
Preliminary Evaluation of High-Performance Fortran

as a Language for Computational Fluid Dynamics

E.A. Bogucz� G.C. Foxy T. Hauptz K.A. Hawickx S. Ranka{

Northeast Parallel Architectures Centerk

Syracuse University

Syracuse, NY 13244

Abstract

This paper evaluates the High-Performance Fortran

(HPF) language as a candidate for implementing com-

putational
uid dynamics (CFD) software on parallel-

architecture computer systems. The paper reviews ma-

jor HPF language features and discusses general algo-

rithmic issues common to broad classes of CFD codes.

Broader application areas, such as those covered by the

NAS parallel benchmarks are also reviewed for suitabil-

ity for HPF implementation. HPF is shown to provide

convenient language structures for implementing several

widely-used CFD algorithms, including �nite-di�erence

and �nite-volume solvers that use regular grids. Other

CFD algorithms | including multi-block, multi-grid

and unstructured-mesh approaches | are most conve-

niently expressed using extensions to the initial HPF

language speci�cation.

1 Introduction

Aerospace industry interest in hardware and software

for parallel computing has heightened recently, driven

by a variety of complementary factors. Contributing

factors include: successes in implementing research and

applied codes on massively-parallel systems; maturing

compilers and software development tools; the commit-

ment of NASA and other federal labs to foster develop-

ment of high-performance computing and communica-

tions (HPCC) technologies; and an expanding workforce

�Associate Director; Associate Professor, Department of Me-

chanical, Aerospace and Manufacturing Engineering, Syracuse
University. Member, AIAA.

yDirector; Professor, Computer Science and Physics, Syracuse
University.

zFortran 90D Project Leader and Research Scientist.
xResearch Scientist.
{Fortran 90D Project Leader; Associate Professor, Computer

and Information Science, Syracuse University.
kCopyright c
1994 by E.A. Bogucz. Published by the

American Institute of Aeronautics and Astronautics, Inc. with

permission.

of individuals who have relevant prior training and ex-

perience. Perhaps most important, the proliferation of

engineering workstations typical at aerospace �rms is

widely recognized as a potentially signi�cant, yet un-

derused, distributed computing resource.

This paper evaluates the suitability of a new

means for utilizing networked workstations and other

parallel computing systems for CFD simulations of cur-

rent interest to aerospace �rms. The topic addressed

here is the language High-Performance Fortran (HPF),

which is de�ned in a speci�cation adopted in 1993 [12].

The present paper reports results of a preliminary eval-

uation of strengths and limitations of HPF for imple-

menting CFD codes that are candidates for use in mul-

tidisciplinary design applications. The present e�ort

is part of a larger evaluation of NASA codes that is

being conducted by the Multidisciplinary Analysis and

Design Industrial Consortium (MADIC). MADIC was

formed in March 1992 to accelerate the development of

a new simulation and design environment, which takes

full advantage of recent advances in HPCC technologies.

The simulation and design environment envisioned by

MADIC members includes multiple simulation modules

executing simultaneously in a heterogeneous computing

environment comprised of a mixture of machine archi-

tectures. Full development of the integrated system is

expected to reduce design cycle time, increase accuracy

of individual simulations, and account for multidisci-

plinary e�ects.

In addition to the e�ort reported in this paper, the

MADIC NASA code evaluation project includes: de�-

nition of a process for industry certi�cation of physical

simulation codes [17]; evaluations of individual NASA

codes; comparisons of results obtained with several

codes; and evaluation of ADIFOR, which enables au-

tomatic di�erentiation of Fortran programs [6]. In the

current phase of this project, �ve NASA CFD codes are

being evaluated: CFL3D [26], TLNS3D [16], OVER-

FLOW [22], ENSAERO [27], and ADPAC [3]. The cur-

rent phase of the project also includes comparisons of

results obtained from several codes for wing and wing-

1

real A(N,N), B(N,N)

..

c---- point-Jacobi iteration: A (old), B(new)

do j=2,N-1

do i=2,N-1

B(i,j) = 0.25*(A(i,j-1) + A(i,j+1)

$ + A(i-1,j) + A(i+1,j))

end do

end do

Figure 1: Fortran 77 code fragment for point-Jacobi

iteration of the Laplace equation on a uniform rectan-

gular grid.

body con�gurations [21] and aft-end/nozzle con�gura-

tions [23].

This paper is organized as follows: Section 2 con-

tains background information concerning parallel com-

puting and the motivation for the HPF language. The

main features of the HPF language speci�cation are out-

lined in Section 3. Section 4 describes HPF implemen-

tations of some of the application kernels in the NAS

benchmarks. Section 5 contains a general discussion of

strengths and weaknesses of HPF for CFD and other ap-

plications. Issues relevant to the �ve NASA CFD codes

currently being evaluated by MADIC are discussed in

Section 6. Final remarks are presented in Section 7.

2 Background

Experience in parallel computing to date indicates that

the likely dominant approach for large-scale simulation

codes will involve multiple-instruction, multiple-data

(MIMD) distributed-memory systems. The distributed-

memory MIMD class of parallel systems includes dedi-

cated systems | such as the IBM SP series, the Think-

ing Machines CM-5, and the Intel Paragon | as well

as networks of engineering workstations. To date, codes

for distributed-memory MIMD systems have been writ-

ten using subroutine calls to message-passing libraries,

which require the programmer to \hand-code" commu-

nications between processors.

The usual message-passing approach is illustrated

in Figures 1 and 2, which show kernels of a point-Jacobi

iterative solution of the Laplace equation. Figure 1

shows a Fortran 77 code fragment for a calculation on

an N � N uniform rectangular grid. Figure 2 shows an

equivalent message-passing version, written for P pro-

cessors in the usual \single-program, multiple data"

(SPMD) style.1 In SPMD programming, the same pro-

1Alternate codings of examples presented here are possible,
and may be desirable for enhanced computational performance.

real A(N,N_OVER_P), B(N,0:N_OVER_P+1)

..

c---- point-Jacobi iteration: A (old), B(new)

c---- communicate with neighboring regions:

if(MY_ID.NE.0)

$ SEND(A(1:N,1),MY_ID-1) !west

if(MY_ID.NE.P-1)

$ SEND(A(1:N,N_OVER_P),MY_ID+1) !east

if(MY_ID.NE.P-1)

$ RECEIVE(A(1:N,N_OVER_P+1),MY_ID+1) !east

if(MY_ID.NE.0)

$ RECEIVE(A(1:N,0),MY_ID-1) !west

c---- loop limits:

LOW = 1

if(MY_ID.EQ.0) LOW=2

HIGH = N_OVER_P

if(MY_ID.EQ.P-1) HIGH = N_OVER_P-1

c---- compute:

do j=LOW,HIGH

do i=2,N-1

B(i,j) = 0.25*(A(i,j-1) + A(i,j+1)

$ + A(i-1,j) + A(i+1,j))

end do

end do

Figure 2: Message-passing code fragment for point-

Jacobi iterative solution of the Laplace equation on a

uniform rectangular grid.

gram is sent to all processors, but each processor exe-

cutes selected statements based on its identi�cation in-

dex MY ID (an integer that varies from 0 to P-1). Note

that the message-passing version of the code includes

calls to subroutines SEND and RECEIVE, which transfer

data between processors that are computing solutions

for adjacent regions of the domain. (In this example, the

simplest possible domain decomposition is used: the re-

gion is divided into P vertical blocks, each of which has

N rows and N OVER P = N/P columns.)

Using the relatively-limited software-development

tools available to date, message-passing programming

generally can be tedious and error-prone. Portability

of message-passing codes can also be a problem when

libraries unique to a particular hardware vendor are

used. The recent development of machine-independent

standards such as MPI should relieve many portability

problems, and software-development tools also are im-

proving signi�cantly. Nevertheless, programming using

message-passing is likely to remain more labor-intensive

than programming serial-architecture machines using

traditional high-level languages, such as Fortran 77 and

C.

The intent here is to show equivalent code fragments that illus-
trate main features of each language.

2

real A(N,N), B(N,N)

..

c---- point-Jacobi iteration: A (old), B(new)

B(2:N-1,2:N-1) = 0.25*(

$ A(2:N-1,1:N-2) + A(2:N-1,3:N)

$ + A(1:N-2,2:N-1) + A(3:N,2:N-1))

Figure 3: Fortran 90 code fragment for point-Jacobi

iteration of the Laplace equation on a uniform rectan-

gular grid.

An alternative to hand-coded message-passing

is to develop compilers capable of generating auto-

matically the message-passing instructions required by

MIMD systems. Unfortunately, attempts to develop

parallelizing compilers for widely-used languages like C

and Fortran have not been successful. Although fully

automatic parallelizing compilers can produce excellent

results on isolated loop nests, they often fail to exploit

available parallelism in realistic application codes due to

false dependencies. As a result, e�cient use of MIMD

systems requires either the use of message-passing pro-

gramming or the development of new languages.

One new language of interest in parallel comput-

ing is Fortran 90 [18], which serves as the basis for

variants including CM-Fortran (developed by Thinking

Machines Corporation) and MPfortran (developed by

Maspar). Fortran 90 is an extension of Fortran 77 that

allows new features to be integrated into existing code

in a controlled, evolutionary manner. Fortran 90 in-

cludes major new features in a broad range of areas,

including new control structures, array processing, dy-

namic memory management, data types and structures,

operators, subprograms, and global data. In e�ect, For-

tran 90 captures decades of experience in programming

vector supercomputers as well as advances in computer

programming theory and practice. In the context of the

present paper, the most signi�cant extension provided

by Fortran 90 is the treatment of arrays as individ-

ual data objects. This feature is inherently well-suited

to data-parallel operations, which are readily processed

by the single-instruction, multiple-data (SIMD) class of

massively-parallel computers (such as the Connection

Machine CM-2 and the Maspar MP-1).

Figure 3 shows a Fortran 90 implementation of the

point-Jacobi code shown previously. This code makes

use of \array section" notation, which permits a com-

pact representation of the point-Jacobi computational

template. For scienti�c and engineering programming,

Fortran 90 clearly is a signi�cant extension of Fortran

77. However, experience in using Fortran 90 on paral-

lel computing systems indicates that it lacks constructs

and directives required for e�ective use of MIMD sys-

tems. Based on this realization, a speci�cation for a

real A(N,N), B(N,N)

c---- DISTRIBUTION SPECIFICATION

!HPF$ PROCESSORS PROC(P)

!HPF$ TEMPLATE TEMP(N,N)

!HPF$ DISTRIBUTE TEMP(*,BLOCK)

!HPF$ ALIGN A(i,j) with TEMP(i,j)

!HPF$ ALIGN B(i,j) with TEMP(i,j)

..

c---- point-Jacobi iteration: A (old), B(new)

FORALL (i=2:N-1,j=2:N-1)

$ B(i,j) = 0.25*(A(i,j-1) + A(i,j+1)

$ + A(i-1,j) + A(i+1,j))

Figure 4: HPF code fragment for point-Jacobi iterative

solution of the Laplace equation on a uniform rectan-

gular grid.

language called High-Performance Fortran (HPF) was

adopted in 1993 [12]. The HPF language speci�cation

is based in part on experience gained with the research

languages Fortran D [13, 14] and Vienna Fortran [7].

Four companies are expected to release HPF compilers

during 1994.

A critical issue for parallel computing is the prob-

lem of scalability and portability of the software, since

this is the key for protection of software investment.

This issue is partially addressed by HPF. HPF provides

a minimal set of extensions to Fortran90 to support the

data parallel programming model, which is de�ned as

single-threaded, loosely-synchronous parallel computa-

tion using a global name space. The purpose of HPF

is to provide compilers and software development tools

that produce top-performance codes for both MIMD

and single-instruction, multiple data (SIMD) computers

that have non-uniform memory access cost. Portability

of HPF codes means that the e�ciency of the code is

preserved for di�erent machines with comparable num-

ber of processors.

One fundamental extension to Fortran 90 pro-

vided by HPF concerns compiler directives that spec-

ify the distribution of data among multiple processors.

Figure 4 shows an HPF code fragment equivalent to

the examples shown in Figures 1 - 3. The HPF code in-

cludes the compiler directives PROCESSORS, TEMPLATE,

DISTRIBUTE, and ALIGN, which serve to allocate a sepa-

rate block of columns of arrays A and B to each proces-

sor. The code also includes the HPF statement FORALL,

which provides the template for computation of each

element.

The current HPF language speci�cation is

thought to support data parallel programming for half

to three-quarters of practical applications, but it has

limited support for unstructured problems that require

3

irregular communications. Support for irregular com-

munications is a matter of current research interest. A

new round of discussions concerning a second HPF spec-

i�cation (\HPF-II") will begin in January 1994. Ulti-

mately, HPF is expected to complement | not replace

| programming using message-passing libraries. For

many applications, HPF is expected to provide conve-

nient, compact and relatively-simple programs without

recourse to explicit message-passing instructions. How-

ever, other applications are expected to require hand-

coded message passing to yield acceptable utilization

of distributed-memory MIMD systems. This paper is

intended to contribute to the understanding of which

applications are best suited to HPF, and which are not.

3 HPF language features

HPF consists of extensions to Fortran 90. One advan-

tage of building a new language on Fortran is that it

is expected to facilitate reuse of the enormous inven-

tory of existing codes written in Fortran 77 (or earlier

versions). In addition, this approach leverages existing

skills of experienced Fortran programmers, as well as

the signi�cant investment of computer manufacturers,

which have developed highly-optimized Fortran compil-

ers. This section includes a brief overview of Fortran

90 and the major extensions to Fortran 90 contained

in the HPF speci�cation. Complete details concerning

HPF may be found in references [12, 15].

3.1 Fortran 90 features

Although Fortran 90 includes major extensions to For-

tran 77 in a broad range of areas, the principal features

of interest in the present paper involve array processing.

In this area, notable extensions include:

� Processing of arrays as individual data objects. For

example, the Fortran 90 statement A = B + C adds

corresponding elements of arrays B and C without

requiring DO-loop indexing over each element of the

arrays.

� New syntax for \array sections," which contain a

subset of elements from an array.

� Masked array assignments, which permit selective

processing of array elements. For example, the

Fortran 90 statement WHERE(A=0) B=C assigns ele-

ments of the array B to be equal to corresponding

elements of the array C only for those locations in

which the corresponding elements of the array A

are zero.

� Use of arrays and array sections as arguments to

a broad case of elemental intrinsic functions (e.g.,

B=ABS(A) sets each element of array B to be equal

to the absolute value of the corresponding element

of array A.

� New intrinsic functions that perform transforma-

tions or reductions on arrays or array sections. Ex-

amples include SUM, which returns a sum of array

elements and MAXVAL, which returns the value of

the largest array element.

The processing and manipulation of arrays as in-

dividual data objects allows the programmer to repre-

sent bulk data parallelism in a form that can be ex-

ploited relatively easily.

3.2 HPF Extensions

The HPF extensions provide the compiler with infor-

mation about locality as well as concurrency present in

the application code. This information is of utmost im-

portance in achieving high performance on distributed

memory machines. These extensions fall into four cat-

egories: compiler directives, new parallel constructs, li-

brary routines, and an escape mechanism for interfacing

with other languages and libraries.2

3.2.1 Compiler Directives

Compiler directives are structured comments that sug-

gest implementation strategies or assert facts about a

program to the compiler. They may a�ect the e�ciency

of the computation performed, but they do not change

the semantics of the program. Analogous to Fortran 90

statements, there are declarative directives, to be placed

in the declaration part of a scoping unit, and executable

directives, to be placed among the executable Fortran

90 statements. E�cient execution of data-parallel ap-

plications on distributed memorymachines requires dis-

tribution of data such that data locality and/or load

balance is achieved. HPF data alignment and distri-

bution directives allow the programmer to advise the

compiler how to assign data objects (typically array el-

ements) to the memories of processors.

HPF uses a two-level mapping of data objects to

\abstract processors." as depicted in Figure 5. Objects

(typically arrays) are �rst aligned relative to one an-

other, and then groups of aligned objects are distributed

onto a programmer-de�ned rectilinear arrangement of

abstract processors (using the PROCESSORS directive).

2HPF also restricts somewhat alternatives for sequence and
storage association available in Fortran 90 due to incompatibility

with the data distribution directives (see [12] for further details).

4

templatedata objects
physical processors

with arbitrary topology
abstract processors
with grid topology

grid mapping
implementation dependent

!HPF$ TEMPLATE !HPF$ PROCESSORS

!HPF$ ALIGN !HPF$ DISTRIBUTE

Figure 5: Mapping of data objects to physical processors using HPF ALIGN and DISTRIBUTE directives.

INTEGER, DIMENSION(4,4) :: B

!HPF$ TEMPLATE T(12,12)

!HPF$ ALIGN B(I,J) WITH T(2:12:3,1:12:

REAL, DIMENSION(8,8) :: C,D

!HPF$ TEMPLATE T(12,12)

!HPF$ ALIGN C(:,:) WITH T(:,:)

!HPF$ ALIGN D(I,J) WITH T(I+5,J+5)

SHIFT AND STRIDESTRANSPOSITION AND STRIDE

COLLAPSERELATIVE ALIGNMENT

!HPF$ TEMPLATE T(12,12)

!HPF$ ALIGN A(I,J) WITH T(2*J-1,I)

REAL, DIMENSION(12,6) :: A

REAL, DIMENSION(8,12) :: E

!HPF$ TEMPLATE T(12)

!HPF$ ALIGN(*.:) WITH T(:)

Figure 6: Examples of HPF alignments.

The �nal mapping of abstract to physical processors is

not speci�ed by HPF and is implementation dependent.

The ALIGNMENT directive can be used to enforce

the collocality of di�erent arrays. All array elements

aligned with an element of the template are mapped to

the same processor. The template can either be pro-

vided explicitly by using the TEMPLATE directive or im-

plicitly by using another array as a template. Examples

of HPF alignments are shown in Figure 6.

The template of an array is distributed among

the set of abstract processors by using DISTRIBUTE di-

rective. Several patterns of partitioning are available.

The important ones are BLOCK and CYCLIC. The for-

mer slices the template into uniform contiguous blocks

of elements, while the latter assigns the template in a

round-robin fashion. In addition, a particular dimen-

sion of the template may be collapsed or replicated onto

the abstract processor grid. The HPF distributions are

illustrated in Figure 7.

The combination of alignment information of an

array and distribution information of its template de-

�nes the mapping of an array. Remapping of arrays

during runtime can be
agged to the compiler us-

ing the DYNAMIC directive. The actual remapping is

then triggered by executable directives REALIGN and

REDISTRIBUTE.

3.2.2 Parallel Constructs

Parallel constructs are provided in HPF to enable the

programmer to make explicit assertions about concur-

rency in a code. Available features include the FORALL

statement, the FORALL construct and the INDEPENDENT

directive.

The FORALL statement can be used to express as-

signments to sections of arrays. It is similar to the array

assignment of Fortran 90, but allows more general sec-

tions and computations to be speci�ed. The semantics

of FORALL guarantee that array elements may be as-

signed in an arbitrary order. To ensure determinism

it is required that each array element on the left hand

side (LHS) is assigned only once. The execution of the

FORALL statement may require intrastatement synchro-

nization; the evaluation of the left side expression of

the FORALL assignment must be completed for all ar-

ray elements before the actual assignment is made. A

5

1

2

3

4

5

6

7

8

10

11

12

9 13

14

15

16

6
7
8
9

10

2

6

10

14

3

7

11

15

1

2

9

10

3

4

11

12

7

8

15

16

5

6

13

14

4

8

12

16

11
12
13
14
15

!HPF$ TEMPLATE T(16)

!HPF$ PROCESSORS P(4)

!HPF$ DISTRIBUTE T(BLOCK(5)) ONTO P

16

1

9

13

1
2
3
4
5

5

!HPF$ DISTRIBUTE T(CYCLIC) ONTO P

!HPF$ DISTRIBUTE T(CYCLIC(2)) ONTO P

!HPF$ DISTRIBUTE T(BLOCK) ONTO P

Figure 7: Examples of HPF distributions.

sequence of FORALL statements can be combined using

the FORALL construct with similar semantics.

The INDEPENDENT directive asserts that the state-

ments in a particular section of code do not exhibit

any sequentializing dependencies. Although it does not

change the semantics of the code, it can be used to pro-

vide information to the language processor in order to

allow optimizations. This directive is useful in cases

when traditional dependency-analysis methods may be

extremely di�cult, especially because of indirections.

3.2.3 Intrinsics

Experience with massively-parallel machines has iden-

ti�ed several basic operations that are very valuable

in parallel algorithm design. HPF has added several

classes of parallel operations to the operations already

provided in Fortran 90. Important HPF computational

intrinsics include:

1. Simple reduction functions: These functions can be
used to calculate summations and other related op-

erations along one or more dimensions of an array.

2. Combining scatter functions: These allow for com-

bining nonoverlapping subsets of array elements.

3. Pre�x and su�x functions: These functions pro-

vide scan operations on arrays and subarrays.

4. Array sorting functions: These functions can be

used for sorting in increasing or decreasing order.

5. Array manipulation functions: Many useful oper-

ations such as transposing an array or rotating an

array are available.

6. Array location functions: These are useful in �nd-

ing location of elements in arrays with maximum

or minimum value.

7. Array construction functions: These allow con-

struction of new arrays, potentially of new size and

shape, by using the elements of another array.

8. Vector and matrix multiplication functions: These
include dotproduct and matrix multiplication.

9. Elemental intrinsics functions: These functions act
on individual elements of an array.

In addition, several system inquiry functions useful for

controlling parallel execution are provided.

3.2.4 Extrinsics

An escape mechanism is provided in the form of an in-

terface which can be used by other languages and pos-

sibly supporting other programming paradigms, includ-

ing explicit message-passing. The HPF library also pro-

vides a set of inquiry functions that return all necessary

information to fully exploit the actual data distribution

generated by the HPF program.

3.3 HPF performance

Full implementations of HPF compilers have yet to

be released, although four companies are expected

to market commercial versions of at least partial

implementations3 in 1994. Performance experience is

3The HPF language speci�cation [12] also de�nes a prelimi-
nary \Subset HPF" language to encourage early introduction of

commercial compilers.

6

Number of Processors
Program 1 2 4 8 16

Gauss Hand 623.16 446.60 235.37 134.89 79.48
Gauss F90D 618.79 451.93 261.87 147.25 87.44

Nbody Hand 6.82 1.74 1.29 0.76 0.42
Nbody F90D 13.82 5.95 2.40 1.31 0.86

Option Hand 4.20 3.14 1.60 0.83 0.43

Option F90D 4.30 3.19 1.64 0.84 0.44

Pi Hand 0.398 0.200 0.100 0.053 0.030
Pi F90D 0.411 0.207 0.104 0.054 0.032

Times in milliseconds, obtained on Intel iPSC/860.
Problem sizes: Gauss, 1023 � 1024; Nbody, 1024 � 1024;
Option: 8192; Pi, 65536.

Table 1: Comparison of execution times of hand-coded

message-passing programs and of code generated by the

Fortran 90D prototype HPF compiler for selected appli-

cations [4].

Loop: Application F90D/HPF Hand Ratio

1: Hydrodynamics 2.545 2.550 0.9980

2: Incomplete Cholesky 11.783 10.440 1.1286
3: Inner product 3.253 3.249 1.0012
4: Banded linear equations 5.139 3.212 1.600
5: Tridiagonal elimination 30928.6 30897.7 1.001
6: Linear recurrence 1849.1 1886.5 0.9801

7: Equation of state 11.346 3.704 3.0632
8: A.D.I. 38.656 20.038 1.9291
9: Numerical integration 2.255 2.441 0.9238
10: Num. di�erentiation 9.814 4.589 2.1386

Times in milliseconds, obtained on 16-node Intel iPSC/860.
Problem size is 16K (real numbers) for each application.

Table 2: Comparison of execution times of hand-coded

message-passing programs and of code generated by the

Fortran 90D prototype HPF compiler for the �rst 10

Livermore Loops [4].

available with prototype versions of HPF compilers,

which were developed during research projects concern-

ing possible language features and compilation strate-

gies. One such research compiler is the Fortran90D sys-

tem [13, 14], which was used to obtain the results shown

in Tables 1 and 2. Results for all cases shown here

used the BLOCK data distribution. The results show that

the performance of compiler-generated code is compara-

ble to hand-coded message-passing programs; execution

times for code produced by the Fortran90D compiler are

within a factor of 2 of times for hand-coded message-

passing programs in most cases.

4 HPF for NAS Benchmarks

The NAS benchmarks [2] are a well-known set of com-

pact application benchmarks which have been imple-

mented on a number of high performance-computing

platforms. As part of the present project full HPF im-

plementations of these kernels are being developed to

provide a means of assessing the HPF language itself,

both in terms of ease of use, ease of migration of source

from existing implementations as well as compiler e�-

ciency and hence actual performance.

Full source code of the NAS benchmarks is some-

what lengthy, even in the compact notation HPF allows,

so only kernel fragments of these benchmarks are pre-

sented here.

The NAS EP benchmark is typi�ed by the need

to histogram or tabulate random deviates with a partic-

ular correlation property. The code fragment in Figure

8 illustrates how this might be achieved compactly in

HPF. A distribution template is set up to spread sam-

ples from some random process across processors. Tem-

porary arrays are set up to allow processors to make a

partial summations and counts of those samples which

fail some test in their own local memory. HPF allows

the programmer to ensure the compiler has enough in-

formation in the source code to implement the problem

in this way if it chooses.

The WHERE construct is used to express the poten-

tial independent processor operation to partially sum

the samples. The SUM intrinsic function can then be

used to sum the partial summations.

A more sophisticated example of histogramming

data using High Performance Fortran in the context of

an industrial CFD oriented code is given in [10]. The

problems that arise concern the ordering of loops across

the data and therefore how data is distributed across

processor memories.

Another illustration of HPF notation is given in

Figure 9 which is a fragment of the NAS-IS bench-

mark. In this example, a vector of initial key values

is sorted by building up key density information in an

array stored across the processors distributed memory.

The WHERE and FORALL constructs are both used, as

is the INDEPENDENT directive. This latter tells the com-

piler that the loop over i can safely be distributed across

processors, and that the iterations do not have a pre-

ferred order. This is extra information to the compiler,

which would not be able to deduce this fact from the

source code otherwise.

Although HPF provides language features which

are well-suited to expressing extra information to the

compiler to allow it to make good parallel optimisations,

the programmer may not have any \hints" to give the

compiler in some applications. A good example is typ-

i�ed by the NAS-CG benchmark. This code solves a

conjugate gradient problem expressed in the form of a

large sparse matrix. The kernel required for e�cient

performance is the multiplication of this sparse matrix

by a vector. Typically, the sparse matrix is too large

to store in physical memory, even when stored across

7

real, dimension(1:n) samples

real, dimension(1:n) partial_sum

integer, dimension(1:n) failed_count

!HPF$ PROCESSORS PROC(p)

!HPF$ TEMPLATE MY_TMP(1:n)

!HPF$ DISTRIBUTE MY_TMP(BLOCK) ONTO PROC

!HPF$ ALIGN (:) WITH MY_TMP(:) :: samples

!HPF$ ALIGN (:) WITH MY_TMP(:) :: partial_sum

!HPF$ ALIGN (:) WITH MY_TMP(:) :: failed_count

failed_count = 0

partial_sum = 0.0

do i=1,nsamples

call get_samples(samples)

where(samples < 1.0)

partial_sum = partial_sum + samples

else where

failed_count = failed_count + 1

end where

end do

write(6,*) 'Number failed = ',

& sum(failed_count)

write(6,*) 'Total = ', sum(partial_sum)

Figure 8: HPF code fragment for the histogramming

problem similar to that in NAS EP Benchmark.

distributed memory. The matrix is therefore stored in

packed form so that only non-zero elements are stored,

and a set of indexing vectors must be stored to allow

reconstruction of parts of the sparse full matrix when

required.

Using a conventional approach, signi�cant com-

pute time is wasted indexing into the correct locations

for the non-zero elements, but there is no discernable ex-

tra information the programmer can give the compiler

to achieve an e�cient implementation. Alternative al-

gorithms store the matrix as a fully dense structure, but

only load part of it into memory at one time. Such algo-

rithms rely on a fast and e�cient parallel input/output

(I/O) subsystem. Unfortunately there is no portable

way to express the desired information to the compiler

since HPF does not yet address the problems of parallel

I/O.

5 Evaluation of HPF for CFD

HPF is targeted largely towards the solution of reg-

ular problems. These problems use multidimensional

arrays as the basic data structures which can be ma-

integer, dimension(0:N-1) :: key, rank

integer, dimension(0:MAXKEY-1) :: keyden

integer, dimension(0:MAXKEY-1) :: keydenc,keydenc1

integer :: i, j, k

integer :: ibeg,iend

INTEGER nkeyden(0:MAXKEY-1,0:N-1)

!HPF$ PROCESSORS PROC(P)

!HPF$ TEMPLATE TMP(0:MAXKEY-1)

!HPF$ DISTRIBUTE TMP(CYCLIC) ONTO PROC

!HPF$ ALIGN (:) WITH TMP(:) :: KEYDEN,KEYDENC

!HPF$ ALIGN NKEYDEN(:,*) WITH TMP(:)

nkeyden=0

do j=0,MAXKEY-1

where(key.eq.j)

nkeyden(j,:)=nkeyden(j,:)+1

end where

enddo

keydenc=0

keyden=sum(nkeyden,dim=2)

FORALL(i=1:MAXKEY-1)

keydenc(i)=sum(keyden(0:i-1))

END FORALL

!HPF$ INDEPENDENT(k,j)

do i=0,MAXKEY-1

k=keydenc(i)

do j=0,N-1

if(nkeyden(i,j).ne.0) then

rank(j)=k

k=k+1

endif

enddo

enddo

Figure 9: HPF code fragment for the integer rank sort-

ing as in NAS-IS benchmark.

nipulated by the explicit parallel constructs as well as

by the intrinsics described in section 3. Data-locality

and/or load balancing information can be provided by

distribution directives such as BLOCK and CYCLIC. The

following CFD applications use these features and can

thus be successfully tackled using HPF:

1. Structured Grid Solvers (Single Block): These

solvers form the basis for the classical approaches

for solution to computational
uid dynamics prob-

lems and are readily implemented in HPF as it is

currently specifed 4.

2. Panel Method: The Panel Method has been found

to be of great use in a variety of industrial designs of

whole-aircraft simulations that neglect viscous ef-

8

fects. This application requires the use of full ma-

trix manipulation algorithms which are available

as intrinsic functions in HPF. Furthermore, these

applications require looping over several relatively

independent instances, which can be speci�ed by

using the INDEPENDENT directive.

3. Vortex Methods: Vortex methods require the cal-

culation of pairwise interactions between all the el-

ements involved in the computation. This is simi-

lar to the classical O(N2) N-body algorithm. This

can be implemented by using a simple DO loop

which shifts the array representing the bodies by

one step in each of its N iterations. Within each

DO loop a FORALL is executed to compute the N

pairwise force calculations. Compilers can exploit

the possibility of combining several shifts together

to improve the performance. When the pairwise

interactions are commutative, the total amount of

computation can be reduced in half by calculating

the interaction only once. This requires a consid-

erably more di�cult algorithm which may violate

the owner computes rule.

The use of unstructured grids is now growing in

popularity for CFD applications. These can be broadly

divided into two classes based on mesh generation strat-

egy used: fully unstructured grids; irregularly coupled

structured grids. Further di�cult unsteady CFD prob-

lems require the use of structured/unstructured adap-

tive grids. E�cient implementation of these applica-

tions on parallel machines requires data remapping so

that data-locality as well as load balancing is main-

tained. The current HPF is not adequate for easy spec-

i�cation of these applications. The following extensions

are required in HPF for solving such applications:

1. Partitioner Speci�cation: The parallelization of un-
structured grids requires partitioning the di�erent

array elements so that the load is balanced and

communication is minimized. There are a variety

of partitioners available in the literature. Infor-

mation that can be exploited by these partitioners

includes:

� proximity in physical space (e.g. coordinates

of grid nodes corresponding to an array ele-

ment),

� topological connectivity structure (interaction

between di�erent array elements),

� a computational load associated with each ar-

ray element.

For adaptive grids, the computational structure

changes from one phase to another in an incremen-

tal fashion. E�cient parallelization of these appli-

cations involves reacting quickly to minor modi�-

cations in the data structure and hence requires

that the partitioning of the grid be updated as it

changes over time. This also requires utilizing the

partitioning information of the previous phase.

2. Irregular Distribution of Arrays: Arrays may need

to be irregularly distributed among the processors.

This embedding can be based on use of a parti-

tioner or a repartitioner.

3. Distribution of Arrays onto disjoint or overlapping
processor groups: In many cases the computational

grid is decomposed into a set of several regular

and/or irregular subgrids. E�ective parallelization

of these applications requires mapping of each sub-

grid into a subset of processors.

4. Extensions to the FORALL loop: Current FORALL

loops require that there is a unique left hand side

for every iteration of the loop. Solutions on un-

structured grids require scatter/gather operations

in which the new value of the array element is the

sum of several iterations. Although this can poten-

tially be achieved in HPF by using REDUCE intrin-

sics, it makes the code considerably more di�cult.

The FORALL loop needs to be extended to allow

for multiple right hand sides to a single left hand

side. In case of multiple hits, suitable reduction

functions can be speci�ed.

It should be noted that many of these extensions

have been implemented in prototype compilers and are

currently being discussed for potential inclusion in HPF

II.

Multigrid methods, especially those involving

structured grids, are now becoming widely used in CFD.

Although the structured multigrid can be represented

using the FORALL statement in HPF, additional features

to optimize data layout are required. The use of un-

structured multigrid methods requires ALIGN directives

between di�erent levels in addition to the features re-

quired by unstructured meshes.

A summary of di�erent features required for the

applications given above is summarised in Table 3. Ta-

ble 4 provides a preliminary summary of applicability

of HPF for other applications based on some experi-

ences of implementing these applications on high per-

formance computing systems. A full description of all

applications areas listed will be provided elswhere.

It is important to observe that real industrial ap-

plications codes involve more than one basic algorithm

to be applied to the problem data and that there are

often con
icting data layout requirements between sub

algorithms [11]. For this reason the data remapping

features of HPF are particularly important.

9

A good example of the remapping that may be re-

quired is found in an operational CFD engineering codes

and numerical weather simulation codes [10]. Some �eld

based calculation on a regular or regular grid may be

required to interact with real measured data either dy-

namically in the case of operational forecasting or stati-

cally in the case of complex initial conditions or bound-

ary conditions in the case of
uid
ow around a com-

plex engineering structure such as a reactor [11]. There

may be strong operational resons why the code that

deals with each sub algorithmic component should be

maintained as separate and not merged. The dynamic

remapping of data at subroutine interfaces is therefore

an important facility within HPF.

6 NASA CFD codes

In the initial phase of the MADIC code evaluation

project, representatives from MADIC companies and

NASA selected �ve codes for industry evaluation: AD-

PAC, CFL3D, ENSAERO, OVERFLOW and TLNS3D.

Features of the codes relevant to the present paper

are summarized brie
y below. The primary considera-

tions here concern data structure and communications,

which are in
uenced strongly by the grids supported by

each code (structured or unstructured; single or multi-

block) and the numerical solution options (in particular,

whether multigrid solutions are supported).

ADPAC is a suite of Euler/Navier-Stokes codes de-

veloped at NASA Lewis for turbomachinery simu-

lations [19]. ADPAC includes APES, which solves

average-passage equations, and AOACR, for angle-of-

attack/coupled row situations. Both codes permit

multiblock structured grids. Parallel versions of the

codes have been implemented using APPL, a message-

passing library developed at NASA Lewis for homoge-

neous networks of workstations.

CFL3D is a thin-layer, Reynolds-averaged Navier-

Stokes solver developed at NASA Langley [24]. The

code includes capabilities for multiblock structured

grids, which may be matched, patched or overset. Time-

accurate unsteady simulations are supported, including

the use of movingmeshes. Multigrid solution techniques

also are supported.

ENSAERO is an integrated code for
uids, structures,

controls and optimization analysis of aerospace vehi-

cles, developed at NASA Ames [9]. The code uses

�nite-di�erence methods on patched, structured zonal

grids to solve Euler/Navier-Stokes (thin-layer Reynolds-

averaged equation) for the
ow �eld and the �nite-

element method for structural dynamics simulations. A

message-passing version of the code has been developed

for the Intel iPSC/860, which, executing with 64 pro-

cessors, has been shown to obtain performance equiva-

lent to a single-processor Cray C-90 (approximately 400

MFLOPS).

OVERFLOW is a thin-layer Navier-Stokes code de-

veloped by the Computational Technology Branch at

NASA Ames [5]. The code currently uses multiblock,

structured, overset grids; a version for unstructured

grids is planned. OVERFLOW permits the user to spec-

ify di�erent numerical methods for each grid block.

TLNS3D is a thin-layer, Reynolds-averaged Navier-

Stokes solver developed at NASA Langley [25]. The

code includes capabilities for multiblock structured

grids and multigrid solution techniques. A single-block

version of the TLNS3D has been adapted for design pur-

poses using ADIFOR [6] to generate sensitivity deriva-

tives. HPF versions of this code are under development

at ICASE.

A preliminary evaluation of the �ve codes yields

the following general observations concerning possible

HPF implementations:

1. All �ve codes use structured grids for CFD cal-

culations. At least within a single grid block,

structured-grid computations are likely to be ex-

pressed well in HPF, as described in Section 5.

2. All �ve codes support multiblock structured grids,

which may be di�cult to represent compactly in

the current version of the HPF speci�cation.

3. Two codes (CFL3D and TLNS3D) o�er multigrid

solution strategies, which require language features

for irregular communications that is beyond the

scope of the current HPF speci�cation.

4. None of the �ve codes considered in this phase of

the NASA code evaluation project currently sup-

port unstructured grids, but support for unstruc-

tured grids may soon become available for several

codes. As described in Section 4, e�cient parallel

solutions on unstructured grids require support for

irregular communications that is beyond the scope

of the current HPF speci�cation.

7 Summary

Approximately 20 years of user experience with serial

and vector architeures went into the de�nition of the

Fortran 90 language. As a result, many of the de�cien-

cies of Fortran 77 as a language for developing complex

industrial codes have been addressed. However, many of

the performance issues concerned with simply achieving

fast execution time on the current and expected future

generations of HPCC systems remained and HPF was

10

Application (+ Comments) HPF Features HPF+ Features

1 Regular Grid PDEs FORALL, CSHIFT |

2 Panel INDEPENDENT |
Method may require MIMD to

achieve performance
solvers{(library functions)

3 Vortex Method FORALL or CSHIFT| Best performance
non optimal performance violates\owner

(Optimization required for computes" rule.
combining (blocking)) Do with library function?
several shifts together)

4 Unstructured Grid Not Appropriate FORALL with reduction
Partitioner Speci�cation

5 Domain Decomposition a,b) Speci�cation of
Methods subset of processors
e.g. Irregularly Coupled

Regular Meshes
a) Iterate over each of the a) FORALL
meshes independently on
a subset of processors
b) Interactions between b) Not Appropriate b) FORALL with

meshes reduction

6 Particle in a cell a) b) c) Partitioner &
a) Assignment phase a) Not Appropriate Incremental Partitioner
b) Maxwell equations b) FORALL Speci�cation
c) Force on each c) Not Appropriate c) FORALL with
particle reduction

7 Structured FORALL but not optimal Added Features
Multigrid needed to optimize

data layout (see 4)

8 Unstructured Not Appropriate FORALL with reduction
Multigrid \Alignment" needed

between grids at
di�erent levels (also
needed in 9)

9 Structured and FORALL in simple cases De�ne a MESH
Unstructured Not Appropriate in general datatype

Adaptive Mesh |support with
(maybe multigrid) underlying library

(HPC+class library)
FORALL w/reduction

Table 3: The applicability of HPF for di�erent CFD applications, HPF+ = HPF + Extensions

developed as a result. Features such as the FORALL con-

struct are now clearly necessary in a High Performance

Fortran.

It appears that the mechanism used to develop

the HPF language de�nition in a practical yet rapid

manner is a good one. HPF compilers are now becoming

available for true HPCC systems.

HPF allows a fairly elegant and potentially ef-

�cient implementation of several problems including

some of the key algorithms required by CFD applica-

tions of current industrial interest. However, there are

certain problems such as those formulated by sparse

data structures for which HPF is not a su�cient so-

lution. Similarly, a standard way of expressing e�cient

parallel input/output may become essential as larger

and larger applications problems are addressed. In the

foreseeable future there is still a need for message pass-

ing in some applications although it is likely that mes-

sage passing may ultimately achieve the status of as-

sembler language programming today.

There is scope for further research and debate

about how users could communicate certain optimisa-

tion possibilities to compilers and some of these will be

addressed by HPF-II which is therefore to be greatly

encouraged.

This paper has largely focussed on the perfor-

mance features of Fortran 90 and HPF. Those feaures

such as interface speci�cation and module structures

in Fortran 90 can make a considerable contribution to

improving the software engineerability of very large in-

dustrial CFD codes and can also make a great contribu-

tion to design cycle turnaround times by making codes

easier, and therefore cheaper, to maintain, develop and

verify.

Acknowledgements

The authors are pleased to acknowledge funding for this

work from NASA.

11

Application (+ Comments) HPF Features HPF+ Features

1 \Crystalline" CSHIFT |

Monte Carlo, e.g., QCD

2 Quantum Monte Carlo INDEPENDENT |

3 Unindexed Text INDEPENDENT Scalable I/O

Search in a database

4 Analyze Physics data at INDEPENDENT Scalable I/O
Fermilab, CERN, etc. Statistics Library

5 Full Matrix Library Functions Library Functions

Algorithms Could express in HPF
but modest performance

6 Fast Fourier FORALL{does not get Library Functions
Transform top performance
Little need of support
for specialized class

7 Low level image SHIFT CMU Image Library
processing FORALL based on HPF (Fortran

e.g., Template Matching FX, ADAPT)
or Filtering

8 CHARMM like Molecular a{d) Partitioner
Dynamics Speci�cation

a) Calculate non-bonded O(N2) NBody Algorithm

interaction list (see 10)
b)Iterate c),d) several steps
c)Calculate non-bonded c, d) Not appropriate
interactions

d) Calculate bonded Reduction FORALL

interactions (c) and (d)

9 Direct Simulation FORALL but non optimal FORALL and append to

Monte Carlo collection of cells
(HPC++class)
Partitioner &
Incremental
Partitioner

Speci�cation

10 Fast Multipole Not appropriate Language support
important but unclear
Dynamic Tree and
mesh data structure
(HPC++)

11 Region Growing a) FORALL b) FORALL with
a) Split Phase reduction

b) Merge Phase with b) Dynamic Load
Random tie breaking Balancing

12 Monte Carlo SCAN Library Function FORALL with reduction
Clustering Methods Dynamic Load Balancing
(Physics near critical points

13 Direct Sparse Methods Not appropriate Library functions{
language support not
critical. Complex direct

solvers could use
HPF+ support for
multiple dense solvers

Table 4: The applicability of HPF for other applications, HPF+ = HPF + Extensions

References

[1] Adams, J., Brainerd, W., Martin, J., Smith, B.,

and Wagener, J., Fortran 90 Handbook: Complete

ANSI/ISO Reference, McGraw-Hill, 1991.

[2] Bailey, D., Barton, J., Lasinski, T. and Simon, H.,

Editors, \The NAS Parallel Benchmarks", NASA

Ames, NASA Technical Memorandum 103863,

July 1993.

[3] Barber, T., McNulty, G., and Hall, E., \Prelim-

inary �ndings in certi�cation of ADPAC," Paper

AIAA-94-2240 presented at 25th AIAA Fluid Dy-

namics Conference, Colorado Springs, CO, 20-23

June 1994,

[4] Bozkus, Z., Choudhary, A., Fox, G., Haupt, T.,

and Ranka, S., \Fortran 90D/HPF compiler for

distributed-memoryMIMD computers: design, im-

plementation, and performance results," Proceed-

ings of Supercomputing '93, Portland, OR, 1993,

p.351.

[5] Buning, P., \OVERFLOW
ow solver overview,"

presentation at MADIC workshop, NASA Langley,

16 September 1993.

[6] Carle, A., Green, L., Vischof, C., and New-

man, P., \Applications of automatic di�erentia-

tion in CFD," Paper AIAA-94-2197 presented at

25th AIAA Fluid Dynamics Conference, Colorado

Springs, CO, 20-23 June 1994,

12

[7] Chapman, B., Mehrotra, P., Mortisch, H., and

Zima, H., \Dynamic data distributions in Vienna

Fortran," Proceedings of Supercomputing '93, Port-

land, OR, 1993, p.284.

[8] Fox, G.C., Hiranadani, S., Kennedy, K., Koelbel,

C., Kremmer, U., Tseng, C.W., and Wu, M., \For-

tran D language speci�cation," Technical Report,

Rice and Syracuse Universities, 1992.

[9] Guruswamy, G., Obayashi, S., Byun, C.,

Tu, E., and Chaderjian, N., \ENSAERO |

Euler/Navier Stokes code for integrated
u-

ids/structures/controls/optimization analysis of

aerospace vehicles," presentation at MADIC work-

shop, NASA Langley, 16 September 1993.

[10] Hawick, K.A., Bell, R.S., Dickinson, A., Surry,

P.D., Wylie, B.J.N., \Parallelisation of the Uni�ed

Model Data Assimilation Scheme", Invited paper,

Proceedings of the Fifth ECMWF Workshop on the

Use of Parallel Processors in Meteorology.

[11] Hawick, K.A., and Wallace, D.J., \High Perfor-

mance Computing for Numerical Applications",

Keynote address, Proceedings of Workshop on

Computational Mechanics in UK, Association

for Computational Mechanics in Engineering,

Swansea, January 1993.

[12] High Performance Fortran Forum (HPFF), \High

Performance Fortran Language Speci�cation," Sci-

enti�c Programming, vol.2 no.1, July 1993. Also

available by anonymous ftp from ftp.npac.syr.edu

(cd /HPFF).

[13] Hiranandani, S., Kennedy, K., and Tseng, C.W.,

\Compiler support for machine-independent par-

allel programming in FortranD," in Compiler and

Runtime Software for Scalable Multiprocessors,

1991.

[14] Hiranandani, S., Kennedy, K., and Tseng, C.W.,

\Preliminary experiences with the FortranD com-

piler," Proceedings of Supercomputing '93, Port-

land, OR, 1993, p. 338.

[15] Koelbel, C.H., Loveman, D.B., Schreiber, R.S.,

Steele, G.L., Zosel, M.E., \The High Performance

Fortran Handbook", MIT Press 1994.

[16] Marconi, F., Siclari, M., Chow, R., and Carpen-

ter, G., \Comparison of TLNS3D computations

with test data for a transport wing/simple body

con�guration," Paper AIAA-94-2237 presented at

25th AIAA Fluid Dynamics Conference, Colorado

Springs, CO, 20-23 June 1994,

[17] Melnik, R., Barber, T., and Verho�, A., \A pro-

cess for industry certi�cation of physical simu-

lation codes," Paper AIAA-94-2235 presented at

25th AIAA Fluid Dynamics Conference, Colorado

Springs, CO, 20-23 June 1994,

[18] Metcalf, M., Reid, J., \Fortran 90 Explained", Ox-

ford, 1990.

[19] Miller, C.J., \Advanced Ducted Propfan Analysis

Codes," presentation at MADIC workshop, NASA

Langley, 16 September 1993.

[20] PARKBENCH Committee, \Public international

benchmarks for parallel computers," to sub-

mitted to Scienti�c Programming, 1994. (Also

available by anonymous ftp from ecs.soton.ac.uk

(pub/benchmarks).)

[21] Raj, P., and Siclari, M., \Toward certifying CFD

codes using wing C and M100 wing-body con-

�gurations," Paper AIAA-94-2241 presented at

25th AIAA Fluid Dynamics Conference, Colorado

Springs, CO, 20-23 June 1994,

[22] Robinson, B., LaBozzetta, W., and Verho�, A.,

\Preliminary �ndings in certi�cation of OVER-

FLOW," Paper AIAA-94-2238 presented at 25th

AIAA Fluid Dynamics Conference, Colorado

Springs, CO, 20-23 June 1994,

[23] Robinson, B., and Yeh, D., \Toward certi�cation

for CFD codes for aft-end/nozzle con�gurations,"

Paper AIAA-94-2242 presented at 25th AIAA

Fluid Dynamics Conference, Colorado Springs,

CO, 20-23 June 1994,

[24] Rumsey, C., \CFL3D," presentation at MADIC

workshop, NASA Langley, 16 September 1993.

[25] Vasta, V.N., and Sanetrik, M.D., \TLNS3D |

An overview," presentation at MADIC workshop,

NASA Langley, 16 September 1993.

[26] Verho�, A., Robinson, B., and LaBozzetta, W.,

\Preliminary �ndings in certi�cation of CFL3D,"

Paper AIAA-94-2236 presented at 25th AIAA

Fluid Dynamics Conference, Colorado Springs,

CO, 20-23 June 1994,

[27] Yeh, D., and Worthy, M., \Preliminary �ndings in

certi�cation of ENSAERO," Paper AIAA-94-2239

presented at 25th AIAA Fluid Dynamics Confer-

ence, Colorado Springs, CO, 20-23 June 1994,

13

