
A COMPUTATIONAL TOOLKIT FOR COLLIDING BLACK HOLES AND CFD
�

N. P. Chrisochoidesy, G. C. Foxz T. Hauptx

Northeast Parallel Architectures Center {

Syracuse University, Syracuse, NY 13244-4100

Abstract

We present a framework for a high level toolkit for

solving partial di�erential equations. The requirements

for very large and complex PDE applications such as

computational
uid dynamics and numerical relativity

are examined in the framework of a modular toolkit

approach based on visual programming. We address

some of the principal non-numerical technical challenges

: software integration, scheduling and distribution of

the computation over a metacomputer. We also discus

some of the challenges found in creating run-time sup-

port systems and parallel grid generation modules for

future systems.

1 Introduction

In this paper, we discuss features of the computational

solution of partial di�erential equations (PDEs) and

their implications for the design and implementation

of a toolkit supporting them on high performance com-

puters. This article considers two areas, numerical rel-

ativity (NR) and computational
uid dynamics (CFD).

These certainly do not exhibit all the features one needs

to include in a computational toolkit for PDE solution.

However, they are each internally rich in their computa-

tional structure but exhibit rather di�erent needs. Thus

designing a toolkit motivated by these two application

areas is likely to lead to a system with broad capabil-

ity. The toolkit should have an overall structure of gen-

eral applicability but will probably lack speci�c modules

needed by application areas not considered here.

Both NR and CFD are governed by a system

of second order nonlinear partial di�erential equations.

�Work supported in part by NSF ASC 93 18152/ PHY 93
18152 (ARPA supplemented)

yResearchAssistant Professor, Computer ScienceDepartment,
and Research Scientist, NPAC, Syracuse University

zDirector; Professor, Computer Science and Physics Depart-

ments, Syracuse University.
xResearch Scientist, NPAC, Syracuse University.
{

Copyright c
1994 by N. P. Chrisochoides. Published by the
American Institute of Aeronautics and Astronautics, Inc. with

permission.

There are as usual four independent variables: space x

and time t. The basic CFD equations have �ve depen-

dent variables velocity �eld u, density %, and energy E.

However, the number of simultaneous equations can in-

crease in those applications such as reservoir simulation

with several di�erent constituents.

Numerical relativity, NR, is derived from Ein-

stein's equations expressed elegantly in terms of index

tensors where each index is four (space and time) di-

mensional. Tensors can have upto four indices. The

number of distinct �eld variables depends on the for-

mulation but is typically about 50! Here is a major

complexity with the sheer number of dependent vari-

ables motivating a convenient symbolic front end to en-

able error free user friendly speci�cation of the desired

numerical formulation of the 50 di�erential equations.

An important feature of both NR and CFD is that

the full solution procedure links several distinct sets of

partial di�erential equations. In the case of NR, one

typically �rst solves (at the initial time value) an elliptic

di�erential equation set which solves the so-called con-

straint equations de�ning redundant �eld variables in

terms of the non-redundant set chosen to represent the

solution. This step depends on the so- called "gauge"

used. The elliptic solution step is followed by the time

evolution of hyperbolic partial di�erential equations. A

remarkable feature of NR is the ability to make general

coordinate transformations corresponding to choosing

gauges and transforming between them. For one choice

of gauge, the solution could be quite homogeneous and

for others very irregular and adaptive. Correspondingly

one can need regular meshes and �nite di�erence meth-

ods for one gauge choice and adaptive meshes and �-

nite element approaches for other choices. Thus, NR

includes solution of multiple sets of PDE within each

application and wide variety of equation characteristics

between the di�erent approaches.

One of the major uses of HPCC for CFD lies in

the area of multidisciplinary analysis and design shown

in Figure 1. This integration of simulation into de-

sign (and more ambitiously manufacturing, market and

product support) requires the linkage of several distinct

simulations e.g. those of manufacturing process, air-

craft structure and radar (stealth) properties as well

1

as
uid
ow around the plane. This is illustrated in

Figure 2 which captures the problem which at the high-

est (computer science) level is the mapping of heteroge-

neous metaproblems onto heterogeneous metacomput-

ers. NR and CFD are both metaproblems in that they

are compound problems made up of several di�erent

linked modules. Correspondingly the target machine

is a metacomputer made of several high performance

computers of di�erent architectures. A given problem

module is most e�ectively implemented on particular

computer architectures. Thus the mapping problem of

Figure 2 involves �rst expressing the modules in scal-

able languages which will execute on today's and future

machines. Then the modules need to be linked with a

suitable coordination or integration language (we have

most experience with AVS) and using performance es-

timates, each module is to mapped to part or all of a

single or multiple components of the metacomputer.

Figure 1: Multidisciplinary analysis and design.

A critical parameter in CFD is the visycosity �

which is a multiplicative coe�cient of the highest order

derivative terms in the Navier Stokes equations typi-

cally these involve u where u is the vector valued veloc-

ity �eld. � is normally expressed in dimensionless form

as the Reynold's number R proportional to 1/�. The

particularly interesting and challenging case of large

Reynold's number corresponds to motion through air

and other gases. Large R implies that there is a struc-

ture over distances of order R�3=4 which can easily be a

factor 10�3 of other dimensions in system. This rapidly

varying turbulent behavior occurs at
uid/vehicle in-

terfaces and can "separate" and travel into the
uid

volume. This physical structure has important com-

putational implications. In particular, one is essentially

forced to use adaptive �nite element methods to account

for varying structure over di�ering length scales.

Figure 2: Mapping of heterogeneous metaproblems onto

heterogeneous metacomputer systems.

In NR, one does not �nd the low dimension

singularities such as shocks characteristic of CFD at

large Reynold's number. The terms with highest or-

der derivations are not multiplied by an unusually small

coe�cient. Rather, singularities are volume based.

Thus, in NR, �nite di�erence methods can be used with

adaptive (multi grid) methods needed to describe areas

where the �elds are rapidly varying.

Both NR and CFD have challenging boundary

value issues which would be modules in our toolkit. In

CFD, one would need to match structural and
uid
ow

meshes and solutions at a vehicle surface. Further at

large R, boundary layers are formed of thickness R�1=2

over which (roughly) the tangential components of
uid

velocity go from asymptotic (large) values outside the

layer to zero (in frame where vehicle is at rest) at the

vehicle surface. NR has key boundary conditions at

the "event horizons" which surround each black hole.

Information inside the event horizon is unphysical as

information about it can never get out. The rectangu-

lar �nite di�erence grid needs special treatment at the

event horizons. NR also has critical boundary condi-

tions at "in�nity" for the result of the computation is

the gravitational waves received at earth, i.e. traveling

to in�nity. Accurate "wave extraction" is a critical NR

module. Note that as usual, treatment of boundaries

involves careful interplay between physical and compu-

tational insight.

The multidisciplinary analysis embodiment of

CFD, also implicitly involves wave equations in the elec-

tromagnetic simulation module. Currently, this module

is usually implemented with the method of moments

rather than discretizing Maxwell's equations on a grid.

This involves quite di�erent computational issues (cur-

rently solution of 50,000 x 50,000 full matrix equations)

from the sparse matrix systems found in the discretized

grid approach to the same (wave) equations.

2 System Overview

As illustrated in Figure 2 we can naturally break prob-

lems and computer systems into modules and pose

the general computational challenge as the mapping of

metaproblems onto metacomputers. Computer science

must provide a programming environment that allows :

A. User speci�cation of the problem decomposition

into modules and dynamic linkage,

B. High level languages to express individual modules,

C. Runtime support of the e�cient execution of mod-

ules on appropriate components of the metacom-

puter,

D. Generic modules which can be used across many

applications.

We �rst, illustrate this modular metacomputer

framework with the example of a simple solver for an

elliptic problem based on one of the �rst successful PDE

toolkits, ELLPACK, developed at Purdue [27] and [8].

A high level description of a program that solves equa-

tion (1) with boundary conditions given by (2) is pre-

sented in Figure 3. It can be logically divided into three

major phases of computation, namely the man-machine

interface, corresponding to the problem de�nition, (ii)

the solution system, corresponding to the creation and

solution of the discrete problem that approximates the

continuous de�nition of the PDE problem generated by

the man-machine interface, and �nally (iii) the post-

processing system, corresponding to the visualization of

the solution and performance of solution methods.

Elliptic Problem

Compute a function u(x; y) that satisfy the PDE :

#u

#2x
+

#u

#2y
+

#u

#x
� 4u = ex+ysin(�x) (1)

in the unit square [0,1]�[0,1] and satisfying the bound-

ary conditions :

u = 0 x = 0 , 0 � y � 1

u = sin(�x) �
x
2
y = 1 , 0 � x � 1

u = y
2

x = 1 , 0 � y � 1

u = x y = 1 , 0 � x � 1 (2)

Man-Machine

Interface

Solution
System

Post-Processing

System

Problem Definition and Formulation

Solution Methodology

Visualization of the results

2d- and 3d-geometry editors

Data layout editors

PDE definition editor

Grid Generation

PDE Discretization

Transformations

Linear Solver

Expert System

Solution of PDE

Performance Analysis

Symbolic and numeric editors

Figure 3: High level description of a PDE Toolkit.

Figure 4 illustrates an existing implementation

of that idea, an ELLPACK program [27]. Phase I,

\man-machine interface" is realized by modules such

as EQUATION and BOUNDARY that de�ne the el-

liptic problem and its boundary conditions. Phase II,

\solution system" comprises the GRID module that de-

�nes the grid that tessellates the unit square, the DIS-

CRETIZATION and SOLUTION segments that de�ne

the solution method, and actually make the computa-

tion. Finally, at the phase III, the OUTPUT module

de�nes the way the solution u = u(x; y) is going to be

presented. For time dependent problems or systems of

PDEs the ELLPACK description can be more complex

and less intuitive.

Using the ELLPACK approach one can describe in

generic form an organization of PDE modules as shown

in the diagram of Figure 5. In this way (also illustrated

in Figures 1 and 2) we indeed divide PDEs into mod-

ules which can each be mapped into parts of individual

or combinations of computers linked by high speed net-

works.

In fact ELLPACK is an example of a toolkit that

addresses all the issues A) and D) de�ned above. We

need to extend their ideas to include the more gen-

eral di�erential equations needed by CFD and NR;

to support adaptive three dimensional grids shared by

di�erent solution stages, and to allow
exible map-

ping of PDE-metaproblems onto metacomputers - these

span a single sequential computer, a homogeneous

SIMD/MIMD parallel machine; a network of worksta-

tions and a general collection of modern architectures

as shown in Figure 2.

GRID. 100 X POINTS

100 Y POINTS

DISCRETIZATION. 5 POINT STAR

OUTPUT. TABLE (U)

PLOT (U)

END.

OPTIONS. TIME $ MEMORY

EQUATIONS. UXX + UYY + 3.0 * UX - 4.0 *U = EXP(X+Y) *SIN(PI*X)

BOUNDARY. U = 0 ON X = 0.0

 U = SIN(PI*X)-X/2.0 ON Y = 1.0

 U = Y/2.0 ON X = 1.0

 U = X ON Y = 0.0

SOLUTION. LINPACK BAND

ON X = 0.0

Figure 4: ELLPACK program for the elliptic PDE prob-

lem.

Output

Indexing #1

Indexing #2

Indexing #N

Solution #1

Solution #2

Solution #N

Output #1

Output #2

Output #K

TRIPLE (Initialize u(x,y))

Fortran loop

Discretization Indexing Solution

I. Standard three-module solution of elliptic problem

II. Solution using triple module

TRIPLE Output

II. Multiple solutions using many modules

Discretization

TRIPLE Output

IV. Iteration under users control

Discretization Indexing Solution
Output

I

PROBLEM

DEFINTION

GRID

DOMAIN

PROCESSING

. . .

Figure 5: Organization of an ELLyPACK computation.

The user speci�es the modules to be used and more than

one combination may be used on a single ELLPACK

execution [27].

PDE Definition B.C Defintion Grid Generation

Discretization #1 Discretization #2 Discretization #M

Indexing #1 Indexing #2 Indexing #K

Solution #1 Solution #2 Solution #N

Output #1 Output #2 Output #L

User’s Control #1 User’s Control #2 User’s Control #V

Figure 6: Organization of a Visual program using a

network editor [1]. The user speci�es the modules to

be used and the component of the metacomputer to be

executed. The �nal result is a PDE network of modules.

We address here computer science issues underly-

ing a toolkit like ELLPACK [27], to specify and execute

the modules. Here we will not address the full speci�-

cation of the needed toolkit but rather illustrate the

key features. These are divided into the areas A, B, C,

and D de�ned at the start of this section and discussed

brie
y in sections 3, 4, 5 and 6 respectively.

Any programming environment must make ex-

plicit or implicit trade o�s between user convenience

(productivity) e�ciency and portability. Extreme ap-

proaches would be represented by a) fully optimizedma-

chine language for a given machine, b) visual BASIC or

some other high level object oriented system.

Approach a) is non portable as it runs on only one

machine; it is highly e�cient on that machine; is highly

time consuming for user. Approach b) is highly conve-

nient for user and portable but currently object oriented

systems are not able to generate e�cient code for meta-

computers. The new high performance HPC++ system

[18], [3] will address portable parallelism for C++ users.

Nevertheless C++ will always be less e�cient than less

capable but easier to compile languages such as Fortran.

We will adopt an intermediate approach which

stresses portability but is neither the most productive

environment for users and will not generate the most

e�cient execution. User productivity is hard to quan-

tify but we aim at producing execution times which of

a factor 2 (typically) or 4 (at worst) lower than optimal

implementations.

The use of true and de facto standards is essen-

tial both for portability and reasonable user productiv-

ity. Relevant HPCC software standards include AVS

(to control and specify modules - see Section 3), High

Performance Fortran [17] (HPF-the language for indi-

vidual modules), Message Passing Interface [26] (MPI

- e�cient and portable runtime support - see Section

4). We also, advocate using portable HPCC libraries

such as LAPACK to provide reasonable e�cient run-

time AVS modules for matrix algebra (Section 5). We

have successfully used AVS and LAPACK for electro-

magnetic simulations (Section 3).

Note that current MPP vendors do not have the

resources to develop their own parallel programming en-

vironments. Thus our standards are the basis of the

best MPP programming environments which can make

use of the standards to implement better support for de-

buggers, performance visualization, compilers and run-

time systems.

3 Software Integration of the

components of a metaproblem

The software integration problem is exempli�ed by Fig-

ures 1, 2, 5 and 6 where modules need to be linked

together to solve the full problem. This linkage can be

static as the problem of Figure 7 where matrix element

generation tasks feed data (the calculated elements) on

�xed links to matrix solve and visualization modules.

In multi-disciplinary analysis and design (Figure 2) the

links are dynamic, where for instance, information
ows

back and forth and forth between structural and
uid

ow modules under control of the optimizer.

Generally Integration Software must support

coarse grain task parallelism where each task or module

is :

� Itself a complex structure implemented in a paral-

lel language such as HPF, HPC++ (Section 4) or

message passing (PVM, MPI, etc.)

� linked either statically or dynamically to other

modules.

A visual interface is attractive for this problem

as typically one does not have a large number of mod-

ules. These correspond to the �nite tasks de�ning the

problem - in contrast the data parallelism,measured for

instance by the number of grid points, can be arbitrarily

large in our problem class. Thus graphical speci�cation

of the integration problem is quite natural even though

it may not be appropriate for data parallelism.

In Figures 7 and 8 we illustrate our very successful

work using AVS for software integration with the exam-

ples of computational electromagnetics and data assimi-

lation (weather forecast optimally combiningmodel and

data) Similar software environments are illustrated by

CODE [2], and HENCE [19]. In this class of program-

ming environments, one clearly separates the paradigm

used for integration (e.g. AVS) with the language used

for each module (e.g. HPF, Fortran plus PVM or MPI

calls). Alternatively one can link the full support of

tasks and data parallelism into a single system - this

approach is illustrated by HPC++ and the experimen-

tal linkage of Fortran-M with Fortran 90D [33].

Figure 7: AVS as integrating software to facilitate both

networking and scienti�c visualization for electromag-

netic scattering [5].

Currently no system o�ers all the features one

needs. For instance AVS can support parallel or se-

quential modules [4] but this is not part of the basic

design and requires additional system support. Further

AVS currently does not support parallel I/O between

modules. For instance AVS will support task commu-

nication over a single (ATM) high speed link. However

suppose one ahs say, one module using 8 nodes on an

IBM SP-2 connected to another such 8 node module on

the same machine. Currently AVS cannot use the high

speed parallel network on SP-2 for inter-module I/O.

One will use this network for intra-module communica-

tion. In many cases, intermodule communication does

not need high bandwidth and current version of AVS is

su�cient. AVS also does not elegantly support dynamic

links although these can be implemented clamsily.

AVS was originally designed for visualization ap-

plications and for this reason is available on a broad

range of platforms. As well as the many workstations,

we have used AVS to support integration with modules

Figure 8: AVS as the visualization for a four-

dimensional data assimilation project [4].

on the TMC CM-5, Maspar MP-1, IBM SP-1 and DEC

alpha-farm. Further one can of course easily include the

visualization module as part of the full system as these

are a full set of AVS support modules for visualization.

4 Exploiting Parallelism With

Modules

4.1 Programming Paradigms

Here we focus on the computationally intense mod-

ules for which parallel computing is required. There

are three natural parallel programming paradigms one

could use for individual modules. Each has its advan-

tages and disadvantages and one would mix them in

a given problem with di�erent modules using di�erent

programming paradigms. This complex software envi-

ronment requires a carefully crafted runtime environ-

ment to support multiple paradigms used at the same

time.

Figures 3 and 4 illustrate that ELLPACK sup-

ports symbolic analysis so that the di�erential equations

can be expressed in \mathematics" - or more precisely

in domain (here the PDE solution domain) speci�c lan-

guage. SINAPSE is a new interesting system of this

type build on top of Mathematica. The NCSA group is

evaluating its use for the Black Hole problem.

The second major paradigm is data parallel lan-

guages where High Performance Fortran (HPF) is an

agreed standard and many commercial compilers are

being build. The Convex and Portland Group compil-

ers are directly based on the work Rice [22] and Syra-

cuse [33]. HPF is described below but we emphasize

that its parallel extensions are largely language indepen-

dent. The corresponding parallel extensions of C++,

HPC++ is based directly on those in Fortran. We are

constructing with ARPA support a runtime system that

will support multiple languages (C++, Fortran, ADA).

The �nal lowest practical level, is Fortran(or C)

plus message passing. Here PVM has become a de facto

public domain standard. We expect PVM to continue,

but a new more formal standard MPI to become an

important portable message passing platform.

Practically HPF or Fortran + MPI are good stan-

dards which can be recommended for new applications

for the next few years. In our application �elds, HPF

looks fully suitable for NR which is based on rectangular

grids. However CFD needs HPF extensions to handle

irregular unstructured adaptive meshes. These exten-

sions have been prototyped using work of Saltz's group

[29]. We can expect them to be incorporated in future

compilers.

4.2 High Performance Fortran

HPF is an extension of Fortran 90 to support data par-

allel programming model, de�ned as single threaded,

global name space, loosely synchronous parallel compu-

tation. The idea behind HPF is to provide means to

produce scalable, portable, and top performance codes

for MIMD and SIMD computers with non-uniform

memory access cost. The portability of the HPF codes

means that the e�ciency of the code is preserved for

di�erent machines with comparable number of proces-

sors.

The HPF extensions to the Fortran 90 standard

fall into three categories: compiler directives, new lan-

guage features, and new library routines. The HPF

compiler directives are structured comments that sug-

gest implementation strategies or assert fact about a

program to the compiler. They may a�ect the e�ciency

of the computation performed, but they do not change

the value computed by the program. The most impor-

tant assertions suggest the data decomposition needed

to get good performance.

The new language features are FORALL state-

ment and construct as well as minor modi�cations and

additions to the library of Fortran 90 intrinsic functions.

In addition, HPF introduces new functions that may

be used to express parallelism, like new array reduction

functions, array combining scatter functions, arrays suf-

�x and pre�x functions, array sorting functions and oth-

ers. These functions are collected in a separate library,

the HPF library. Since it was anticipated that not all

algorithms can be easily expressed in HPF syntax, an

escape mechanism, the extrinsic functions, has been in-

troduced. The extrinsic functions may be written in

languages other than HPF and may support a di�er-

ent computational model. Finally, HPF imposes some

restrictions to Fortran 90 de�nition of storage and se-

quence associations. A lot of the excellent performance

of HPF comes from the explicitly parallel runtime li-

brary called from the data parallel level. This library is

typically written an optimal (lower level) message pass-

ing such as Fortran + MPI.

The HPF approach is based on two key observa-

tions. First, the overall e�ciency of the program can

be increased, if many operations are performed concur-

rently by di�erent processors, and secondly, the e�-

ciency of a single processor is likely be the highest, if

the processor performs computations on data elements

stored in its local memory. Therefore, the HPF ex-

tensions provide means for explicit expression of paral-

lelism and data mapping. It follows that an HPF pro-

grammer expresses parallelism explicitly, and the data

distribution is tuned accordingly to control the load

balance and minimize communication. On the other

hand, given a data distribution, an HPF compiler may

be able to identify operations that can be executed con-

currently, and thus generate even more e�cient code.

5 Runtime support

Parallel computing and more speci�cally high perfor-

mance software for scienti�c computing will be made

more attractive to scientists and engineers if these sys-

tems will provide uni�ed runtime support for all aspects

of a physical simulation : PDE discretization and in-

dexing, grid generation, adaptive re�nement and load

balancing, PDE solution, parallel I/O and visualiza-

tion. While a fair amount of work has been carried

out in building libraries for the individual components

- mainly for �eld solvers - limited or none e�ort made

towards the integration of the individual libraries. In

this section we address the issues related to the devel-

opment of a common runtime support system for both

task and data parallelism speci�c to PDE applications.

A typical example of PDE solution involves a mix-

ture of data and task parallelism. For instance, Figure

6 indicates that a discretization module can be linked

with a number of di�erent indexing modules (i.e., di�er-

ent methods in re-ordering the rows and columns of the

linear systems of equations that approximates the con-

tinuous PDE) and di�erent solution modules. In this

case one can explore task parallelism in the level of the

PDE network of the modules and data parallelism in

the level of individual modules. Unfortunately there is

no single language available with su�cient power and

exibility to express both data and task parallelism in

coarse and/or �ne grain levels. Thus the application

scientist or engineer stands alone in the archipelagos of

many specialized languages and libraries - with little or

none common interfaces - that have been developed for

di�erent computational paradigms and purposes.

Examples of such languages and libraries are HPF

[17] for data parallelism, HPC++ [18] for task paral-

lelism, PVM [20] and MPI [26] for message passing,

CMSSL [24] and SCALAPACK [15] for linear algebra,

PITPACK [7] and PIM [28] for iterative solvers, P++

[25], DIME [34], and MENUS-PGG [9] for parallel grids,

DecTool [8] and Chaco [21] for automatic partitioning

and load balancing.

These systems are supported by lower level oper-

ating system capabilities - especially message passing.

Currently PVM and in the future MPI will be critical

standards on which to build coexisting tools. We also

need runtime communication support for special data

structures such as those provided in PARTI [31]. In

several approaches a good light weight thread runtime

library is critical is used in several methods of local

balancing and many shared memory programming en-

vironments.

The objective of the runtime support system for

PDE toolkits is to collect most of these libraries and pro-

vide a complete integration framework which is portable

across all HPCC platforms with : (a) common interface

for high level machine independent debuggers and per-

formance analysis tools, (b) scalable and e�cient data

movement from module to module of the PDE network,

(c) parallel I/O from logical component to logical com-

ponent of the metacomputer, (d) scalable partitioning

and load balancing capabilities, and �nally (e) a facility

for generating knowledge base rules from a database of

performance data.

There is no single debugging or performance anal-

ysis tool that provides all needed functionality to debug

and optimize all kinds of software. Existing debuggers

and analysis tools can be used for individual modules,

but can not be used in analyzing a complex PDE net-

work of modules. Typical available software for debug-

ging and performance systems have been developed for

very �ne grain level analysis; for example in the case

of debugging they can trace the value of a variable or

pointer within the same address space. They did not

meant to trace problems over a PDE network of mod-

ules that are distributed over a LAN or WAN. More-

over in PDE software systems a problem might appear

far a way form the module on which the problem has

been generated. For example a problem in grid genera-

tion might show up in the visualization of the solution

where a singularity or jump appears in a place where

the solution is supposed to be smooth. Our e�ort will

focus in developing high level visualization debugging

and analysis systems custom made for PDE networks

of modules.

In Section 3 we mentioned a limitation of AVS in

taking advantage of high speed networks to handle par-

allel data movement between modules that assigned on

the same component of the metacomputer. The run-

time support system will address some special cases of

this problem that occur in PDE computations. A more

general instance of this problem is the case where dif-

ferent modules are placed on di�erent components of

the metacomputer. The distribution of modules over

powerful di�erent supercomputers is meaningless if the

support for parallel I/O is absent. For example consider

a parallel adaptive solver that runs on nCUBE II and a

parallel grid generation that runs over an SP-2; we have

seen in [8] that the sequential loading of millions of grid

points from SP-2 to nCUBE II through a workstation

(host) is very costly. According to Amdahl's law this

limitation will deteriorate the overall speed up of the

system.

Scalable dynamic load balancing is another im-

port di�cult optimization problem whose solution is es-

sential for the e�cient execution of parallel PDE solvers.

There are however many e�ective static and dynamic

data distribution and re-distribution methods which are

developed [16]. So we do not need to develop fresh ap-

proaches. Rather our objective is to unify the existing li-

braries of algorithms and provide common interfaces for

discretization modules based on �nite-di�erence, �nite-

element, �nite-volume and spectral methods. Finally,

the PDE toolkit will be a \self-learning" system. A

knowledge base [23] of performance data will be cre-

ated for each run and con�guration of the pair (PDE-

problem, PDE-network). This knowledge will be en-

capsulated in the form of rules and will be used to

solve the following problem : for a given pair (PDE-

problem, computing environment) �nd the \closests"

muching point in the the knowledge space.

We have already mentioned that some PDE

solvers use matrix solvers - in particular the method

of moments for computational electromagnetics : such

approaches would use matrix library runtime support

such as the portable LAPACK system.

6 Parallel Grid Generation

In previous sections we described the non-numerical

technical challenges one phases in designing and imple-

menting high level PDE solving systems for complex

applications such as NR and CFD. In this section we

address the problems related to the parallel grid gener-

ation on one or multiple components of the metacom-

puter. In addition, we present our progress in this di-

rection as well as preliminary results that justify the

e�ectiveness of our approach.

We present a brief overview of our e�ort in de-

veloping parallel grid generation modules for static and

adaptive structured and unstructured grids [9]. The

parallel modules for structured and unstructured grids

(see Figures 10, 11 and 12) include : (1) a module for

parallel 2D and 3D static and adaptive Algebraic and

Elliptic grids for general domains, (2) a module for par-

allel 2D and 3D multi-levelmulti-component curvilinear

grid re�nement for general domains and (3) a parallel

2-dimensional adaptive Delaunay triangulation .

The fact that curvilinear grids (see Figure 9) can

be considered to be logically (i.e., computationally)

rectangular is very attractive to explore data local-

ity and parallelism using data parallel languages like

FORTRAN 90D or FORTRAN 90 plus message pass-

ing. The data-parallel grid generation method [9] for

a given domain
 is described by the following �ve

steps : (1) Decompose the physical domain,
 into

a small number of contiguous hexahedron subregions,

i, that can be mapped into rectangular computational

blocks Bi which form an initial composite block struc-

ture C0(
) = fBig
N
i=1 [32]. In this step we also

assign the size of the grid that we want to generate

on each of the blocks Bi. (2) Generate sequentially

a coarse algebraic grid that provides an explicit con-

trol of the physical grid shape with a minimal num-

ber of grid points. This grid is used as a background

for the partitioning of the �ner composite block struc-

ture, Cf (
) = fB
0

ig
N

0

i=1 that satis�es the following

three properties : (i) j C0(
) j < j Cf (
) j , (ii)

8Bi 2 C0(
) 9Ii � @ 3: Bi = [j2IiB
0

j ; B
0

j 2 Cf (
),

and (iii) jjB
0

ij�jB
0

j jj < TA 8B
0

i ; B
0

j 2 Cf (
), where TA
is the workload machine-dependent tolerance. (3) Map

the composite block structure Cf (
) onto distributed

memory MIMD machine so that the workload of the

processors is balanced and the required communication

and synchronization among the processors is minimum.

(4) Generate in parallel a �ner algebraic grid GA, using

Cf (
), that provides an explicit control of the physi-

cal grid spacing that is required by the application. (5)

Generate in parallel the �nal Elliptic grid using the GA

grid as an initial solution for the Elliptic solver.

The data-mapping problem represented in step 3

is formulated on the computational space by a recti-

linear graph G(V;E). The vertices V of the graph G

correspond to the blocks B
0

i 2 Cf (
) and the edges

E indicate the connectivity of the blocks B
0

i with their

neighbor blocks. On each vertex vi 2 V of the graph G

we assign various attributes like Cartesian coordinates

of the mass center of the block B
0

i and curvilinear co-

ordinates that correspond on the six nodes of the com-

putational block B
0

i . On each edge ei 2 E we assign

weights that re
ect the number of surface grid points of

the block B
0

i .

Figure 9: 2D-geometry editor.

Figure 10: Curvilinear grids.

Tables 1 and 2 indicate that our approach for the

solution of the data-mapping problem reduces the em-

ployment of sequential data pre-processing required for

the data-parallel PDE solvers and at the same time

exploits the reusability of existing well written and

tested sequential structured and unstructured multi-

block methods for parallel CFD codes.

A challenge for parallel multi-block multi-zone

solvers is to distribute the grids and thus the compu-

tation in such a way so that the inter-block and intra-

Figure 11: Non-uniform orthogonal grids.

Figure 12: Unstructured adaptive grids.

Table 1: The time (in sec) required to generate (Grid-

Gen.) structured grids on a SPARC workstation, the

time to partition (P�Q) [3] (Mapping) the subgrids

onto the memory of the 64 processors of the nCUBE

2 and the sum (Total) of the grid generation, partition

and storing times

Grid Points Grid-Gen. Mapping Total

2.5 � 103 0.38 17.81 18.19

10 � 103 1.61 46.45 48.06

22.5 � 103 3.61 100.15 103.76

40 � 103 6.45 195.13 201.58

Table 2: The time (in sec) to generate Cf (
), map and

store the data on the memory of the 64 processors of the

nCUBE 2(Pre-Proc.) and the time (in sec) to generate

on a 64 node nCUBE 2 an algebraic grid using Cf (
).

Grid Points Pre-Proc. (//) Par. Grid-Gen. Total

2.5 � 103 3.44 0.08 3.52

10 � 103 4.38 0.35 4.73

22.5 � 103 8.48 0.71 9.19

40 � 103 16.06 1.25 17.31

block communicationare minimized. In [10] present two

ab-initio load balancing methods for multi-block multi-

zone solvers that are based on composite block struc-

tures. These methods eliminate the inter-block com-

munication that keep intra-block communication to a

minimum.

Parallel adaptive Delaunay triangulations are very

important for computations with strong variations in

the solution over scattered regions (eg. in CFD
ow

over a multi-element airfoil wing) and computations

with moving boundary whose parametric or exact repre-

sentation is unknown (eg. in NR collision of two black

holes). The challenge here is the dynamic load bal-

ancing of parallel a computations with irregular depen-

dencies. We address this problem with two di�erent

approaches. The �rst [11] is based on an extension of

the load balancing method presented in [6] that mini-

mizes local synchronization and reduces data migration

by taking into account the data distribution before the

adaptation of the grid. The approach provides data par-

titions of the same quality as Recursive Spectral Bisec-

tion presented in [30]. The second approach is based on

based on a priority based multilist multithread system

[12] and [13]. The most important advantages of the

proposed approach are: (1) minimization of processors

idle time, because idle processors immediately schedule

threads created on busy processors without waiting to

reach a global barrier; and (2) reduction of the overhead

to recognize the processors state, because we check only

the counter of the \ready" and \wait" queues of some

small subsets of processors.

7 Conclusions

Essential features of a toolkit are proper break up of

the problem into modules linked by open interfaces and

well de�ned requirements that will enable commercial

or academic sources to develop independently tools and

implementations for each module. It is unrealistic for a

single vendor to supply all the software for a future ag-

ile manufacturing system or a single university to solve

for ever the dynamics of black holes. Rather virtual

organizations must be formed with each member con-

tributing part of the system. Here we have analyzed a

few of the issues underlying a toolkit for PDE solutions.

This is a rich problem with both individual modules and

their integration very challenging to implement. How-

ever the toolkit approach is the only practical one and

hope to re�ne our ideas in future research and papers.

Comments and collaborators will be welcome.

Acknowledgements

This work was support by Black Hole Binaries: Coales-

cence and Gravitational Radiation NSF Grant #ASC-

9318152 and CRPC. Chrisochoides is also supported by

the Alex G. Nason Prize Award.

References

[1] Advanced visual Systems Inc., AVS 4.0 Developer's

Guide and User's Guide, 1992. Journal of Compu-

tational Physics, Vol. 53 pp 484-512, 1984.

[2] Browne, J., M. Asam, and S. Sobek, CODE a

uni�ed approach to parallel programming, IEEE

Software, 6(4):10-18, July 1989.

[3] Chandy, M. and C. Kesselman, Compositional par-

allel programming in CC++, Technical Report,

Caltech, 1992.

[4] Cheng, G., G. C. Fox, G. C. and K. Mills, Integrat-

ing Multiple Programming Paradigms on Connec-

tion Machine CM5 in a Data
ow-based Software

Environment, Technical Report, Syracuse Center

for Computational Science, August, 1993.

[5] Cheng, G., Y. Lu, G. Fox, K. Mills and T. Haupt,

An Interactive Remote Visualization Environment

for an Electromagnetic Scattering Simulation on

a High Performance Computing System, Pro-

ceedings of Supercomputing '93, Portland, Oregon,

November 15-19, 1993.

[6] Chrisochoides, N., C. Houstis, and E. Houstis, Ge-

ometry based mapping strategies for PDE compu-

tation. In E. N. Houstis and D. Gannon, editors,

Proceedings of International Conference on Super-

computing, pages 115-127. ACM Press,1991.

[7] Chrisochoides, N., E. Houstis, S. Kim, M.

Samartzis, and J. Rice, Parallel iterative meth-

ods. In Advances in Computer Methods for Par-

tial Di�erential Equations VII, (R. Vichnevetsky.

D. Knight and G. Richter, eds) IMACS, New

Brunswick, NJ, pages 134-141, 1992.

[8] Chrisochoides, N., E. Houstis and J. Rice, Mapping

Algorithms and Software Environment for Data

Parallel PDE Iterative Solvers, Special Issue of the

Journal of Parallel and Distributed Computing on

Data-Parallel Algorithms and Programming, Vol.

21, No 1, pp 75{95, 1993.

[9] Chrisochoides, N., G. Fox and J. Thompson,

MENUS-PGG : Mapping Environment for Numeri-

cal Unstructured & Structured - Parallel Grid Gen-

eration. In the Proceedings of the Seventh Interna-

tional Conference on Domain Decomposition Meth-

ods in Scienti�c and engineering computing, 1993.

[10] Chrisochoides, N. and G. Fox, Data layout meth-

ods for parallel multi-block multi-zone solvers. (In

preparation, to be submitted in Frontiers'95).

[11] Chrisochoides, N. and G. Fox, Dynamic load bal-

ancing based on a generalized spectral bisection.

(In preparation, to be submitted in 9th Interna-

tional Parallel Processing Symposium).

[12] Chrisochoides, N., Multithread approach for paral-

lel adaptive Delaunay triangulations, Unpublished

manuscript submitted to ICASE/NASA.

[13] Chrisochoides, N., Multithread PDE solving sys-

tems for distributed address space parallel ma-

chines. To appear in the Proceedings of the IMACS

World Congress on Computational and Applied

Mathematics, Atlanta, July 11-15, 1994.

[14] Chrisochoides, N., An Alternative to Data Map-

ping for Parallel PDE Solvers : Parallel Grid Gen-

eration, Proceedings of Scalable Parallel Libraries

Conference, pp 36{44, October, 1993.

[15] Choi, J., J. Dongarra, D.Walker, R. Whaley Scala-

pack Reference manual, Version 1.0 Beta, 1993

ORNL/TM-12470. In Numerical Grid Generation

J.F. Thompson, ed. Elsevier Science Publishing,

Inc. 317-338, 1982.

[16] Fox, G., R. Williams and P. Messina Parallel Com-

puting Works! Morgan Kaufmann Publishers, Inc.

San Francisco, California, 1994.

[17] High Performance Fortran Forum, High Perfor-

mance Fortran Language Speci�cation, Scienti�c

Programming, vol.2 no.1, July 1993. Also avail-

able by anonymous ftp from ftp.npac.syr.edu.

[18] Gannon, D. S. Yang, and P. Beckman. User Guide

for a portable Parallel C++ Programming Sys-

tem pC++. Department of Computer Science and

CICA, Indiana University, January 1994.

[19] Belguelin, A., J. Dongarra, Geist, A., R. Manchek,

K. Moore HeNCE:A Heterogeneous Networking

Computing Environment, cs-93-205, Computer

Science Department, University of Tennessee at

Knoxville, 1993.

[20] Geist, A., A., Belguelin, J. Dongarra, W. Jiang, R.

Manchek, V. Sunderam PVM 3 User's guide and

reference Manual ORNL/TM-12187.

[21] Hendrickson B. and R. Leland The Chaco User's

Guide, Version 1.0 SAND93-2339.

[22] Hiranandani, S., K., Kennedy, C., Tseng, Compiler

optimization for Fortran D and MIMD distributed-

memorymachines, Proc. Supercomputing'91, Nov.,

1991.

[23] Houstis, E., C. Houstis, M. Katzouraki, T. Pap-

atheodorou, J. Rice and P. Varodoglu, Athena: A

Knowledge based system for //Ellpack. CSD-TR-

950, 1990.

[24] Johnsosn, L. CMSSL : A Scalable scienti�c soft-

ware library, Proceedings of Scalable Parallel Li-

braries Conference, pp 57{66, October, 1993.

[25] Lemke M., D., Quinlan P++, A Parallel C++ ar-

ray class library for architecture-independent de-

velopment of structured grid applications. ACM

SIGPLAN Notices, 28(1):pp 21-23, September

1992.

[26] MPI Forum, Message-Passing Interface Standard,

April 15, 1993.

[27] Rice, J. and R. Boisvert, Solving Elliptic Problems

Using ELLPACK, Springer{Verlag, New York,

1985.

[28] Rudnei Dias da Cunha and Tom Hopkins, PIM

1.0, The parallel iterative methods package for sys-

tems of linear equations: User's guide, Universi-

dade Federal do Rio Grande do Sul, Brasil, 1994.

[29] Ponnusamy, R., J., Saltz, A., Choudhary, Y.,

Hwang, G., Fox Runtime Support and Compi-

lation Methods for User-Speci�ed Data Distribu-

tions, Submitted to IEEE Transactions on Parallel

and Distributed Systems in Nov 1993.

[30] Simon, H., Partitioning of Unstructured Problems

for Parallel Processing, RNR-91-008, NASA Ames

Research Center, Mo�et Field, CA, 94035.

[31] Sussman, A., J. Saltz, R. Das, S. Gupta. D.

Mavriplis and R. Ponnusamy. PARTI Primitives

for Unstructured and Block Structured Problems,

Published in Computing Systems in Engineering in

1992.

[32] Thompson, J., Z. U. A. Warsi and C. Wayne

Mastin, Numerical Grid Generation. North-

Holland, New York, 1985.

[33] Bozkus, Z. A. Choudhary, G. Fox, T. Haupt, S.

Ranka and M. Wu Compiling Fortran 90D/HPF

for Distributed Memory MIN Computers, Journal

oc Parallel and Distributed Computing, 21, 15-26,

1994.

[34] Williams, R. DIME: A programming environ-

ment for unstructured triangular meshes on a

distributed-memory parallel processor, Caltech Re-

port, C3P-502.

