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Abstract

Large scale scienti�c applications, such as the Grand Challenge applications, deal with very

large quantities of data. The amount of main memory in distributed memory machines is

usually not large enough to solve problems of realistic size. This limitation results in the need

for system and application software support to provide e�cient parallel I/O for out-of-core

programs. This paper describes techniques for translating out-of-core programs written in a

data parallel language like HPF to message passing node programs with explicit parallel I/O.

We describe the basic compilation model and various steps involved in the compilation. The

compilation process is explained with the help of an out-of-core matrix multiplication program.

We �rst discuss how an out-of-core program can be translated by extending the method used

for translating in-core programs. We then describe how the compiler can optimize the code

by estimating the I/O costs associated with di�erent array access patterns and selecting the

method with the least I/O cost. This optimization can reduce the amount of I/O by as much

as an order of magnitude. Performance results on the Intel Touchstone Delta are presented and

analyzed.
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1 Introduction

The use of massively parallel machines to solve large scale computational problems in physics,

chemistry, biology, engineering, medicine and other sciences has increased considerably in recent

times. This is primarily due to the tremendous improvements in the computational speeds of

parallel computers in the last few years. Many of these applications, also referred to as Grand

Challenge Applications [CR93], have computational requirements which stretch the capabilities of

even the fastest supercomputer available today. For example, in Computational Fluid Dynamics, a

real simulation of the air ow past an aircraft in ight, without any simplifying assumptions, would

take several months to solve.

In addition to requiring a great deal of computational power, these applications usually deal

with large quantities of data. At present, a typical Grand Challenge Application could require

1Gbyte to 4Tbytes of data per run [dRC94]. These �gures are expected to increase by orders of

magnitude as teraop machines make their appearance. Main memories are not large enough to

hold this much amount of data; so data needs to be stored on disks and fetched during the execution

of the program. Unfortunately, the performance of the I/O subsystems of massively parallel com-

puters has not kept pace with their processing and communications capabilities [CFPB93]. Hence,

the performance bottleneck is the time taken to perform disk I/O. The need for high performance

I/O is so signi�cant that almost all the present generation parallel computers such as the Paragon,

iPSC/860, Touchstone Delta, CM-5, SP-1, nCUBE2 etc. provide some kind of hardware and soft-

ware support for parallel I/O [CFPB93, Pie89, BC93, DdR92]. An overview of the various issues

involved in high performance I/O is given in [dRC94].

Data parallel languages like HPF [For93] and pC++ [BBG+93] have recently been developed

to provide support for portable high performance programming on parallel machines. In order that

these languages can be used for large scale scienti�c computations, it is essential that the compiler

can automatically translate out-of-core programs e�ciently. In this paper we describe the design

of a compiler which can translate an out-of-core HPF program to a message passing node program

with explicit parallel I/O. We also discuss how the compiler can estimate the cost associated with

di�erent I/O access patterns in the translated program, in terms of the number of I/O requests

and the amount of data to be fetched from disk. This estimate is used to select the method which

requires the least amount of I/O. We �nd that this optimization can reduce the amount of I/O by

as much as an order of magnitude. The compilation process is explained with the help of an out-

of-core matrix multiplication program which uses a distributed GAXPY algorithm. This program

is used only as an example to illustrate the various issues involved in compiling out-of-programs

and optimizing the I/O requirements. The techniques described in this paper are applicable to any
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other program in general. Performance results on the Intel Touchstone Delta are presented and

analyzed.

The rest of the paper is organized as follows. Section 2 describes the basic model used for out-

of-core compilation. The compilation methodology is discussed in Section 3. Section 4 describes

the I/O cost estimation and optimizations performed by the compiler, followed by conclusions in

Section 5. In this paper, the term in-core compiler refers to a compiler for in-core programs and

the term out-of-core compiler refers to a compiler for out-of-core programs.

2 Model for Out-of-Core Compilation

2.1 Programming Model

The most widely used programming model for large-scale scienti�c and engineering applications

on distributed memory machines is the Single Program Multiple Data (SPMD) model. In this

model, parallelism is achieved by partitioning data among processors which e�ectively represents

parallelism in a class of applications called loosely synchronous applications [Fox91]. To achieve

load-balance, express locality of access, reduce communication and other optimizations, several dis-

tribution and data alignment strategies are often used (eg., block, cyclic, along rows, columns, etc.).

Many parallel programming languages or language extensions have been developed which support

such distributions. These languages provide directives that enable the expression of mappings from

the problem domain to the processing domain and allow the user to align and distribute arrays

in the most appropriate fashion for the underlying computation. The compiler uses the informa-

tion provided by these directives to compile global name space programs for distributed memory

computers. Examples of parallel languages which support data distribution include Vienna For-

tran [ZBC+92], Fortran D [FHK+90] and High Performance Fortran (HPF) [For93]. In this paper,

we describe the compilation of out-of-core HPF programs, but the discussion is applicable to any

other data parallel language in general.

The DISTRIBUTE directive in HPF speci�es which elements of the array are mapped to each

processor. This results in each processor having a local array associated with it. In an in-core

program, the local array resides in the local memory of the processor. Our group at Syracuse

University has developed a compiler for in-core HPF programs [BCF+93]. For large data sets,

however, local arrays cannot entirely �t in main memory. In such cases, parts of the local array

have to be stored on disk. We refer to such a local array as anOut-of-core Local Array (OCLA).

Parts of the OCLA need to be swapped between main memory and disk during the course of the

computation. If the operating system supports node virtual memory on each processor, the OCLA

can be swapped in and out of the disk automatically by the operating system.
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Figure 1: Architectural Model

Performance studies of the virtual memory provided by the OSF/1 operating system on the Intel

Paragon have shown that the paging-in and paging-out of data from the nodes drastically degrade

the user code performance [SS93]. Also, most of the other massively parallel systems at present,

such as the CM-5, iPSC/860, Touchstone Delta, nCUBE-2 etc. do not support virtual memory on

the nodes. Thus, a compiler must translate into a code which explicitly performs I/O. Even if the

node virtual memory is supported, paging mechanisms are not known to handle di�erent access

patterns e�ciently. This is true even in the case of sequential computers.

2.2 Architectural Model

Figure 1 describes the architectural model used by the compiler. It assumes any general distributed

memory computer in which the processors are connected together in some fashion. The system is

provided with a set of disks. Each processor may either have its own local disk or all processors

may share the set of disks. The system is provided with dedicated I/O processors which control

the ow of data between the compute processors and the disks. The I/O subsystem may have a

separate interconnection network or it can share the same network which connects the processors

together.

2.3 Data Storage Model

The Data Storage Model shown in Figure 2 speci�es how the out-of-core array is placed on disks

and how it is accessed by the processors. The out-of-core local array of each processor is stored
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Figure 2: Local Placement Model for out-of-core compilation

in separate �le called the Local Array File (LAF) of that processor. The LAF can be assumed

to be owned by that processor. The node program explicitly reads from and writes into the LAF

when required. If the I/O architecture of the system is such that each processor has its own disk,

such as in the IBM SP-1, the LAF of each processor will be stored on the disk attached to that

processor. If there is a common set of disks for all processors, such as on the Intel Paragon, the

LAF will be distributed across one or more of these disks. In other words, we assume that each

processor has its own logical disk with the LAF stored on that disk. The mapping of the logical

disk to the physical disks is system dependent.

A simple way to view this model is to think of each processor as having another level of memory

(logical disk) which is much slower than the main memory. Both the main memory and this

additional memory cannot be directly accessed by any other processor. Hence, a processor cannot

directly access some other processor's LAF. If a processor needs data from the LAF of another

processor, the required data will be �rst read by the owner processor and then communicated to

the requesting processor.

In order to store data on the disks based on the distribution pattern speci�ed in the program,

redistribution of data may be needed in the beginning when data is �rst stored on disk. This is

because the way data arrives (eg. from archival storage, satellite or over the network) may not

conform to the distribution speci�ed in the program. Redistribution requires reading data from
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disks, communicating data between processors and writing the data to the local array �les. This

involves some additional overhead which can be amortized if the array is used several times (eg.

for many iterations).

3 Compilation Methodology

This section describes the methodology used for compiling out-of-core HPF programs. We use an

out-of-core matrix multiplication program example to illustrate the compilation and optimization

process. We have chosen this example because it clearly brings out many of the important issues

involved in compiling out-of-core programs. This example is used only for explanatory purposes

and the methodology described in this paper is applicable to any other program in general.

We �rst describe the global name space matrix multiplication program and then explain how it

is translated assuming that all the matrices are in-core. This is helpful in understanding how the

program needs to be compiled when the arrays are out-of-core.

3.1 GAXPY Algorithm for Matrix Multiplication

Let A, B and C be n� n matrices such that C = A�B. A, B and C can be represented in terms

of their individual columns as

A = [a1; � � � ; an], aj 2 Rn

B = [b1; � � � ; bn], bj 2 Rn

C = [c1; � � � ; cn], cj 2 Rn

Then the GAXPY algorithm for computing C = A �B is

cj =
nX

k=1

bkjak ; j = 1 : n (1)

We can see that in order to compute the jth column of C, we need the jth column of B and

all columns of A. Figure 3 shows the HPF program for GAXPY matrix multiplication. Arrays A

and C are distributed in column-block fashion whereas array B is distributed in row-block fashion

over 4 processors. A temporary array is needed to store the products of element bkj and column

ak, which can be computed for all k in parallel. The jth column of the result is computed using

the intrinsic function SUM.
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1 parameter (n=64, nprocs=4)

2 real a(n,n), b(n,n), c(n,n), temp(n,n)

3 !hpf$ processors Pr(nprocs)

4 !hpf$ template d(n)

5 !hpf$ distribute d(block) on Pr

6 !hpf$ align (*,:) with d :: a, c, temp

7 !hpf$ align (:,*) with d :: b

8 do j=1, n

9 FORALL (k=1:n)

10 temp(1:n,k) = b(k,j)�a(1:n,k)

11 end FORALL

12 c(1:n,j) = SUM(temp,2) ! Sum Intrinsic

13 end do

14 end

Figure 3: GAXPY Matrix Multiplication in HPF

3.2 In-core Compilation

Our research group at Syracuse University has developed a compiler to translate in-core HPF pro-

grams to message passing node programs for distributed memory machines [BCF+93]. Figure 4

shows the steps followed by the compiler in translating a FORALL or array assignment statement

in an HPF program.1 A FORALL statement is essentially a parallel loop with copy-in-copy-out

semantics [For93]. According to the HPF speci�cations, the following steps describe a correct

sequential implementation of a FORALL statement; 1) copy rhs, 2) synchronize, 3) evaluate ex-

pression, 4) synchronize, 5) assign to lhs. Note that synchronization and copying are only part of

the speci�cation and can be avoided in most cases with appropriate compiler analysis [BCF+93].

The compiler uses distribution directives (Figure 3, lines 3{7) in the source program to �nd

the distribution pattern of the arrays. Using the data distribution information, the arrays are

partitioned into local arrays. After data distribution, the compiler analyzes the array operations

(Figure 3, lines 8{13). The compiler checks that the outer loop (lines 8{13) is a sequential DO

loop whereas the inner loop (lines 9{11) is a parallel FORALL construct. The inner FORALL

1Any array assignment statement can be converted into a corresponding FORALL statement, so we will use them

interchangeably [FHK+90, For93].
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1 Analyze the distribution pattern of each array used in the array expression.

2 Depending on the distribution, detect the type of communication required.

3 Perform data partitioning and calculate local lower and upper bounds

for each participating processor.

4 Use temporary arrays if the same array is used in both LHS and RHS

of the array expression.

5 Generate the corresponding loosely synchronous SPMD node program.

6 Add calls to runtime libraries to perform collective communication.

Figure 4: Steps in translating array assignment statements (in-core)

loop (indexed by variable k) is sequentialized into local DO loops. After the local computation is

done, the temporary results are added to give the jth column of the resultant C. This operation is

performed using a global sum reduction routine. Using the knowledge that the index j is in global

name space and that C is distributed in column-block fashion, the compiler computes the owner

of the resultant column which stores the result in the appropriate location in the local C array.

Figure 5 shows the resultant node plus message passing program.

3.2.1 Comparison with a Hand-coded Program

Equation 1 can be rewritten as a sum of p partial sums as follows

cj =

bn
p
cX

k=1

bkjak +

2bn
p
cX

k=bn
p
c+1

bkjak + � � �+
nX

k=((p�1)�bn
p
c)+1

bkjak

| {z }
p Sums

; j = 1 : n; ak 2 R
n (2)

Each of these partial sums can be obtained on individual processors. Consider the partial

sum
P

k
bkjak. Each partial sum returns an intermediate vector in Rn. Each vector is a linear

combination of bn
p
c columns of A and b

n

p
c elements of a column j of B. These intermediate vectors

are then added to give the jth column of matrix C. This process is repeated n times. It can be

observed that to obtain the intermediate vectors, the best way to distribute A is in column-block

form and B in row-block form. For this distribution, the number of rows of B in each processor

is equal to the number of columns of A in that processor. Moreover, since in each step j of the

summing process column cj of array C is computed, the natural distribution for C is the same as

that for A, namely column-block.
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parameter (n=64, nproc=4, local n=16)

C Partition the arrays using the distribution information.

real a(n,local n), b(local n,n), c(n,local n)

do j=1, n

Initialize the temporary array.

do i= 1, local n

do k=1, n

temp(k,i) = a(k,i)�b(i,j)

end do

end do

C Perform Global Sum of the temporary arrays along dimension 2.

result = global sum(temp, 2)

C Find the owner of the jth column and store the column.

owner = global to processor(j)

local index = global to local(j)

if (mynode = owner) then

store the result as (local index)th column of C

end if

end do

end

Figure 5: Translated code for in-core matrix multiplication
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1 do j=1, columns b (n)

2 do k=1, rows b (n
p
)

3 do i=1, rows a (n)

4 temp(i) = b(k,j)�a(i,k) + temp(i) ! Find Partial Sum

5 end do

6 end do

7 temp sum = global sum of temp.

8 if (mynode is owner of column j) then

9 store temp sum as column c(j0), where j0 = global to local(j)

10 end if

11 end do

Figure 6: Hand-coded Distributed GAXPY Program

Figure 6 shows a hand-coded distributed memory GAXPY matrix multiplication program. The

outer-most loop (j) varies from 1 to columns b (n). In each iteration (j), the column j of array B is

used for computation. Two inner loops multiply the kth column of A by the kth element of column

j of B (lines 2-6). The intermediate vector temp is then added by all processors to give the global

sum (temp sum in line 7). Using the global index j, the owner of column c(j) is calculated. This

processor stores temp sum as the jth column of array C in the corresponding local array position.

Note that the two inner loops operate in the local index space whereas the outer loop operates in

the global index space. Figure 7 illustrates the computation in the jth iteration of the algorithm.

The elements of array B and the corresponding columns of array A are shown using the same shade.

A comparison of the programs in Figures 5 and 6 shows that the code generated by the in-core

compiler is similar to the hand-coded version. That is, in-core compilation produces a good code

in comparison with a hand-coded program.

3.3 Out-of-core Compilation

The out-of-core HPF compiler follows an approach similar to the in-core HPF compiler. In order

to translate out-of-core programs, in addition to following the steps in Figure 4, the compiler also

has to schedule explicit I/O accesses to fetch/store appropriate data from/to disks. The compiler

has to take into account the data distribution on disks, the number of disks used for storing data

and the prefetching/caching strategies used. As stated earlier, the local array of each processor is

stored in a local array �le (LAF). The portion of the local array currently required for computation
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Figure 7: Distributed GAXPY for in-core matrices

is fetched from disk into the in-core local array (ICLA). The size of the ICLA is speci�ed at compile

time and usually depends on the amount of memory available. The larger the ICLA the better, as

it reduces the number of disk accesses. Each processor performs computation on the data in its

ICLA.

Some of the issues in out-of-core compilation are similar to compiler optimizations carried

out to gain advantage of processor caches or pipelines. This optimization, commonly known as

stripmining [AK87, Wol89, ZC91], sections the loop iterations so that data of a �xed size (equal

to cache size or pipeline stages) could be operated on in each iteration. In the case of out-of-core

programs, the computation involving the entire local array is performed in stages, where each stage

operates on a di�erent part of the array called a slab. The size of each slab is equal to the size

of the ICLA. As a result, during the compilation, the iteration space of a FORALL statement is

sectioned (stripmined) so that each iteration operates on the data that can �t in the processor's

memory (ie. the size of ICLA).

Figure 8 shows the various steps involved in translating an out-of-core HPF program. The

compilation consists of two phases. In the �rst phase, called the in-core phase, the arrays in the

source HPF program are partitioned according to the distribution information (provided by the HPF

directives) and local lower/upper bounds for each local array are calculated. Array expressions are

then analyzed for detecting communication. In other words, the compilation in this phase proceeds

in the manner compilation is done for in-core programs. The second phase, called the out-of-core

phase, involves adding appropriate statements to perform I/O and communication. The local array
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HPF   Program

1.  Partition  Computation.

3. Determine Local  Space  Bounds.

2. Determine  Communication.

1. Strip-mine in Local Space.

4. Sequentialize  Local Code.

Node + MP + I/O  Code

In-core Phase 

Out-of-core Phase

2. Modify communication to 
incorporate I/O.

3. Modify loops to insert I/O calls.

Figure 8: Flow chart for out-of-core compilation

is �rst stripmined according to the memory available in each processor. The resulting slabs are

analyzed for communication. The local FORALL loop is then sequentialized and the loops are

modi�ed to insert necessary I/O calls. Note that I/O is performed in the local name space.

3.3.1 Compiling the Out-of-core Matrix Multiplication Program

We illustrate the out-of-core compilation process using the HPF matrix multiplication example

given in Figure 3 and assume that the arrays A, B and C are out-of-core. Arrays A and C

are distributed in column-block fashion over p processors, whereas array B is distributed in row-

block fashion. Figure 9 shows the global arrays and their local array �les. Figure 9(A) shows

array A, Figure 9(B) shows array B and Figure 9(C) shows array C. Consider processor 3 in

Figures 9(A) and 9(C). Figure 9(D) shows the local array corresponding to either array A or C and

the corresponding OCLA. The OCLA of processor 3 is divided into slabs, each of which is equal to

the size of the in-core local array (ICLA). The slabs are shown with di�erent shades. Figure 9(E)

shows the local array corresponding to array B for processor 3. The OCLA is divided into two

slabs where each slab contains four subcolumns.

The compilation is performed in two phases. In the in-core phase, the compiler obtains the

necessary information about the arrays from the HPF directives (lines 3{7, Figure 3). Using

this information, the compiler analyzes the array operations (lines 8{13, Figure 3). The compiler
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Figure 9: Compiling the Out-of-core Matrix Multiplication Program

analyzes the outer loop (line 8, Figure 3), �nds that the loop is a sequential DO loop and hence

does not partition it. The inner loop consists of a FORALL construct which is parallelized. Using

the array distribution information, the compiler computes the local array bounds and partitions

the computation. The compiler analyzes the array assignment statement in line 10 to determine if

communication is required. In this case, no communication is required in the innermost loop, but

the outer loop requires a global sum operation.

In the second phase, stripmining of the index spaces is carried out using the memory (ICLA)

size. Since the outer loop successively fetches elements of B, an I/O routine for fetching the slabs

of array B is inserted. The inner loop is also stripmined and another I/O routine is inserted

for fetching the slabs of array A. After the execution of the inner loop, all processors add their

temporary results to obtain the corresponding columns of C. Using the distribution information

of array C and the value of the outer loop index (j), the index of the processor that owns these

columns is computed. This processor computes the local indices of these columns and stores the

columns in the local array �le. The resulting node program with the communication and I/O calls

is shown in Figure 10.
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C (N,N) Arrays distributed over p processors.

C Stripmine code based on the slab size M .

C Repeat operation k times, k=(no. of cols. in OCLA of A/no. of cols. in slab) = N2=(M P )

C Initialize global index.

global index=0

do l=1, k

Call I/O routine to read the ICLA of array B.

do m=1, no columns in icla of B

global index=global index+1

column count = 0

do n=1, k

Call I/O routine to read the ICLA of array A.

do i=1, no columns in icla of A fM/Ng

column count = column count + 1

do j=1, no elements per column fNg

temp(j,i) = temp(j,i) + A(j,i)�B(column count,m)

end do

end do

end do

Call Global Sum routine to obtain the (global index)th column of C

if (mynode is owner of this column) then

Store the column in the corresponding ICLA.

if ICLA is full then

Call I/O routine to write the ICLA of array C.

end if

end if

end do

end do

Figure 10: Node+MP+I/O Pseudo-Code for the Matrix Multiplication Program
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Figure 11: E�ect of slab size variation

3.4 Experimental Results

Figure 11 shows the performance for multiplication of 1K�1K real arrays on 4, 16, 32 and 64

processors. The slab ratio, which is the ratio of the slab size to the out-of-core local array size is

varied from (1/8) to 1. The slab-size for array A is chosen to be equal to the slab-size for array

B. Note that the case when the slab-size is equal to the OCLA size (slab ratio = 1) is di�erent

from the case when the entire data is stored in main memory. When the slab-size equals the size

of the OCLA, the slab-ratio (k in Figure 10) is 1. Even so, data is still accessed from disk, but

only once for each column of C. We observe that as the slab ratio is decreased, the time taken

increases. This is because a lower slab ratio means a smaller slab size and more number of slabs.

This increases the number of I/O requests, though the total amount of data fetched from disk

remains the same. The larger number of I/O requests increases the time taken for I/O which

results in higher overall execution time. In the next section, we present optimizations which reduce

the I/O time signi�cantly.

4 Data Access Optimization

For in-core programs, interprocessor communication is often the bottleneck which can degrade

the overall performance considerably. Hence, an important optimization to be performed by any
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compiler for in-core programs is to minimize the communication overhead. This is usually done

by aggregating small messages into a single long message so as to reduce communication latency,

using collective communication routines etc. For an out-of-core compiler, it is very important to

minimize the I/O cost because the time required to fetch data from disk is at least an order of

magnitude more than the time required to communicate data between processors.

We measure I/O cost in terms of two metrics, namely the number of I/O requests per processor

and the total amount of data fetched from disk per processor. Since the cost associated with

physically accessing data (e.g. seek time, latency time etc.) is dictated by the hardware and to a

certain extent by the parallel �le system, these two metrics can be used to e�ectively analyze the

I/O costs associated with a user program.

4.1 I/O Cost Estimation

The previous section presented a simple extension of the in-core compilation method to compile out-

of-core programs. Speci�cally, the extension of the in-core compilation technique did not explicitly

consider the I/O costs associated with array assignment statements involving out-of-core arrays.

In this section, we describe a framework for estimating the I/O costs in such statements and using

this estimate to determine better access patterns which reduce the I/O cost.

In order to estimate the I/O cost associated with the compiled code, we analyze the node+MP+I/O

program generated by the out-of-core compiler, which was described in the previous section (Fig-

ure 10). Using the local loop bounds, slab sizes and index variables for each out-of-core array, we

compute the number of I/O accesses and the total amount of data accessed. We illustrate this by

computing the dominant I/O costs in the out-of-core program in Figure 10. We call this version

of the translated program as the column slab version because the out-of-core local array is divided

into slabs along columns as shown in Figure 12(I). Note that for each column of B, the entire local

array of A is required. Thus the dominant I/O cost is given by I/O accesses associated with the

array A. Further, note that arrays B and C are accessed once during the entire computation, one

slab at a time.

The I/O cost for accessing array A in the column slab version can be calculated as follows. Let

N = number of rows and columns in the global array A,

P = number of processors,

M = number of array elements in a slab (This depends on the available node memory).

To calculate one column of C, all columns of A are required. Therefore, the number of I/O requests

per processor for one column of C is (N=P )=(M=N) = N2=(P M). The number of I/O requests
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Figure 12: Column slabs versus row slabs

per processor to calculate all columns of C is given by

Tfetch(A) = N3=(M P ) (3)

The number of elements of array A that are fetched by each processor to compute one column of C

is N(N=P ) = N2=P . Hence, the total number of elements of A that are accessed by each processor

to compute all columns of C is given by

Tdata(A) = N3=P (4)

Clearly, the I/O cost associated with this code is as large as the amount of computation. As

explained in the previous section, it is important to note that the in-core version of this compiled

code is as optimized as the hand-coded version.

In this example, another way of accessing the array A is to create slabs along rows as shown

in Figure 12(II). This would require reordering the loops as illustrated in Figure 13. We call this

version of the translated program as the row slab version. The I/O cost associated with this version

can be calculated as follows. We note that a row slab of array A consists of all the columns of A

within a particular set of rows. Thus when a processor fetches a slab, it has all the subcolumns of

the out-of-core local array and the size of the subcolumns is the same as the number of rows in the

slab. Since each slab has all the subcolumns necessary to calculate one subcolumn of C, each slab

needs to be fetched only once to compute all the columns of C. Hence, in the row slab version, the

number of I/O requests per processor is equal to the number of slabs which can be calculated as

Tfetch(A) = N=((M P )=N) = N2=(M P ) (5)
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Since the array A is accessed only once, the number of data elements of A fetched per processor to

compute all columns of C is given by

Tdata(A) = N(N=P ) = N2=P (6)

Comparing equations 3 and 4 with equations 5 and 6, we observe that the row slab version

requires an order of magnitude less number of I/O requests and an order of magnitude less amount

of data to be fetched from disk than the column slab version. The I/O costs associated with arrays

B and C are the same in both versions. So, the row slab version is clearly the method of choice for

translating the out-of-core GAXPY matrix multiplication program. This data access pattern and

the corresponding computation reorganization is further illustrated using Figure 14. The elements

of array B that are multiplied to the corresponding columns of array A are shown using the same

shade. The same slab of array A is multiplied with the jth column to kth column of B to produce

the jth to kth subcolumns of C. Thus, the repeated I/O accesses to array A in the column slab

version are eliminated.

In general, this approach for estimating the I/O cost requires analyzing the storage and access

patterns along each dimension of the distributed out-of-core array. Based on this analysis, the loops

are reorganized and the corresponding I/O costs are computed. The version with the minimum

I/O cost is selected. This is summarized in the algorithm given in Figure 15.

4.2 Performance Results

Table 1 compares the performance of the row and column slab versions of the out-of-core matrix

multiplication program. Two arrays of 1K�1K real numbers are multiplied on 4, 16, 32 and 64

processors. The slab ratio, which is the ratio of the slab size to the OCLA size, is varied from (1/8)

to 1. We have also measured the time for an in-core version of the program which requires only

an initial read of the arrays from disk. As explained earlier, this is di�erent from the case when

the slab size is 1 because in the latter case, the array is assumed to be out-of-core even though

the entire out-of-core local array is stored in one slab. This slab is fetched from disk whenever

necessary.

We observe that the row slab version performs considerably better than the column slab version

for any number of processors and any slab size. This is because it requires an order of magnitude

less amount of I/O, as proved earlier. In both versions, the time taken increases as the slab ratio (or

slab size) is decreased. A smaller slab size results in higher number of I/O requests, which increases

the I/O cost. The di�erence between the in-core version and any of the out-of-core versions shows

the corresponding time spent in performing I/O.

17



E�cient Compilation of Out-of-core Data Parallel Programs

C (N,N) Arrays distributed over p processors.

C Stripmine code based on the slab size M .

C Repeat Operation k times, k=(no. of rows in OCLA of A/no. of rows in slab)=N2=(M P )

do l=1, k

Call I/O routine to read the ICLA of array A.

global index=0

do n=1, k

Call I/O routine to read the ICLA of array B.

do m=1, no columns in icla of B

global index=global index+1

do i=1, no columns in icla of A fN/Pg

do j=1, no elements per column f(M P)/Ng

temp(j,i) = temp(j,i) + A(j,i)�B(i,m)

end do

end do

Call Global Sum intrinsic to obtain the (global index)th subcolumn of C

if (mynode is owner of this subcolumn) then

Store the subcolumn in the corresponding ICLA.

if ICLA is full then

Call I/O routine to write the ICLA of array C.

end if

end if

end do

end do

end do

Figure 13: Row Slab Version of the translated code
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Figure 14: Row slab version

Determine the amount of available memory.

For each array used in the array assignment statement do

For each dimension of the out-of-core array do

Use index variables to analyze access patterns.

Compute the I/O costs for stripmining using slabs along this dimension.

end for

end for

Determine which array requires the largest amount of I/O.

Select the stripmining strategy which results in lowest I/O cost for that array.

Figure 15: General Algorithm for I/O Cost Estimation
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Table 1: Performance of matrix multiplication for various slab sizes, time in seconds

Slab Ratio 4 Procs 16 Procs 32 Procs 64 Procs

Col. slab Row slab Col. slab Row slab Col. slab Row slab Col. slab Row slab

1/8 1045.84 239.97 897.59 161.02 857.62 97.08 803.57 90.29

1/4 979.20 226.08 864.08 118.20 807.99 92.43 783.79 75.56

1/2 958.17 205.91 802.69 96.79 788.47 80.45 698.29 66.70

1 923.11 194.15 714.15 84.77 680.40 66.94 620.70 60.11

In-core 140.91 40.40 20.14 9.58

4.2.1 Selecting Slab Sizes for Multiple Arrays

The compiler has to choose the slab sizes to be used for all arrays in the program depending on the

amount of available memory. One approach is to distribute the available memory equally among

all the arrays, so that they all have the same slab size. Another approach is to analyze the I/O

access patterns of the arrays and assign a larger slab size to the array with more frequent accesses.

We have studied the e�ect of di�erent slab sizes on the overall performance. Table 2 shows the

performance of the matrix multiplication program for di�erent slab sizes for arrays A and B. The

arrays are chosen to be of size 2K�2K. In the �rst experiment, the slab size for array A is �xed and

the slab size for array B is varied. The second experiment is performed by keeping the slab size for

array B �xed. While in the �rst experiment, the execution time improves from 826.94 seconds to

493.04 seconds, in the second experiment the best performance observed is 452.29 seconds. Hence,

instead of equally dividing the available memory between the slabs of A and B, if a larger portion is

allocated to the slab of A, better performance is obtained. This is because A is accessed more often

than B or C. Hence the compiler should allocate more memory to array A. As explained earlier,

using the loop bounds and index variables, the compiler can determine which array requires more

I/O accesses and accordingly allocate the available memory.

5 Conclusions

We have described how an out-of-core program written in a data parallel language like HPF can be

translated into a message passing node program with explicit communication and parallel I/O. Such

a compiler is necessary for compiling large scale scienti�c applications written in a data parallel

language. These applications typically handle large quantities of data which results in the program

being out-of-core.

We have discussed the basic compilation model and various steps involved in the compilation.

The compilation process was illustrated using an out-of-core matrix multiplication example. We
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Table 2: Performance of the row slab version for di�erent slab sizes of arrays A and B

2K � 2K arrays, 16 processors, time in seconds

Slab B Slab A=256 Slab A slab B=256 Total Memory

size Time (s) size Time (s) (Slab A + Slab B)

256 826.94 256 826.94 512

512 548.13 512 510.02 768

1024 507.01 1024 492.87 1280

2048 493.04 2048 452.29 2304

described how the basic in-core compilation method can be extended to compile out-of-core pro-

grams. However, the code generated this way may not give good performance. We have proposed

an optimization by which the compiler can improve the code generated by the above method. The

compiler estimates the I/O costs associated with di�erent array access patterns and selects the

method with the least I/O cost. This can reduce the amount of I/O by as much as an order of

magnitude. We also discussed how the performance of the program varies with slab size. Instead

of dividing the available memory equally among all arrays, the best performance is obtained when

the most frequently accessed array is allocated a larger slab size.

Some of the compilation techniques described in this paper are currently being done by hand.

We are in the process of implementing them in the compiler. Due to stability problems with the

hardware, we have done experiments with relatively small data sets. We will include complete

results on much larger data sets in the �nal version of this paper.
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