
The Design of VIP-FS: A Virtual, Parallel File System

for High Performance Parallel and Distributed Computing

NPAC Technical Report SCCS-628

Juan Miguel del Rosario�, Michael Harryyand Alok Choudharyz

Northeast Parallel Architectures Center

111 College Place, RM 3-201

Syracuse University

Syracuse, NY 13244-4100

May 17, 1994

Abstract

In the past couple of years, signi�cant progress has been made in the development of message-passing

libraries for parallel and distributed computing, and in the area of high-speed networking. Both tech-

nologies have evolved to the point where programmers and scientists are now porting many applications
previously executed exclusively on parallel machines into distributed programs for execution on more

readily available networks of workstations. Such advances in computing technology have also led to a

tremendous increase in the amount of data being manipulated and produced by scienti�c and commercial
application programs. Despite their popularity, message-passing libraries only provide part of the sup-

port necessary for most high performance distributed computing applications { support for high speed

parallel I/O is still lacking.
In this paper, we provide an overview of the conceptual design of a parallel and distributed I/O

�le system, the Virtual Parallel File System (VIP-FS), and describe its implementation. VIP-FS makes
use of message-passing libraries to provide a parallel and distributed �le system which can execute over

multiprocessor machines or heterogeneous network environments.

Keywords: Parallel I/O, data distribution, parallel architectures, message-passing, distributed com-

puting, distributed �le systems.

�CIS Dept., Syracuse University
yCIS Dept., Syracuse University
zECE Dept., Syracuse University

0

1 Introduction

In the past couple of years, signi�cant progress has been made in the development of message-passing libraries

for parallel and distributed computing [14] [12] [2]. These libraries allow users to produce highly portable

application code by providing a consistent communication interface over a wide variety of existing parallel

machines and networks of workstations. Through collective user experience, a group of primitives which

form a set of basic, required communication functionalities has emerged and is currently supported in one

form or another by almost all existing message-passing libraries.

Another signi�cant event that has occurred along-side the re�nement of message-passing libraries has

been the recent development of more e�ective high-speed networking. Networking technologies such as

FDDI, DQDB, and ATM have allowed communication rates to increase to the 100Mbps to 1Gbps and over

range [1] [9] [10].

Both message-passing libraries and high-speed networks have evolved to the point where programmers and

scientists are now becoming encouraged to port many of their applications previously executed exclusively on

parallel machines into distributed programs for execution on more readily available networks of workstations.

Advances in computing technologies such as message-passing libraries and high-speed networking have led

to a tremendous increase in the amount of data being manipulated and produced by scienti�c and commercial

application programs. A data storage and retrieval infrastructure needs be constructed which will satify data

access rates and capacities required by these programs. In current computing environments, in order to save

data to disk, application programs must explicitly partition and store �les in an application speci�c manner.

Programmers must rely on their site's network �le system (e.g., NFS) structure and con�guration. Therefore,

despite their increasing popularity, message-passing libraries only provide part of the support necessary for

most high performance distributed computing applications { support for high speed parallel I/O is still

lacking. Only recently has any attempt been made at providing I/O extensions to message-passing libraries

[11] [13]. Although these works recognized the de�ciency in message passing libraries, they only constitute

partial solutions.

In order to deal with this issue in a general way, two problems need to be addressed: �rst, the problem

of designing a parallel I/O system with a coherent distributed, concurrent I/O functionality that can be

incorporated as an extension to any message-passing library; second, the problem of de�ning a consistent

high performance parallel I/O interface to these libraries. In this paper, we propose a solution to these

1

Figure 1: The VIP-FS Infrastructure

problems. We provide an outline of the conceptual design of a parallel and distributed I/O runtime system,

the Virtual Parallel File System (VIP-FS), and describe its implementation.

In the next section, we discuss the conceptual design and implementation of VIP-FS. In section 3,

we describe the communication mechanisms used in VIP-FS. In section 4 we present some preliminary

perfomance results. We conclude in section 5 with brief discussion of future work.

2 Design and Implementation

A key objective in designing VIP-FS is portability. If the �le system is to be an extension to message passing

libraries, it must be portable across di�erent libraries; as such, the design must employ only features which

are common to most, if not all, message passing libraries. Also, it must be capable of co-existing with other

(Unix based) data managment or network �le systems that may be employed. Further, it must be capable

of operating in heterogeneous distributed system environments.

As illustrated in Figure 1, VIP-FS makes use of message-passing libraries (MPL) to provide a paral-

lel and distributed �le system which can execute over multiprocessor machines or heterogeneous network

environments. The rest of this section outlines our conceptual design and describes the implementation of

VIP-FS.

2

Figure 2: VIP-FS Functional Organization

2.1 Conceptual Overview

VIP-FS has three functional layers: the Interface layer, the virtual parallel �le (VPF) layer, and the I/O

device driver (IDD) layer. Figure 2 illustrates the logical con�guration of VIP-FS.

The Interface layer provides a variety of �le access abstractions to the application program. For example,

it may be a simple interface composed of standard Unix open, close, read, write functions. Or, the �le

system may accept information describing the mapping of a parallel �le to a partitioned data domain, and

transparently arbitrate access according to this mapping.

The VPF layer de�nes and maintains a uni�ed global view of all �le system components. It provides

the Interface layer with a single �le image, allowing each parallel �le to be viewed as a single large �le

organized as a sequential stream of bytes. It achieves this by organizing and coordinating access to the

IDD's �les in such a way that a global, parallel �le is constructed whose component stripes are composed

of the independent IDD �les. Any speci�cation of a �le o�set by the Interface layer is resolved by the VPF

into an IDD address, �le ID, and IDD �le o�set.

As shown, the IDD layer is built upon and communicates with the local host's �le system. It manages each

�le as an independent non-parallel �le and provides a stateless abstraction to the VPF layer above. Thus,

the IDD layer acts as the mediator between the local host �le system and the VPF layer. Communication

between layers within and across hosts is accomplished through the use of message-passing library primitives.

3

Figure 3: VIP-FS Sample Con�guration File

2.2 Implementation

In the following section we discuss the implementation of VIP-FS. The discussion proceeds in a bottom-up

manner, from the IDD layer to the Interface layer. We begin with a brief description of the initialization

and con�guration process.

2.2.1 Initialization

All message-passing libraries require some sort of con�guration �le to initialize processes and de�ne the

computational domain on which the distributed application is to be executed. These con�guration �les

typically include a list of participating hosts, the number of processes to create on each host, plus some

additional path information indicating where the executable �le is to be found. In order to accommodate

maximum exibility within VIP-FS, we extended the con�guration �le to include �le system con�guration

information. This is provided by the user in the form of speci�cations for each parallel �le that is to be used

by the distributed application.

Figure 3 shows a sample con�guration �le entry. The entry begins with a list of parallel �le names as

they are to be referenced by the distributed application. The list is followed by several lines of host/path

information. Together, these lines indicate the set of hosts, and where on each host, the components of the

parallel �les are to be stored; these lines constitute a single declaration. All parallel �les with the same

con�guration can be grouped together in a single declaration.

The VIP-FS intialization process uses the con�guration �le to spawn the necessary VIP-FS (IDD layer)

processes and initialize internal tables (e.g., parallel �le �le-descriptor tables).

4

Figure 4: IDD Request Message Format

2.2.2 IDD Layer

As its primary function, the IDD layer is responsible for communicating with the local �le system and

providing a stateless interface to the VIP-FS layer. The IDD layer is implemented in VIP-FS as a set of

Unix processes.

For initialization purposes, the VIP-FS con�guration �le is used to specify the set of hosts that are

participating in the distributed program. Some of these hosts will be associated with one or more parallel

�les via a parallel �le declaration in the con�guration �le. These are the hosts that will participate in storing

the parallel �le and are typically a set of hosts possessing local disks. During initialization, IDD processes

will be spawned on this subset of hosts after which they will block pending the arrival of service requests.

Thus, IDD processes are spawned as processes cooperating and communicating with the VPF layer entities.

The IDD supports a non-parallel (i.e., Unix stream) view of �les. It does not have knowledge of the logical

parallel �le or of mapping functions; that is, it carries no knowledge of how data is distributed among the

disk set or among the processors. All communication with the IDD will take place through a communications

daemon. Requests will identify the requesting taskid, the desired operation (i.e.,Read, Write, Open, Close),

the number of bytes involved, and the data if necessary (i.e., for Read reqeusts).

IDD processes receive �le access requests from the VPF layer in the form of messages sent through

the message-passing library being used. Requests can be made for any of the standard Unix �le access

operations such as open, close, read, write, etc. The IDD process performs the requested operation and

sends an appropriate response back to the VPF layer. Figure 4 illustrates the IDD service request message

format. It contains information for request type, IDD layer �le descriptor, and local o�set into the �le. The

IDD process has no notion of any global �le space. The IDD �le descriptor for each �le is returned to the

requesting VPF layer during the open call request; it is an index into an array of �le descriptors returned

when the IDD process makes an open call to the local �le system.

The IDD data structures are shown in Figure 5. As shown, the IDD node (IDDnode) is composed of the

hostname and a task id assigned by the message passing library. The local I/O server IDD �le descriptor

5

Figure 5: IDD Internal ID and File Structures

(ioNodefd) is identi�ed by the task id and the local �le system assigned �le descriptor. The mapping for �le

descriptors assigned to the VPF layer are stored in the structure vpfFile.

2.2.3 VPF Layer

The VPF layer provides distributed applications with a single �le image for every parallel �le that is opened.

It's key function is to enforce the mapping of the distributed application's (distributed) data domain to the

parallel �le. It maintains the data structures necessary to support the view of logical parallel �le structures.

It manages pointers to each of the Unix �les that comprise every parallel �le. Requests to the �le system

(in the parallel �le view) will be translated into requests to the IDD layer which are the custodians of the

Unix �les comprising the parallel �le. Response data returned by the IDD layer will be recomposed into

the necessary structure to satisfy the parallel view prior to sending it to the interface layer above. The

aforementioned information is stored in the VPF layer �le descriptor table.

When a parallel �le is opened, the VPF layer returns a �le descriptor which is an index into the VPF's �le

descriptor table. The basic structure of the �le descriptor table is shown in Figure 6. Each entry of the table

(i.e., each parallel �le descriptor) points to an array containing the IDD �le descriptors that comprise the

parallel �le. Along with every IDD �le descriptor is stored the current o�set of its �le pointer. Additionally,

the global o�set for the parallel �le and some other mapping information is also stored in the table. The

6

Figure 6: VPF Layer File Descriptor Table

IDD �le descriptor and o�set values are mapped by the VPF into a global o�set value for the entire parallel

�le.

The actual VPF layer �le structure is shown in Figure 7. The ioNodeFPList is a pointer to the list of

IDD and IDD �les that comprise the parallel �le. Each entry into the list includes the host name of the IDD,

a communication id, and the IDD �le descriptor assigned to the VPF layer. Data distributions for both the

computational array (i.e., application data distribution) and the parallel �le are likewise stored; these are

found in arrayDistTable and �leDistTable respectively. Entries that have to do with Frame coordinates are

to be used for matrix access and retain the coordinates of the current active submatrix in the dataset.

Figure 8 illustrates how the data domain of a distributed application might be mapped onto a parallel

�le. In this example, the parallel �le is striped across four hosts; the distributed application is executing

over eight hosts and thus the data domain is partitioned among them (in this case equally). The example

illustrates the special case where the hosts running the IDD processes are disjoint from those running the

application. The �gure highlights a number of signi�cant points. First, the local �le maintained by each

IDD process is only one fourth the size of the complete parallel �le. In general, the IDD layer �les will

only be 1/Dth the size of the parallel �le, where D is the number of IDD hosts. Second, the IDD's local

�le can actually be composed of discontiguous segments of the global parallel �le; the same would be true

of data distribution over the computational nodes. The VPF layer uses the �le descriptor table mapping

information to map each parallel �le o�set address to the proper IDD/o�set pair (mapping information will

be discussed in further detail in the following section). Conceptually, the VPF layer maintains the global

�le image, illustrated in the �gure, as well the functions necessary to map �le addresses to and from the �le

7

Figure 7: VPF Layer File Descriptor Structure

image, the parallel �le, and the IDD �les.

Access to the IDD process services is made available to the VPF layer through the following procedure

calls.

int CreateIDDFile (�lename, mode, taskID, status)

Purpose: Sends a request to create a new �le on a particular IDD node. The �le will be created relative

to the root of the VIP-FS �le structure.

int OpenIDDFile (�lename, oag, mode, taskID, status)

Purpose: Open a �le on the speci�ed IDD node.

int ReadIDDRequest (fd, bu�, numBytes, o�set, seqNum, taskID, status)

Purpose: Sends a read request to the speci�ed IDD node.

int WriteIDDFile (fd, data, numToWrite, o�set, seqNum, taskID, status)

Purpose: Writes data to a �le on the speci�ed IDD node.

int CloseIDDFile (fd, taskID, status)

Purpose: Tells IDD node to close an active �le.

int CollectiveReadIDDRequest (mapID, fd, o�set, numBytes, mySPMDidNum)

Purpose: Implements collective reads (see assumed-requests below).

8

Figure 8: Data Distribution in VIP-FS

2.2.4 Application Interface Layer

The application interface provided to a parallel �le system is a very important consideration. Most parallel

�le systems only provide Unix-like access to the �le system [4] [8]. This allows for exibility but can become

cumbersome to use. For example, when a distributed array is being used by the application, the burden

for maintaining a mapping from the array to the parallel �le (not always trivial) is placed squarely on the

programmer. This may easily result in code which sacri�ces better performance for ease of programming.

The function of the interface layer is to provide a logical, structural view of the parallel �le to the

overlaying application. It will permit the application to engage in I/O by working with the data structure

that it is using, rather than by the �le abstraction if it so wishes. The interface layer itself uses a parallel

�le abstraction; it is responsible for translating each local I/O request by the application into a request to

the parallel �le in the �le abstraction (i.e., as an o�set and number of bytes a certain parallel �le), and for

converting or reorganizing data from the Parallel Virtual File Server (VIP-FS) back into the application's

desired logical structure.

The interface layer communicates with the VPF layer through the following Unix-like procedure calls.

int pvfs open (�lename, ags, mode)

int pvfs write (fd, buf, nbytes)

int pvfs read (fd, buf, nbytes)

9

int pvfs lseek (fd, o�set, whence)

int pvfs close (fd)

The interface layer of VIP-FS currently supports two types of parallel �le access by the application:

conventional Unix-like access where, by default, all nodes have equal access to the entire parallel �le, and

mapped access. Future implementations will include array access. We describe each of these below.

Unix Interface

VIP-FS provides access to parallel �les in the conventional Unix manner using open(), close(), read(),

write(), lseek(), etc. calls. When using this interface, each host executing the application will have access

to the entire parallel �le. It is the responsibility of the programmer to arbitrate and schedule host access to

the parallel �les to ensure the desired results are obtained. As with Unix, �rst-come-�rst-served semantics

apply.

Mapped Access

In many distributed and parallel applications, parallelism is obtained by using data decomposition. Data

is partitioned, usually equally, among the host computers and operated on concurrently. When data is

partitioned for this purpose, some mapping is often involved. The mapping associates the global position of

each data element with a host and a local address on that host, and vice versa. The complexity involved in

doing this is often manageable, and libraries have been developed to assist programmers in performing such

decompositions.

The way in which a parallel �le is distributed among disks can likewise be viewed in terms of a data

decomposition mapping. This map is maintained by VIP-FS to allow transparent access to parallel �les.

The situation becomes much more complex when a distributed application wishes to perform I/O oper-

ations in a distributed manner. In this case, the host location and local address of each distributed element

has to be mapped to disk location, �le, and an o�set within the local �le. This map will change for every data

decomposition, number of computational hosts, and number of disks employed by the application. Maintain-

ing this mapping in a general way for every application becomes a tremendous burden for the programmer.

Futher, any application which is written to perform optimally for a given con�guration would require major

revisions whenever execution under a di�erent data decomposition or system con�guration is required.

VIP-FS supports mapped access to parallel �les in a general way. VIP-FS views the I/O mapping as

10

Figure 9: Mapping Function Construction

illustrated in Figure 9. As shown, the mapping function from the data element (on a client) to the I/O

device element (disk o�set) is broken down into two di�erent mapping functions, and the composition de�nes

the overall mapping. To use mapped access, the programmer is required to de�ne the data decomposition

mapping, and the parallel �le mapping to disk. (Alternatively, the programmer can simply employ the parallel

�le default mapping). This is done by passing a pre-de�ned data structure to the �le system through an

ioctl() call. Figure 10 provides an example code segment for both data decomposition and parallel �le

mapping speci�cation.

Once the desired mappings have been declared, I/O access can be performed by each host using the

standard Unix calls. VIP-FS will maintain the mappings in complete transparency.

Array References

The dataparallel programming model has emerged as the most popular programming model for parallel

and distributed applications. As a result, many languages have been designed to support such a programming

model. Within the scienti�c computing community, languages such as High Performance Fortran (HPF) [5]

[15] [3] [6] have been developed to facilitate the migration of massive quantities of legacy Fortran applications

to parallel and distributed environments.

A dataparallel interface to the parallel I/O system would greatly enhance the power of dataparallel

languages. In such a system, data could be viewed entirely as a data structure, commonly an array of some

sort. Performing parallel I/O operations on the array data would require merely reading or writing the

11

Figure 10: Mapping Speci�cation Sample Code Segment

12

Figure 11: Array Access in VIP-FS

desired section of the array as shown by Figure 11. In the �gure, a portion of the global data array is

being accessed. Each client will issue the same I/O instruction. By making use of the data decomposition

information (previously declared), the �le system will transparently deliver only the appropriate portion to

the associated client.

2.3 Design Tradeo�s

All three functional layers of VIP-FS could be combined, along with the application, into a single executing

process. The advantage of such an organization would be that interlayer communicationwould involve the use

of intraprocess communication mechanisms (e.g., procedure calls) resulting in a reduction of overhead versus

the interprocess communication otherwise necessary. This cost savings could be signi�cant depending upon

the message passing library used. Further, it would simplify message handling within the entire distributed

system. On the other hand, such a design would have one serious limitation. All I/O requests on a given

host would have to be controlled and directed by the VIP-FS process (now also the application process) on

that host. This renders all I/O requests to be blocking calls, serializing them at the host.

By separating the IDD layer as a distinct process from the rest of the layers, any communication to

the IDD layer can be done asynchronously. Requests for I/O on a given host will be controlled by the IDD

process on that host. Furthermore, all I/O requests can be made non-blocking allowing the system to overlap

communication with I/O which, in lower-bandwidth networks, results in great performance bene�ts.

13

3 Communication in VIP-FS

In this section, we describe the communication strategies used during data access in VIP-FS. Three strategies

for data access have been incorporated into VIP-FS: direct access, two-phase access, and assumed requests.

This will facilitate research in data access and availability schemes { one of the primary objectives of the

project.

3.1 Direct Access

The direct access strategy is the traditional access method used for parallel and distributed �le systems. In

this scheme, every I/O request is translated into requests to the appropriate I/O device.

Each distributed application is composed of one or more clients. The �le system services each client

independently of the others. There is no globally organized access strategy as with the remaining two

methods. This scheme is used when each client obeys a self-scheduled access pattern.

3.2 Two-Phase Access

When all clients in the distributed application perform I/O access with some global pattern, then it is useful

to employ a more e�cient access strategy. The two-phase access strategy has been shown to provide more

consistent performance across a wider variety of data distributions than direct access methods [7]. With

two-phase access, all clients access data approximately simultaneously. The �le system schedules access so

that data sotrage or retrieval from the I/O devices follow a near optimal pattern with a reduction in the total

number of requests for the entire I/O operation. In a second stage, the data is bu�ered and redistributed to

conform with the data decomposition used by the application (the target decomposition).

3.3 Assumed-Requests

The two-phase access strategy gains its e�ectiveness by relying upon the existence (assumed) of a higher

degree, less congested interconnection networks between clients versus the network used to access data to and

from the storage system; this is often the case in parallel machines. However, in distributed systems, shared

media networks are commonly employed, and the basis for two-phase strategy's improved performance is

lost. We have designed an alternative approach which may signi�cantly improve read performance by greatly

reducing the number of requests seen by each I/O device; we call this the assumed-requests technique.

14

Figure 12: Assignment of Clients to I/O Devices

With assumed-requests, data decomposition information is distributed to the IDD processes as part of

the �le description information. Clients are assured to make requests in a collective manner as in two-phase

access. That is, we assume a Single-Program-Multiple-Data (SPMD) of computation. A one-to-one or

many-to-one mapping is established from the set of I/O devices to a subset of clients (the latter case occurs

when the number of I/O devices exceeds the number of clients). We say that the members of the subset are

assigned to the I/O devices. This con�guration is illustrated in Figure 12 for both a parallel machine, and a

network of workstations where a dark line represents a logical connection between an I/O device (host with

local disk) and a client. Note that in the case of distributed systesms, it is possible for hosts with disks to

serve as both clients and I/O devices.

When a read operation is performed by the application program, only the assigned clients have their

requests actually delivered to I/O devices. Thus, each I/O device only receives a single request each. From

the request the I/O device receives, along with data decomposition information, each I/O device computes

the amount of data required by all clients (assigned or not). It then satis�es the portion of requests which

involve locally stored data by delivering this data directly to the appropriate client. The access pattern is

illustrated in Figure 13 where two hosts act as the I/O servers or devices, and four hosts act as clients. Two

of the clients are assigned to the servers and place requests for all four clients running the application. The

servers, using the data decomposition information, sends the appropriate requested information to all the

clients.

By reducing the number of I/O requests that actually traverse the network to a minimum, it is hoped

that assumed-requests will provide great improvements in read performance.

15

4 Performance Results

In this section we present our initial results for VIP-FS. These results cover only a small set of con�gurations

and apply only to a single transmission medium { Ethernet. We are primarily concerned with gaining some

indication of the feasibility of this approach for building a parallel virtual �le system. The results are shown

in Table 1.

5 Conclusions and Future Work

We have described a system for incorporating a parallel I/O virtual �le system with message-passing libraries.

We have briey described a number of message-passing mechanisms that may improve performance on

heterogeneous systems. We have provided our initial results which indicate some promise in this using

approach to construct a portable, scalable, parallel virtual �le system.

In order to improve the performance of our system, we have a number of future research plans which we

are optimistic will lead to ideas for design improvement which we can then incorporate into VIP-FS. For

16

instance, the e�ects of incorporating caches at the I/O devices or the clients will be studied. Further studies

on access (communication) methods in relation to various transmission media and architectures will also be

carried out. At the interface level, an MPI compatible interface is being planned.

References

[1] A. Danthine and O. Spaniol. High Performance Networking, IV. In International Federation for Infor-

mation Processing, 1992.

[2] A. Geist and A. Beguelin and J. Dongarra and W. Jiang and R. Manchek and V. Sunderam. PVM 3

User's Guide and Reference Manual. Technical Report ORNL/TM-12187, Oak Ridge National Labora-

tory, May 1994.

[3] S. Benkner, B. Chapman, and H. Zima. Vienna fortran 90. Scalable High Performance Computing

Conference, April 1992.

[4] Thomas H. Cormen and David Kotz. Integrating Theory and Practice in Parallel File Systems. In The

Proceedings of the 1993 DAGS/PC Symposium, Hanover, NH, pages 64{74, June 1993.

[5] CRPC technical report, Rice University. High Performance Fortran Language Speci�cation, version 0.3,

1992.

[6] D. M. Pase. MPP Fortran Programming Model,Draft 1.0. Technical Report Technical Report, Cray

Research, October 1991.

[7] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. Improved parallel I/O via a two-

phase run-time access strategy. In The 1993 IPPS Workshop on Input/Output in Parallel Computer

Systems, pages 56{70, 1993.

[8] Juan Miguel del Rosario and Alok Choudhary. High Performance I/O for Parallel Computers: Problems

and Prospects. IEEE Computer, March 1994.

[9] F.E. Ross. An Overview of FDDI: The Fiber Distributed Data Interface. IEEE Journal on Selected

Areas in Communications, pages 1043{1051, Sept. 1989.

[10] H.T. Kung. Gigabit Local Area Networks: A systems perspective. IEEE Communications Magazine,

April 1992.

17

[11] M. Henderson and B. Nickless and R. Stevens. A Scalable High-Performance I/O System. In Scalable

High-Performance Computing Conference, May 1994.

[12] Ralph Butler and Ewing Lusk. User's Guide to the P4 Programming System. Technical Report ANL-

92/17, Argonne National Laboratory, October 1992.

[13] S.A. Moyer and V.S. Sunderam. PIOUS: A Scalable Parallel I/O System for Distributed Computing

Environments. In Scalable High-Performance Computing Conference, May 1994.

[14] University of Tennessee. MPI: A Message-Passing Interface Standard, May 1994.

[15] Zeki Bozkus,Alok Choudhary,Geo�rey Fox,Tomasz Haupt and Sanjay Ranka. Compiling Distribution

Directives in a Fortran 90D Compiler. Technical Report SCCS-388, NPAC, Syracuse University, July

1992.

18

