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Abstract

We analyze the behavior of the ensemble of surface boundaries of the

critical clusters at T = Tc in the 3d Ising model. We �nd that Ng(A), the

1



number of surfaces of given genus g and �xed area A, behaves as A�x(g) e��A.

We show that � is a constant independent of g and x(g) is approximately a

linear function of g. The sum of Ng(A) over genus scales as a power of A.

We also observe that the volume of the clusters is proportional to its surface

area. We argue that this behavior is typical of a branching instability for the

surfaces, similar to the ones found for non-critical string theories with c > 1.

We discuss similar results for the ordinary spin clusters of the 3d Ising model

at the minority percolation point and for 3d bond percolation. Finally we

check the universality of these critical properties on the simple cubic lattice

and the body centered cubic lattice.
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It is a long-standing hope in theoretical physics that it is possible to �nd a formulation

of three-dimensional phase transitions dual to the usual order parameter �eld theory. Such

a description recasts the dynamics in terms of uctuating surfaces. In the 3d Ising model

such a reformulation is indeed possible on the lattice [?], and the relevant problem is the

existence of a continuum limit for the surface theory. Despite much theoretical e�ort, real

progress in this direction has been slow and di�cult. In order to provide some experimental

data to perhaps point in the right direction, we embarked on a numerical study of surfaces

in the 3d Ising model.

The main obstacle to a continuum surface description is the well-known �ngering insta-

bility of surfaces in embedding space of dimension d > 2 [?]. For d � 2 the theory of random

surfaces is solved [?], providing a striking con�rmation of the scaling predictions of Liouville

theory [?]. Another motivation for our study was to see if the d > 2 instability plagues Ising

surfaces, and to look for scaling properties in the distribution of surfaces of �xed genus. We

will present data that shows nontrivial topology-dependent scaling behavior for self-avoiding

surfaces in 3d (for previous work, see [?]).

Contrary to the widely held belief that a phase transition is characterized by nested

clusters of ordered domains of all possible sizes, it has been shown [?] that the distribution of

domain boundaries in the 3d Ising model does not scale at criticality. Rather, as the critical

point is approached from low temperatures, islands of ipped spins (which we shall call

minority clusters) merge into a large percolating cluster at a temperature Tp well below the

critical temperature Tc. The dynamics is then dominated not by the entropy in the cluster

distribution but by the entropy of con�gurations of the percolating cluster. Moreover, no

local order parameter of the Ising model reects this percolation transition.

However there exists a cluster representation of the Ising model due to Fortuin and

Kasteleyn [?] which captures the critical properties of the model, in particular the divergence

of the correlation length is related to the percolation of the FK clusters. These clusters are

formed by adjoining neighboring spins with a probability 1 � e�2� if they are equal. The

FK representation led Swendsen and Wang to propose a Monte Carlo that partially defeats
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critical slowing down [?]. In our simulations we have used the SW algorithm. We studied

the self-avoiding surfaces bounding both minority spin clusters and FK clusters. To explore

further the possible realizations of self-avoidance, we also simulated the surfaces de�ned by

pure bond percolation [?]. It should be emphasized that the `bosonic' surfaces de�ned by

Ising domain walls are not the same as the `fermionic' surfaces that arise in the surface

reformulation of the lattice Ising model; nevertheless we expect that they should capture

the characteristic features of any critical surface theory of the 3d Ising model.

We ran a medium sized simulation, using roughly four months of time on RISC work-

stations. We have analyzed Ising con�gurations on a 643 body centered cubic (BCC) lattice

at a temperature of � = :0857 using :3 � 106 iterations. We also collected data on simple

cubic lattices of size 323 and 643 at � = 0:221651 (performing about 6 � 106 and :25 � 106

iterations respectively). Data were also taken at the minority percolation point for the Ising

model (where we also studied many di�erent lattice sizes, going from 323 to 1003) and for

pure bond percolation on the simple cubic lattice. All of our error analysis has been done

by using jack-knife and binning techniques. For more details see ref. [?].

On the BCC lattice, we coupled with equal strength both the 6 nearest and 8 next-

nearest Ising spins so that only three plaquettes of the dual lattice meet along a dual link.

Since surfaces built this way on the BCC lattice are naturally self-avoiding, computing the

genus of the dual surface is trivial. The number of handles g is obtained through the Euler

formula 2 � 2g = V � L + P , where V , L, and P are the number of vertices, links, and

plaquettes, respectively on the dual surface. On the other hand, the genus de�nition on the

simple cubic lattice is more problematic, and requires a few choices (which we discuss in

detail in ref. [?]) to resolve ambiguities where surfaces self-touch.

Overall, for the FK clusters we obtained our best results on the BCC lattice. We found

a scaling law for the number of clusters of volume Vcl, N(Vcl) � V ��

cl
; the exponent � = 2:22

[?] with a large systematic error which could be as high as 3% [?]. We also measured the

quantity Acl, which counts the number of cluster sites on the boundary, and found that

asymptotically it was proportional to the cluster volume Vcl.
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Fig. ?? shows this dependence on the simple cubic lattice. We see that for very small

volumes, the lattice regularization constrains Vcl to equal Acl and for intermediate volumes,

there is a small deviation from linear scaling (as some interior sites begin to appear). The

plateau that appears around Vcl = 3000 indicates the onset of scaling regime where Acl / Vcl.

The growth just at the end of the plot is due to the largest cluster, which wraps around

the lattice and merges with itself to form extra interior points. This plateau is the �rst

indication that the surfaces are not smooth and are unstable towards the formation of

quasi-one-dimensional objects. The observed proportionality of Vcl and Acl is well-known

in the context of pure percolation in 2 and 3 dimensions [?]. We note that in the well

understood case of the 2d Ising model (which has a non-pathological continuum behavior)

the cluster perimeter is not proportional to the area spanned by the cluster. The area-volume

proportionality, along with the relation [?] to the magnetization exponent � = 1=(� � 2),

implies that the scaling behavior of these `polymers' are related to critical properties of the

Ising model.

Turning to the analysis of the topology of the dual surfaces bounding the clusters, we

consider the distribution Ng(A), where g is the genus and A is the dual surface area. In Fig.

??, we present our data for genus 5 along with a best �t to the functional form

Ng(A) = CgA
x(g)e��(g)A : (1)

The �t is superb. One of our main results is that this functional form �ts our data very well

for g � 2 up to about g = 20 where our statistics become poor. The `cosmological constant'

� is found to be independent of the genus for g > 2 (Fig. ??). The value ��1 = 114 � 3 is

proportional to the average surface area (in lattice units) per handle.

In Fig. ?? we plot the exponent x(g) as a function of the genus. Once again after a

transient region for small genus (g = 0� 4) we �nd an almost linear behavior in the region

g = 5 � 15 with a slope of 1:25 � 0:1. The deviations from linearity are small, and in our

observation window they can be �tted with an e�ective exponent correction of order 0:1, or

with logarithmic corrections. These make an estimate of the large genus behavior of x(g)
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rather di�cult. The region we are observing is still transitory, and we cannot exclude that

the asymptotic slope of x(g) could equal one at large g. This value would be expected if the

handles were completely uncorrelated as for a Poisson distribution Pg(A) =
1
g!
(�A)ge��A.

The results presented above have also been analyzed for the simple cubic lattice. The

data agree with those of the BCC and point to a good universal behavior. The main

discrepancies can be traced to the short distance ambiguities which plague the de�nition

of the dual surfaces on the simple cubic lattice. The scaling exponents are close for the

two lattices. The di�erence among non-universal quantities, e.g. ��1 � 60 on the simple

cubic lattice, can be understood from the ratio of the number of plaquettes of the respective

Wigner-Seitz cells.

We will discuss in detail in [?] the analogous features for both the percolation of minority

spins of the Ising model and for non-interacting bond percolation. The general picture is

interestingly the same; indeed, the slope dx=dg for bond percolation is compatible with the

value for FK clusters. However, the slope dx=dg � 0:7�0:1 in the range g = 3�40 for Ising

minority spin percolation. The same caution as before apply to these slope values. Another

interesting result is the similarity of the measured area scaling exponents (� = 2:18 � 0:05

upon extrapolation to large lattices) as well as the linear relation between cluster volume

and area at the respective critical points (FK clusters at Tc and minority spin clusters at

Tp). The di�erence of the x(g) estimated for the two interacting theories we are studying

is interesting. It is possible that in the asymptotic region one will get 1 for the slope in

both cases, but the large di�erence of the measured exponents (which are, on the contrary,

very similar when looking at FK clusters and at bond percolation) says at least something

about �nite size corrections, i.e. about the nature of the interaction. Apart from this e�ect

these results indicate that the cluster distribution scaling is rather insensitive to the average

cluster density, which is about ten times less for minority spin clusters. At least partially we

may be observing some universality of di�erent de�nitions of self-avoiding random surfaces.

We regard the outcome of our topological studies and the behavior Vcl � Acl as a strong

indication that the cluster boundaries are in a `branched' phase. The topological evidence
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suggests that the surfaces grow �ngers which reconnect with a �xed probability per unit

area. The cosmological constant of the surfaces of �xed genus is nonzero at the critical

point. Adjusting the temperature away from criticality will only increase �, as the large

surfaces are exponentially suppressed (apart from a few surfaces of the size of the lattice

above the percolation threshold). Therefore there is no relevant parameter in the theory that

could be tuned to allow large surfaces of low genus. One can imagine that some additional

parameter (e.g. one that couples to the Euler density of the lattice surfaces, which depends

on all the spins in a fundamental cell) could be �ne-tuned to multicriticality (for another

approach see [?]). Then there would be the possibility to have a scaling theory at �xed

genus. However, such a tuning will probably not remove the �ngering instability of the

surfaces, so we still are faced with the problem that the continuum theory is not a theory

of surfaces but of quasi-one-dimensional objects.

The approximate linearity of x with g is strongly reminiscent of the scaling behavior of

d � 2 random surfaces1. But note however that similar scaling behavior can be shown in

the `double-scaling' limit of O(N) vector �eld theories [?], so a similar exponent exists for

the scaling of random graphical networks of �xed topology.

Finally, in order to get a more accurate description of the geometry of the minority clus-

ters, we analyzed the distribution of cluster cross sections as a function of their perimeters.

Below the critical temperature Tc the distribution drops o� at a scale of the order of a few

lattice spacings, providing further indication that the surfaces are composed of small, highly

interconnected tubes. Remarkably, around Tc (recall that the surfaces have long since per-

colated at Tp < Tc) we �nd very good scaling behavior which must be entirely dominated

by the cross sections of the large percolated cluster. If one were bold enough to view the

1The typical scaling observed for these d � 2 random surfaces is in the free energy, describing a

single uctuating surface. Our Ising con�gurations, however, consist of a collection of interacting

surfaces. The scalings we observe are for an ensemble of surfaces and not the free energy.
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percolated cluster as describing the time evolution of interacting strings, one could speculate

that this behavior is reminiscent of a Hagedorn-type transition.
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FIGURES

FIG. 1. ln(Vcl/Acl) vs. ln(Vcl) for FK clusters on the L = 64 SC lattice.

FIG. 2. The number of genus 5 surfaces as a function of dual surface area A for FK clusters on

the L = 64 BCC lattice, with a best �t to the functional form given in equation 1.

FIG. 3. The dependence of the cosmological constant �(g) on genus for FK clusters on the

L = 64 BCC lattice.

FIG. 4. The dependence of the exponent x(g) (extracted from the �ts to equation ??) on genus

for FK clusters on the L = 64 BCC lattice.
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