susceptibility of the 2-d

Ising model. Thus G should scale slower than L0:875, and we measured the actual exponent

to be 0.66(1).

For this algorithm, the number of processors that can be e�ectively used is approximately

G=2, so on a parallel machine with 32 nodes (as we have used) reasonable e�ciencies should

be obtained for lattices of size greater that 5122, which is indeed what we found. In fact

these are the kinds of lattice sizes one would like to be able to run in parallel { anything

smaller than this could more easily be run on a single processor, with multiple simulations

on the di�erent processors of a parallel machine [16, 17].

6 Conclusions

We have introduced two new parallel implementations of the Wol� single-cluster Monte

Carlo algorithm. The �rst method involves a simple change to a parallel Swendsen-Wang

cluster algorithm, so that the iterative procedure for identifying the clusters is halted as

soon as the single Wol� cluster is identi�ed. This method performs about as well as the

parallel Swendsen-Wang algorithms on which it is based, however neither of these parallel

cluster algorithms are well-suited to implementation on massively parallel SIMD machines.

The scattered strip partitioning algorithm successfully overcomes the load balance prob-

lem that is the main di�culty in constructing a parallel Wol� cluster algorithm. This is

done by partitioning the lattice using a scattered type of decomposition, so that the ex-

panding wavefront is distributed over almost all processors. This method of distributing

the data produces reasonable speed-ups for the parallel breadth-�rst-search algorithm for

growing a single cluster, as long as the linear dimension of the lattice is much greater than

the number of processors, and the number of processors is not too great.

On a massively parallel machine, parallelism could be extracted by a combination of

8

the strip partitioning algorithm and the independent (or job-level) parallelism of running

independent Monte Carlo simulations with di�erent random number streams on di�erent

groups of processors. For example, one might run 16 independent simulations, each of which

use 16 processors. In this scenario, the main advantage of using the parallel algorithm is

that it avoids the memory limitations of a single processor, and allows the use of larger

lattice sizes.

Note that the results for the speed-ups and e�ciencies of our parallel algorithms are

for the simplest of spin models, the Ising model. For more complex models, for example

continuous spin models such as the O(N) model, the computation required to calculate the

bond probabilities is much greater, and we would therefore expect greater e�ciencies due

to the higher ratio of computation to communication. The speed-up also depends heavily

on the average generation size, which will vary between di�erent spin models and lattice

sizes.

It is possible that this technique could also be used to improve the performance of parallel

Swendsen-Wang algorithms. These algorithms also su�er from load imbalance, since at the

critical point there is generally one large cluster that takes the longest time to update.

With a standard domain decomposition, there are generally processors that contain little

or no sites belonging to the largest cluster. These processors will be mainly idle during the

latter stages of the cluster labeling. If a scattered strip partitioning of the lattice were used,

this will no longer be the case, and the load will be much more evenly divided. However

for the MIMD algorithm the strips will have to be much wider, in order for the sequential

labeling algorithm on each processor to work e�ectively, so there are tradeo�s that need to

be investigated to �nd the most e�ective implementation for a given lattice size and number

of processors.

Simulation of the 2-d Ising spin model using the Wol� algorithm has been shown to be

a very sensitive test of the randomness properties of random number generators [37, 38].

One of the motivations for this work was to create a parallel Wol� algorithm that can be

used as a test for parallel random number generators. This work is currently in progress.

Acknowledgements

This work was done using the Thinking Machines CM-5 at the Northeast Parallel Archi-

tectures Center (NPAC) at Syracuse University. Work supported in part by the Center for

Research on Parallel Computation with NSF cooperative agreement No. CCR-9120008 and

ARPA under contract No. DABT63-91-K-0005.

9

References

[1] K. Binder ed., Monte Carlo Methods in Statistical Physics, (Springer-Verlag, Berlin,

1986); K. Binder and D.W. Heermann, Monte Carlo Simulation in Statistical Physics,

(Springer-Verlag, Berlin, 1988); H. Gould and J. Tobochnik, An Introduction to Com-

puter Simulation Methods, Vol. 2, (Addison-Wesley, Reading, Mass., 1988).

[2] N. Metropolis et al., J. Chem. Phys. 21 (1953) 1087.

[3] A. D. Sokal, in Computer Simulation Studies in Condensed Matter Physics: Recent

Developments, eds. D. P. Landau et al. (Springer-Verlag, Berlin, 1988); A. D. Sokal,

in Proc. of the International Conference on Lattice Field Theory, Tallahassee, October

1990, Nucl. Phys. B (Proc. Suppl.) 20 (1991) 55.

[4] R.H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58 (1987) 86.

[5] U. Wol�, Phys. Rev. Lett. 62 (1989) 361.

[6] U. Wol�, in Proc. of the Symposium on Lattice Field Theory, Capri, September 1989,

Nucl. Phys. B (Proc. Suppl.) 17 (1990) 93.

[7] J.-S. Wang and R. H. Swendsen, Physica A 167 (1990) 565.

[8] C. F. Baillie, Int. J. Mod. Phys. C 1 (1990) 91.

[9] N. Ito and G. A. Koring, Cluster vs single-spin algorithms { which are more e�cient?,

to be published in Int. J. Mod. Phys. C.

[10] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, (Computer Science

Press, Rockville, Maryland, 1978); G. Brassard and P. Bratley, Algorithmics: Theory

and Practice, (Prentice Hall, Englewood Cli�s, N.J., 1988).

[11] U. Wol�, Phys. Lett. B228 (1989) 379.

[12] P. Tamayo, R. C. Brower and W. Klein, J. Stat. Phys. 58 (1990) 1083.

[13] C. F. Baillie and P. D. Coddington, Phys. Rev. B 43 (1991) 10617.

[14] P. D. Coddington and C. F. Baillie, Phys. Rev. Lett. 68 (1992) 962.

[15] A. N. Burkitt and D. W. Heermann, Comp. Phys. Comm. 54 (1989) 210.

10

[16] P.D. Coddington and C.F. Baillie, in Proc. of the 5th Annual Distributed Memory

Computing Conference, Charleston, April 1990, eds. D.W. Walker and Q.F. Stout

(IEEE Computer Society Press, Los Alamitos, California, 1990).

[17] C. F. Baillie and P. D. Coddington, Concurrency: Practice and Experience 3 (1991)

129.

[18] R. C. Brower, P. Tamayo and B. York, J. Stat. Phys. 63 (1991) 73.

[19] M. Flanigan and P. Tamayo, Int. J. Mod. Phys. C 3 (1992) 1235.

[20] J. Apostolakis, P. Coddington and E. Marinari, Europhys. Lett. 17 (1992) 189.

[21] J. Apostolakis, P. Coddington and E. Marinari, Int. J. Mod. Phys. C 4 (1993) 749.

[22] P. Rossi and G. P. Tecchiolli, Finding Clusters in a Parallel Environment, unpublished.

[23] H. Mino, Comp. Phys. Comm. 66 (1991) 25.

[24] Y. Shiloach and U. Vishkin, J. Algorithms 3 (1982) 57.

[25] H. Embrechts, D. Roose, and P. Wambacq, in Proc. First European Workshop on Hy-

percube and Distributed Computers, F. Andre and J.P. Verjus eds., (North-Holland,

Amsterdam, 1989); H. Embrechts, D. Roose, and P. Wambacq, Computer Vision

Graphics and Image Processing: Image Understanding, 57 (1993) 155.

[26] J. Woo and S. Sahni, J. of Supercomputing 3 (1989) 209.

[27] R. Dewar and C. K. Harris, J. Phys. A 20 (1987) 985.

[28] H. G. Evertz, J. Stat. Phys. 70 (1993) 1075.

[29] G. C. Fox et al., Solving Problems on Concurrent Processors, (Prentice-Hall, Engle-

wood Cli�s, New Jersey, 1988).

[30] CMFortran Reference Manual, (Thinking Machines Corporation, Cambridge, Mass.,

1993).

[31] Y.-Y. Fang, I.-L. Yen and R. Dubash, Improving the performance of Lee's maze rout-

ing algorithm on parallel computers via semi-dynamic mapping strategies, Technical

Report CPS-93-35, Michigan State University, December, 1993.

[32] C. Y. Lee, IRE Trans. Electronic Computers EC-10 (1961) 346.

11

[33] The High Performance Fortran Forum, High Performance Fortran Language Speci�-

cation, Center for Research in Parallel Computing Technical Report CRPC-TR92225.

Available via anonymous ftp from titan.cs.rice.edu in the directory public/HPFF/draft.

[34] U. Wol�, Nucl. Phys. B 334 (1990) 581.

[35] CMMDReference Manual, (Thinking Machines Corporation, Cambridge, Mass., 1993).

[36] T. von Eicken et al., Active Messages: a Mechanism for Integrated Communication

and Computation, in Proc. of the 19th Int. Symposium on Computer Architecture,

Gold Coast, Australia, May, 1992.

[37] A.M. Ferrenberg, D.P. Landau and Y.J. Wong, Phys. Rev. Lett. 69 (1992) 3382.

[38] P.D. Coddington, Analysis of Random Number Generators Using Monte Carlo Simu-

lation, NPAC technical report SCCS-526, to be published in Int. J. Mod. Phys. C.

12

Lattice Size 1282 2562 5122 10242 20482

Time (�s) Sequential 31.42 32.36 32.81 33.74 {

Time (�s) MIMD 6.50 5.10 3.96 3.26 2.93

Speed-up MIMD 4.8 6.3 8.3 10.4 11.5

E�ciency MIMD 0.15 0.20 0.26 0.32 0.36

Time (�s) Wol� SIMD 40.70 44.90 46.56 63.09 {

Time (�s) S-W SIMD 20.22 19.23 17.38 18.34 {

Table 1: Times per spin update, speed-ups, and e�ciencies as a function of lattice size for

the MIMD scattered strip partitioning algorithm, the SIMD Wol� algorithm (the single-

cluster Swendsen-Wang algorithm), and the SIMD Swendsen-Wang (S-W) algorithm from

which it is derived, all for a 32-node CM-5. Speed-ups and e�ciencies for 20482 are based

on sequential 10242 times, so are probably underestimated.

13

Chose a site i at random First site in the cluster

C fig Initialize the cluster list

Q fig Initialize the queue

WHILE Q 6= fg DO Search over sites still in queue

j next element in Q Get the next site from the queue

Q Q - j Remove this site from the queue

Find the set fng of connected neighbors of j Identify bonds to neighbors

FOR each n � fng DO For all connected neighbors

IF n 6� C THEN If neighbor is not in cluster list

C C + n Add it to the cluster list

Q Q + n Add it to the queue

END IF

END DO

END WHILE

Figure 1: The breadth-�rst-search algorithm for creating a single cluster. For the Wol�

algorithm, the spin is also changed to the new value (sn �sn for the Ising model) when

a site n is added to the cluster.

14

G fg Initialize the current generation

Chose a site i at random First site in the cluster

C fig Initialize the cluster list

G0 fig Initialize the next generation

WHILE G0 6= fg DO Loop over generations

G G0 Go to new generation

G0 fg Initialize the next generation

WHILE G 6= fg DO IN PARALLEL Loop over this generation of sites

j next element in G Get the next site from the queue

G G - j Remove this site from the queue

Find the set fng of connected neighbors of j Identify bonds to neighbors

FOR each n � fng DO For all connected neighbors

IF n 6� C THEN If neighbor is not in cluster list

C C + n Add it to the cluster list

G0 G0 + n Add it to the next generation

END IF

END DO

END WHILE

END WHILE

Figure 2: The parallel breadth-�rst-search algorithm for creating a single cluster.

15

Figure 3: An example of a Wol� cluster for a con�guration of the 2-d Ising spin model. The

light gray sites indicate the cluster, the sites in dark gray show a particular wavefront or

generation, and the black site is the initial randomly chosen site. The black lines represent

processor boundaries for a standard domain decomposition of the lattice onto 16 processors.

00

2

0 0

1 1 1 1

3

22 2

3 3 3

Figure 4: The mapping of 16 columns of data onto 4 processors for scattered strip (or

column-cyclic) partitioning with a column width of 2.

16

Figure 5: A scattered strip (or column-cyclic) partitioning onto 16 processors for the data

in Fig. 3.

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

0 2 4 6 8 10 12 14 16

T
im

e
(m

ic
ro

se
c)

Partition width

128x128
256x256
512x512

1024x1024
2048x2048

Figure 6: Average update time per spin as a function of partition width for di�erent lattice

sizes, for the scattered strip partitioning algorithm on a 32-node CM-5.

17

Figure 7: The average number of sites per generation in the Wol� cluster update as a

function of lattice size for the 2-d Ising model. The line is a �t to a power with exponent

0.66(1).

18

