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Abstract

We describe the implementation and performance of an e�cient parallel Gauss-Seidel algorithm

that has been developed for irregular, sparse matrices from electrical power systems applications.

Although, Gauss-Seidel algorithms are inherently sequential, by performing specialized orderings

on sparse matrices, it is possible to eliminate much of the data dependencies caused by precedence

in the calculations. A two-part matrix ordering technique has been developed | �rst to partition

the matrix into block-diagonal-bordered form using diakoptic techniques and then to multi-color

the data in the last diagonal block using graph coloring techniques. The ordered matrices often

have extensive parallelism, while maintaining the strict precedence relationships in the Gauss-Seidel

algorithm. We present timing results for a parallel Gauss-Seidel solver implemented on the Thinking

Machines CM-5 distributed memory multi-processor. The algorithm presented here requires active

message remote procedure calls in order to minimize communications overhead and obtain good

relative speedup. The paradigm used with active messages greatly simpli�ed the implementation of

this sparse matrix algorithm.



1 Introduction

We have developed an e�cient parallel Gauss-Seidel algorithm for irregular, sparse matrices from

electrical power systems applications. Even though Gauss-Seidel algorithms for dense matrices are

inherently sequential, it is possible to identify sparse matrix partitions without data dependencies so

calculations can proceed in parallel while maintaining the strict precedence rules in the Gauss-Seidel

technique. All data parallelism in our Gauss-Seidel algorithm is derived from within the actual

interconnection relationships between elements in the matrix. We employed two distinct ordering

techniques in a preprocessing phase to identify the available parallelism within the matrix structure:

1. partitioning the matrix into block-diagonal-bordered form,

2. multi-coloring the last diagonal matrix block.

Our challenge has been to identify available parallelism in the irregular sparse power systems matrices

and develop an e�cient parallel Gauss-Seidel algorithm to exploit that parallelism.

Power system distribution networks are generally hierarchical with limited numbers of high-

voltage lines transmitting electricity to connected local networks that eventually distribute power

to customers. In order to ensure reliability, highly interconnected local networks are fed electricity

from multiple high-voltage sources. Electrical power grids have graph representations which in turn

can be expressed as matrices | electrical buses are graph nodes and matrix diagonal elements,

while electrical transmission lines are graph edges which can be represented as non-zero o�-diagonal

matrix elements.

We show that it is possible to identify the hierarchical structure within a power system matrix

using only the knowledge of the interconnection pattern by tearing the matrix into partitions and

coupling equations that yield a block-diagonal-bordered matrix. Node-tearing-based partitioning

identi�es the basic network structure that provides parallelism for the majority of calculations within

a Gauss-Seidel iteration. Meanwhile, without additional ordering, the last diagonal block would be

purely sequential, limiting the potential speedup of the algorithm in accordance with Amdahl's law.

The last diagonal block represents the interconnection structure within the equations that couple

the partitions found in the previous step. Graph multi-coloring has been used to order this matrix

partition and subsequently identify those rows that can be solved in parallel.

We implemented explicit load balancing as part of each of the aforementioned ordering steps

to maximize e�ciency as the parallel algorithm is applied to real power system load-
ow matrices.

An attempt was made to place equal amounts of processing in each partition, and in each matrix

color. The metric employed when load-balancing the partitions is the number of 
oating point

multiply/add operations, not simply the number of rows per partition. Empirical performance data

collected on the parallel Gauss-Seidel algorithm illustrate the ability to balance the workload for as

many as 32 processors.

We implemented the parallel Gauss-Seidel algorithm on the Thinking Machines CM-5 distributed

memory multi-processor using the Connection Machine active message layer (CMAML). Using this

communications paradigm, signi�cant improvements in the performance of the algorithm were ob-

served compared to more traditional communications paradigms that use the standard blocking

send and receive functions in conjunction with packing data into communications bu�ers. To signif-
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icantly reduce communications overhead and attempt to hide communications behind calculations,

we implemented each portion of the algorithm using CMAML remote procedure calls. The com-

munications paradigm we use throughout this algorithm is to send a double precision data value

to the destination processor as soon as the value is calculated. The use of active messages greatly

simpli�ed the development and implementation of this parallel sparse Gauss-Seidel algorithm.

Parallel implementations of Gauss-Seidel have have generally been developed for regular problems

such as the solution of Laplace's equations by �nite di�erences [3, 4], where red-black coloring

schemes are used to provide independence in the calculations and some parallelism. This scheme has

been extended to multi-coloring for additional parallelism in more complicated regular problems [4],

however, we are interested in the solution of irregular linear systems. There has been some research

into applying parallel Gauss-Seidel to circuit simulation problems [12], although this work showed

poor parallel speedup potential in a theoretical study. Reference [12] also extended traditional

Gauss-Seidel and Gauss-Jacobi methods to waveform relaxation methods that trade overhead and

convergence rate for parallelism. A theoretical discussion of parallel Gauss-Seidel methods for power

system load-
ow problems on an alternating sequential/parallel (ASP) multi-processor is presented

in [15]. Other research with the parallel Gauss-Seidel methods for power systems applications

is presented in [7], although our research di�ers substantially from that work. The research we

present here utilizes a di�erent matrix ordering paradigm, a di�erent load balancing paradigm, and

a di�erent parallel implementation paradigm than that presented in [7]. Our work utilizes diakoptic-

based matrix partitioning techniques developed initially for a parallel block-diagonal-bordered direct

sparse linear solver [9, 10]. In reference [9] we examined load balancing issues associated with

partitioning power systems matrices for parallel Choleski factorization.

The paper is organized as follows. In section 2, we introduce the electrical power system appli-

cations that are the basis for this work. In section 3, we brie
y review the Gauss-Seidel iterative

method, then present a theoretical derivation of the available parallelism with Gauss-Seidel for a

block-diagonal-bordered form sparse matrix. Paramount to exploiting the advantages of this paral-

lel linear solver is the preprocessing phase that orders the irregular sparse power system matrices

and performs load-balancing. We discuss the overall preprocessing phase in section 5, and describe

node-tearing-based ordering and graph multi-coloring-based ordering in sections 6 and 7 respec-

tively. We describe our parallel Gauss-Seidel algorithm in section 8, and include a discussion of

the hierarchical data structures to store the sparse matrices. Analysis of the performance of these

ordering techniques for actual power system load 
ow matrices from the Boeing-Harwell series and

for a matrix distributed with the Electrical Power Research Institute (EPRI) ETMSP software are

presented in section 9. Examinations of the convergence of the algorithm are presented along with

parallel algorithm performance. We state our conclusions in section 10.

2 Power System Applications

The underlying motivation for our research is to improve the performance of electrical power system

applications to provide real-time power system control and real-time support for proactive deci-

sion making. Our research has focused on matrices from load-
ow applications [15]. Load-
ow

analysis examines steady-state equations based on the positive de�nite network admittance matrix
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that represents the power system distribution network, and is used for identifying potential network

problems in contingency analyses, for examining steady-state operations in network planning and

optimization, and for determining initial system state in transient stability calculations [15]. Load


ow analysis entails the solution of non-linear systems of simultaneous equations, which are per-

formed by repeatedly solving sparse linear equations. Sparse linear solvers account for the majority

of 
oating point operations encountered in load-
ow analysis. Load 
ow is calculated using network

admittance matrices, which are symmetric positive de�nite and have sparsity de�ned by the power

system distribution network. Individual power utility companies often examine networks in their

operations centers that are represented by less than 2,000 sparse complex equations, while regional

power authority operations centers would examine load-
ow with matrices that have as many as

10,000 sparse complex equations. This paper presents data for power system networks of 1,723,

4,180, and 5,300 nodes.

3 The Gauss-Seidel Method

We are considering an iterative solution to the linear system

Ax = b; (1)

where A is an (n � n) sparse matrix, x and b are vectors of length n, and we are solving for x.

Iterative solvers are an alternative to direct methods that attempt to calculate an exact solution

to the system of equations. Iterative methods attempt to �nd a solution to the system of linear

equations by repeatedly solving the linear system using approximations to the x vector. Iterations

continue until the solution is within a predetermined acceptable bound on the error.

Common iterative methods for general matrices include the Gauss-Jacobi and Gauss-Seidel,

while conjugate gradient methods exist for positive de�nite matrices. Critical in the choice and

use of iterative methods is the convergence of the technique. Gauss-Jacobi uses all values from the

previous iteration, while Gauss-Seidel requires that the most recent values be used in calculations.

The Gauss-Seidel method generally has better convergence than the Gauss-Jacobi method, although

for dense matrices, the Gauss-Seidel method is inherently sequential. Better convergence means fewer

iterations, and a faster overall algorithm, as long as the strict precedence rules can be observed. The

convergence of the iterative method must be examined for the application along with algorithm

performance to ensure that a useful solution to Ax = b can be found.

The Gauss-Seidel method can be written as:

x

(k+1)
i =

1

aii

0
@
bi �

X
j<i

aijx
(k+1)
j �

X
j>i

aijx
(k)
j

1
A
; (2)

where:

x

(k)
i is the ith unknown in x during the kth iteration, i = 1; � � � ; n and k = 0; 1; ::: ,

x

(0)
i is the initial guess for the ith unknown in x,

aij is the coe�cient of A in the ith row and jth column,
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� 1

while � > �converge

for k = 1 to niter
for i = 1 to n

~xi  xi

xi  bi

for each j 2 [1; n] such that aij 6= 0

xi  xi � (aij � xj)

endfor

xi  xi=aii

endfor

endfor

� 0

for i = 1 to n

� �+ abs(~xi � xi)

endfor

endwhile

Figure 1: Sparse Gauss-Seidel Algorithm

bi is the i
th value in b.

or

x(k+1) = (D+ L)�1[b�Ux(k)]; (3)

where:

x(k) is the kth iterative solution to x, k = 0; 1; ::: ,

x(0) is the initial guess at x,

D is the diagonal of A,

L is the of strictly lower triangular portion of A,

U is the of strictly upper triangular portion of A,

b is right-hand-side vector.

The representation in equation 2 is used in the development of the parallel algorithm, while the

equivalent matrix-based representation in equation 3 is used below in discussions of available paral-

lelism.

We present a general sequential sparse Gauss-Seidel algorithm in �gure 1. This algorithm cal-

culates a constant number of iterations before checking for convergence. For very sparse matrices,

such as power systems matrices, the computational complexity of the section of the algorithm which

checks convergence is O(n), nearly the same as that of a new iteration of x(k+1). Consequently, we

perform multiple iterations between convergence checks. Only non-zero values in A are used when

calculating x(k+1).

It is very di�cult to determine if one-step iterative methods, like the Gauss-Seidel method,

converge for general matrices. Nevertheless, for some classes of matrices, it is possible to prove

Gauss-Seidel methods do converge and yield the unique solution x for Ax = b with any initial

starting vector x(0). Reference [4] proves theorems to show that this holds for both diagonally

dominant and symmetric positive de�nite matrices. The proofs of these theorems state that the
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Gauss-Seidel method will converge for these matrix types, however, there is no evidence as to the

rate of convergence.

Symmetric sparse matrices can be represented by graphs with elements in equations correspond-

ing to undirected edges in the graph [6]. Ordering a symmetric sparse matrix is actually little more

than changing the labels associated with nodes in an undirected graph. Modifying the ordering

of a sparse matrix is simple to perform using a permutation matrix P of either zeros or ones that

simply generates elementary row and column exchanges. Applying the permutation matrix P to the

original linear system in equation 1 yields the linear system

(PAPT )(Px) = (Pb); (4)

that is solved using the parallel Gauss-Seidel algorithm. While ordering the matrix greatly simpli�es

accessing parallelism inherent within the matrix structure, ordering can have an e�ect on convergence

[4]. In section 9, we present empirical data to show that in spite of the ordering to yield parallelism,

convergence appears to be rapid for positive de�nite power systems load-
ow matrices.

4 Available Parallelism

While Gauss-Seidel algorithms for dense matrices are inherently sequential, it is possible to identify

portions of sparse matrices that do not have mutual data dependencies, so calculations can proceed

in parallel on mutually independent matrix partitions while maintaining the strict precedence rules

in the Gauss-Seidel technique. All parallelism in the Gauss-Seidel algorithm is derived from within

the actual interconnection relationships between elements in the matrix. Ordering sparse matri-

ces into block-diagonal-bordered form can o�er substantial opportunity for parallelism, because the

values of x(k+1) in entire sparse matrix partitions can be calculated in parallel without requiring

communications. Because the sparse matrix is a single system of equations, all equations (with o�-

diagonal variables) are dependent. Dependencies within the linear system requires data movement

from mutually independent partitions to those equations that couple the linear system. After we de-

velop the Gauss-Seidel algorithm for a block-diagonal-bordered matrix, the optimum data/processor

assignments for an e�cient parallel implementation are straightforward.

While much of the parallelism in this algorithm comes from the block-diagonal-bordered ordering

of the sparse matrix, further ordering of the last diagonal block is required to provide parallelism

in what would otherwise be a purely sequential portion of the algorithm. The last diagonal block

represents the interconnection structure within the equations that couple the partitions in the block-

diagonal portion of the matrix. These equations are rather sparse, often with substantially fewer o�-

diagonal matrix elements (graph edges) than diagonal matrix elements (graph nodes). Consequently,

it is rather simple to color the graph representing this portion of the matrix. Separate graph colors

represent rows where x(k+1) can be calculated in parallel, because within a color, no two nodes have

any adjacent edges. For the parallel Gauss-Seidel algorithm, a synchronization barrier is required

between colors to ensure that all new x(k+1) values are distributed to the processors so that the

strict precedence relation in the calculations are maintained.
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4.1 Parallelism in Block-Diagonal-Bordered Matrices

To clearly identify the available parallelism in the block-diagonal-bordered Gauss-Seidel method, we

de�ne a block diagonal partition on the matrix, apply that partition to formula 3, and equate terms

to identify available parallelism. We must also de�ne a sub-partitioning of the last diagonal block

to identify parallelism after multi-coloring.

First, we de�ne a partitioning of the system of linear equations (PAPT )(Px) = (Pb), where the

permutation matrix P orders the matrix into block-diagonal-bordered form.

0
BBBBB@

A1;1 0 A1;m+1

0
. . .

...

Am;m Am;m+1

Am+1;1 � � � Am+1;m Am+1;m+1

1
CCCCCA

0
BBBBB@

x
(k)
1

...

x
(k)
m

x
(k)
m+1

1
CCCCCA

=

0
BBBBB@

b1
...

bm

bm+1

1
CCCCCA
: (5)

Equation 3 divides the PAPT matrix into a diagonal component D, a strictly lower diagonal

portion of the matrix L, and a strictly upper diagonal portion of the matrix U such that:

PAP
T = D+ L+U (6)

Derivation of the block-diagonal-bordered form of theD, L, andUmatrices is straightforward. Equa-

tion 3 requires the calculation of (D + L)�1, which also is simple to determine explicitly, because

this matrix has block-diagonal-lower-bordered form. Given these partitioned matrices, it is rela-

tively straightforward to identify available parallelism by substituting the partitioned matrices and

partitioned x(k) and b vectors into the de�nition of the Gauss-Seidel method and then performing

the matrix multiplications. As a result we obtain:

x(k+1) =

0
BBBBBB@

(D1;1 + L1;1)
�1
h
b1 �U1;1x

(k)
1 �U1;m+1x

(k)
m+1

i

...

(Dm;m + Lm;m)
�1
h
bm �Um;mx

(k)
m �Um;m+1x

(k)
m+1

i

(Dm+1;m+1 + Lm+1;m+1)
�1
h
bm+1 �

Pm

i=1(L
�1
m+1;ix

(k+1)
i ) �Um+1;m+1x

(k)
m+1

i

1
CCCCCCA
:

(7)

We can identify the parallelism in the block-diagonal-bordered portion of the matrix by examining

equation 7. If we assign each partition i, (i = 1; � � � ;m), to a separate processor the calculations of

x
(k+1)
i are independent and require no communications. Note that the vector x

(k)
m+1 is required for

the calculations in each partition, and there is no violation of the strict precedence rules in the Gauss-

Seidel because it is calculated in the last step. After calculating x
(k+1)
i in the �rst m partitions, the

values of x
(k+1)
m+1 must be calculated using the lower border and last block. From the previous step,

the values of x
(k+1)
i would be available on the processors where they were calculated, so the values

of (L�1m+1;ix
(k+1)
i ) can be readily calculated in parallel. Only (matrix � vector) products, calculated

in parallel, are involved in the communications phase. Furthermore, if we assign

b̂ = bm+1 �

mX
i=1

�
L�1m+1;ix

(k+1)
i

�
; (8)
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then the formulation of x
(k+1)
m+1 looks similar to equation 3:

x̂(k+1) = x
(k+1)
m+1 = (Dm+1;m+1 + Lm+1;m+1)

�1
h
b̂�Um+1;m+1x

(k)
i
: (9)

4.2 Parallelism in Multi-Colored Matrices

The ordering imposed by the permutation matrix P, includes multi-coloring-based ordering of the

last diagonal block that produces sub-partitions with parallelism,We de�ne the sub-partitioning as:

Am+1;m+1 =

0
BBBBB@

D̂1;1 Â1;2 � � � Â1;c

Â2;1 D̂2;2 � � � Â2;c

...
. . .

...

Âc;1 Âc;2 � � � D̂c;c

1
CCCCCA
: (10)

where D̂i;i are diagonal blocks and c is the number of colors. After formingLm+1;m+1 andUm+1;m+1,

it is straight forward to prove that:

x̂(k+1) =

0
BBBBB@

x̂
(k+1)
1

x̂
(k+1)
2
...

x̂
(k+1)
c

1
CCCCCA

=

0
BBBBBB@

D̂�1
1;1

h
b̂1 �

P
j>1 Â1;jx̂

(k)
j

i

D̂�1
2;2

h
b̂2 �

P
j<2 Â2;jx̂

(k+1)
j �

P
j>2 Â2;jx̂

(k)
j

i

...

D̂�1
c;c

h
b̂c �

P
j<c Âc;j x̂

(k+1)
j

i

1
CCCCCCA
: (11)

Calculating x̂
(k+1)
i in each sub-partition of x̂(k+1) does not require values of x̂

(k+1)
i within the

sub-partition, so we can calculate the individual values within x̂
(k+1)
i in any order and distribute

these calculations to separate processors without concern for precedence. In order to maintain the

strict precedence in the Gauss-Seidel algorithm, the values of x̂k+1i calculated in each step must be

broadcast to all processors, and processing cannot proceed for any processor until it receives the

new values of x̂
(k+1)
i from all other processors.

If the block-diagonal-bordered matrix partitions Ai;i, Am+1;i, and Ai;m+1 (1 � i � m) are

assigned to the same processor, then there are no communications until x
(k+1)
m+1 is calculated. At

that time, only (matrix � vector) products are sent to the processors that hold the appropriate data

in the last diagonal block. This processor/data assignment to processors is de�ned by multi-coloring

only the last diagonal block.

Figure 2 describes the calculation steps in the parallel Gauss-Seidel for a block-diagonal-bordered

sparse matrix. This �gure depicts four diagonal blocks, and data/processor assignments (P1, P2,

P3, and P4) are listed for the data block. Figure 3 illustrates the data/processor assignments in the

last diagonal block.

5 The Preprocessing Phase

In the previous section, we developed the theoretical foundations of parallel Gauss-Seidel methods

with block-diagonal-bordered sparse matrices, and now we will discuss the procedures required
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to generate the permutation matrices, P, to produce block-diagonal-bordered/multi-colored sparse

matrices so that our parallel Gauss-Seidel algorithm is e�cient. We must reiterate that all parallelism

for our Gauss-Seidel algorithm is identi�ed from the interconnection structure of elements in the

sparse matrix during this preprocessing phase. We must order the sparse matrix in such a manner

that processor loads are balanced. The technique we have chosen for this preprocessing phase is to:

1. order the matrix into block-diagonal-bordered form while minimizing the size of the last diag-

onal block,

2. order the last diagonal block using multi-coloring techniques.

Inherent in both preprocessing steps is explicit load-balancing to determine processor/data mappings

for e�cient implementation of the Gauss-Seidel algorithm.

This preprocessing phase incurs signi�cantly more overhead than solving a single instance of the

sparse matrix; consequently, the use of this technique will be limited to problems that have static ma-

trix structures that can reuse the ordered matrix and load balanced processor assignments multiple

times in order to amortize the cost of the preprocessing phase over numerous matrix solutions.

5.1 Ordering the Matrix into Block-Bordered-Diagonal Form

We require a technique that orders irregular matrices into block-diagonal-bordered form while limit-

ing the number of coupling equations. Minimizing the number of coupling equations minimizes the

size of the last diagonal block in a block-diagonal-bordered sparse matrix, and minimizes the amount

of broadcast communications required when calculating values of x(k+1) in the last diagonal block.

The e�ects of minimizing the size of the last diagonal block are not all positive. We have found that

minimizing the size of the last block can a�ect potential parallelism if the resulting workload for cal-

culating x(k+1) in the diagonal blocks cannot be distributed uniformly throughout a multi-processor

| in which case there is load imbalance between multi-processors [9]. When determining the opti-

mal ordering for a sparse matrix, the size of the last diagonal block and the subsequent additional

communications may be traded for an ordering that yields good load balance in the highly parallel

portion of the calculations, especially when using larger numbers of processors.

The method we have chosen to order a sparse matrix into block-diagonal-bordered form is referred

to as node-tearing [13], which is a specialized form of diakoptics [5]. We have selected node-tearing

nodal analysis because this algorithm determines the natural structure in the matrix while providing

the means to minimize the number of coupling equations. With the node-tearing algorithm, we can

determine the hierarchical structure in a power system distribution grid solely from the interconnec-

tion relationships in the sparse matrices. Tearing here refers to breaking the original problem into

smaller sub-problems whose partial solutions can be combined to give the solution of the original

problem. Load balancing techniques must be used after the node tearing matrix ordering step to

uniformly distribute the processing load onto a multi-processor.

The node-tearing-based ordering algorithm has the ability to adjust the characteristics of the

ordering by varying an input parameter. Empirical data is presented later in section 9 for multi-

ple orderings to illustrate the parallel linear solver algorithm performance as a function of input

parameters to the node-tearing algorithm.
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Load balancing for node-tearing-based ordering can be performed with a simple pigeon-hole type

algorithm that uses a metric based on the number of 
oating point multiply/add operations in a

partition, instead of simply using the number of rows per partition. Load balancing examines the

number of operations when calculating x(k+1) in the matrix partitions and the number of operations

when calculating the sparse matrix vector products in preparation to solve for x(k+1) in the last

diagonal block. These metrics do not consider indexing overhead, which can be rather extensive

when working with very sparse matrices stored in an implicit form. This algorithm �nds an optimal

distribution for workload to processors, however, actual disparity in processor workload is depen-

dent on the irregular sparse matrix structure. This algorithm works best when there are minimal

disparities in the workloads for independent blocks or when there are signi�cantly more independent

blocks than processors. In this instance, the workloads in multiple small blocks can sum to equal

the workload in a single block with more computational workload.

5.2 Ordering the Last Diagonal Block

The application of diakoptic techniques yields a block-diagonal-bordered matrix form that identi�es

the basic network structure and provides parallelism for the majority of calculations within a Gauss-

Seidel iteration. However, without additional ordering, the last diagonal block would be purely

sequential, limiting the potential speedup of the algorithm in accordance with Amdahl's law. The

last diagonal block represents the interconnection structure within the equations that couple the

partitions found in the previous step. In other words, the variables in the last-diagonal block are

the interconnections within the equations that tie the entire matrix together. Graph multi-coloring

has been used for ordering this portion of the matrix | all nodes of the same color share no

interconnections, consequently, the values of x(k+1) in these rows can be calculated in any order

without violating the strict precedence rules in the Gauss-Seidel method. As a result, rows within a

color can be solved in parallel.

The multi-coloring algorithm we selected for this work is based on the saturation degree ordering

algorithm. We also require load balancing, a feature not commonly implemented within graph

multi-coloring. As part of our implementation we added a feature that equalizes the number of rows

per color to provide some basic load balancing. The graph multi-coloring technique is discussed in

greater detail in section 7.

6 Node-tearing Nodal Analysis

A detailed theoretical derivation of node-tearing is too lengthy to describe here in rigorous math-

ematical terms. We refer interested readers to references [10, 13] for proofs of the mathematics,

although a brief description of node-tearing follows.

Let the set N denote the nodes of a graph G and let E denote the edges in G, or G = (N ; E). In

summary, node-tearing is a greedy algorithm that partitions the nodes N in G into

N1 � [
m
i=1N

i
1

N2 � N �N1

(12)
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where:

N1 is the set of nodes in the mutually independent partitions

N i
1 is the set of nodes in a mutually independent partition

N2 is the set of nodes in the coupling equations

Mutual independence occurs when no edges in E i1 are connected to edges in E
j
1 8 i 6= j and i; j =

1; 2; : : : ;m. Consequently, Gi1 has no edges in common with G
j
1, 8i 6= j, and there are no edges

directly interconnecting any nodes in N i
1 and N

j
1 , 8i 6= j. Connectivity between Gi1 and G

j
1, 8i 6= j,

is indirect and must go through nodes in N2.

In addition to ordering matrices into block-diagonal-bordered form using node-tearing, we require

that the number of coupling equations, j N2 j, is minimized over all distinct partitions fN1;N2g of G

while also specifying that jN k
1 j � maxDB , k = 1; 2; : : : ;m. This constraint permits some control of

the maximum size of diagonal blocks, maxDB , which can prove quite useful when tearing a graph for

solving on multi-processors. By modifying this parameter, control can be exercised over the shape

of the ordered sparse matrix | yielding small blocks when maxDB is small and limiting the size of

the borders in a block-diagonal-bordered matrix when maxDB is large. This optimization problem

belongs to the family of NP-complete problems [13], so a simple, e�cient heuristic algorithm has

been developed based on examining the contour of the graph [13]. A contour-tableau contains three

lists:

1. the iterating sets Iki or the potential elements of a set of nodes in the sub-graph N k
i ,

2. the adjacency sets Aki or the set of nodes adjacent to, but not including any elements in the

corresponding iterating set,

3. contour numbers cki or the cardinality of the adjacency set.

As we perform node-tearing, we want to minimize the size of the adjacency set,
��Aki

��, for each

partition and subsequently this will minimize jN2j. A separate contour-tableau is developed for each

diagonal block.

The software implementation to perform node-tearing nodal analysis utilizes the basic concept

of building a contour tableau to identify independent sub-matrices and the coupling equations in

an undirected graph representing a sparse matrix. In our implementation, the search for the local

minimum of the contour number is limited to within the range (� � maxDB) � i � maxDB,

0 < � < 1. When an independent sub-matrix is found, this iterating set is moved into a set N k
1 ,

where j N k
1 j= i. Figure 4 illustrates the major steps in the node-tearing ordering algorithm. The

algorithm examines all nodes essentially once, where the size of the independent sub-blocks are

limited to maxDB . The computational complexity of this algorithm is O(maxi jA
k
i j �n), due to the

fact that all nodes in the graph must be examined, and for each element in the contour tableau |

all elements of the adjacency set must be examined for the next node. The value of maxi jA
k
i j must

be less than n, and because the graphs will be sparse, the maximum number in the adjacency set

will be substantially less than n.
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/* the function �(�) determines the nodes adjacent to � */

G  the symmetric graph representing the sparse matrix

while G 6= � do

while i � maxDB do

select �i 2 A
k
(i�1) such that j�(�i)j = min�2Ik

(i�1)
j�(�)j

Iki  I
k
(i�1) [ f�g

Aki  A
k
(i�1) [ �(�i) � f�ig

if (��maxDB) � i � maxDB
determine the location of the local minimum  

endif

endwhile

N
k
1  I

k
 

N2  N2 [A
k
 

G  G � N k
1 �N2

end while

Figure 4: The Node-Tearing Algorithm

N̂  N2 (the nodes in the sparse last diagonal block)

while N̂ 6= � do

select a node � from N̂ such that �

has the largest number of neighbors with di�erent colors

�(�) the consistent color with the fewest occurrences

N̂  N̂ � �

end while

Figure 5: The Graph Multi-Coloring Algorithm

7 Graph Coloring

Multi-coloring a graph G is an NP-complete problem that attempts to de�ne a minimumnumber of

colors for the nodes of a graph where no adjacent nodes are assigned the same color [8, 11]. A greedy

heuristic can yield an optimal ordering if the vertices are visited in the correct order. We selected the

saturation degree ordering algorithm [8], but modi�ed it to include load-balancing. The saturation

degree ordering algorithm selects a node in the graph that has the largest number of di�erently

colored neighbors. We have added the capability to the saturation degree ordering algorithm to

select the color for a node in a manner that equalizes the number of nodes with a particular color.

We simply select the consistent color with the fewest number of nodes.

We present our version of the saturation degree ordering-based graph multi-coloring algorithm

in �gure 5. The computational complexity of this algorithm is O(max�2N̂ j�Ĝ(�)j� n̂), where �Ĝ(�)

de�nes the set of nodes in Ĝ adjacent to �. The graphs encountered for coloring in this work were

very sparse, generally with no more than three nodes adjacent to any single node.
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8 Parallel Gauss-Seidel Implementation

We have implemented a parallel version of a block-diagonal-bordered sparse Gauss-Seidel algorithm

in the C programming language for the Thinking Machines CM-5 multi-computer using the Connec-

tion Machine active message layer (CMAML) remote procedure call as the basis for interprocessor

communications [14]. Signi�cant improvements in the performance of the algorithm were observed

for active messages, when compared to more traditional communications paradigms that use the

standard blocking CMMD send and CMMD receive functions in conjunction with packing data into

communications bu�ers. A signi�cant portion of the communications require each processor to send

short data bu�ers to every other processor, imposing signi�cant communications overhead due to

latency. To signi�cantly reduce communications overhead and attempt to hide communications be-

hind calculations, we implemented each portion of the algorithm using CMAML remote procedure

calls (CMAML rpc). The communications paradigm we use throughout this algorithm is to send a

double precision data value to the destination processor as soon as the value is calculated. Com-

munications in the algorithm occur at distinct time phases, making polling for the active message

handler function e�cient. An active message on the CM-5 has a four word payload, which is more

than adequate to send a double precision 
oating point value and an integer position indicator. The

use of active messages greatly simpli�ed the development and implementation of this parallel sparse

Gauss-Seidel algorithm, because there was no requirement to maintain and pack communications

bu�ers.

This implementation uses implicit data structures based on vectors of C programming language

structures to store and retrieve data e�ciently within the sparse matrix. These data structures

provide good cache coherence, because non-zero data values and column location indicators are

stored in adjacent physical memory locations. The data structure is composed of six separate

parts that implicitly store the block-diagonal-bordered sparse matrix and the last block. Figure 6

graphically illustrates the relationships within the data structure. As illustrated in the �gure, the

block-diagonal structure, the border-row structure, and the last-block-diagonal structure contain

pointers to the sparse row vectors. The second values in the two diagonal pointers are the values of

aii, while the second value in the border-row structure is the destination processor for the (vector

� vector) product from this border row used in calculating values in the last diagonal block.

Our parallel Gauss-Seidel algorithm has the following distinct sections where blocks are de�ned

in section 4:

1. solve for x(k+1) in the diagonal blocks

2. calculate b̂ = bm+1 �
Pm

i=1

�
L�1m+1;ix

(k+1)
i

�
by forming the (matrix � vector) products in

parallel

3. solve for x̂(k+1) in the last diagonal block

A pseudo-code representation of the parallel Gauss-Seidel solver is presented in �gure 7. A version of

the software is available that runs on a single processor on the CM-5 to provide empirical speed-up

data to quantify multi-processor performance. This sequential software includes the capability to

gather convergence-rate data. The parallel implementation has been developed as an instrumented
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Figure 6: The Data Structure

proof-of-concept to examine the e�ciency of each section of the code described above. The host

processor is used to gather and tabulate statistics on the multi-processor calculations. Statistics are

gathered at synchronization points, so there is no impact on total empirical measures of performance.

Empirical performance data is presented in the next section for varied numbers of processors solving

real power systems sparse load-
ow matrices.

9 Empirical Results

Overall performance of our parallel Gauss-Seidel linear solver is dependent on both the performance

of the matrix ordering in the preprocessing phase and the performance of the parallel Gauss-Seidel

implementation. Because these two components of the parallel Gauss-Seidel implementation are

inextricably related, the best way to assess the potential of this technique is to measure the speedup

performance using real power system load-
ow matrices. We �rst present speedup and e�ciency

data for three separate power systems matrices:

� Boeing-Harwell matrix BCSPWR09 | 1,723 nodes and 2,394 edges in the graph [1]

� Boeing-Harwell matrix BCSPWR10 | 5,300 nodes and 8,271 edges in the graph [1]

� EPRI matrix EPRI-6K matrix | 4,180 nodes and 5,226 edges in the graph [2]

Matrices BCSPWR09 and BCSPWR10 are from the Boeing Harwell series and represent electrical

power system networks from the Western and Eastern US respectively. The EPRI-6K matrix is

distributed with the Extended Transient-Midterm Stability Program (ETMSP) from EPRI. These

matrices were preprocessed using a sequential program that ordered the matrix, load balanced each

ordering step, and subsequently produced the implicit data structures required for the parallel block-

diagonal-bordered Gauss-Seidel linear solver. Due to the static nature of the power system grid, such

an ordering would be reused over many hours of calculations in real electrical power utility operations

load-
ow applications.

Matrix preprocessing was performed for multiple values of maxDB , the input value to the node-

tearing algorithm. Empirical performance data was collected for each of the aforementioned power
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Node Program

� 1

while � > �converge

for k = 1 to niter
/* solve for x(k+1) in the diagonal blocks */

for all rows i in blocks assigned to this processor

~xi  xi

xi  bi

for each j 2 [1; n] such that aij 6= 0

xi  xi � (aij � xj)

endfor

xi  xi=aii

endfor

/* calculate the (matrix � vector) products in the lower border */

for all rows i in the last block assigned to this processor

~xi  xi

xi  bi

endfor

for all non-zero rows i in the lower border of this block

for each j such that aij 6= 0

�  � � (aij � xj)

endfor

at processor �i =) xi  xi � � using active message rpc

endfor

/* solve for x̂(k+1) in the last diagonal block */

for all colors c

for all rows i in color c assigned to this processor

for each j 2 [1; n] such that aij 6= 0

xi  xi � (aij � xj)

endfor

xi  xi=aii

broadcast xi using active message rpc

endfor

wait until all values of xi have arrived

endfor

endfor

/* check convergence */

��  0

for all rows i assigned to this processor

��  �� + abs(~xi � xi)

endfor

� 
P
8� �� using active message rpc

endwhile

Figure 7: Parallel Gauss-Seidel
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systems matrices using 1 through 32 processors on the Thinking Machines CM-5 at the Northeast

Parallel Architectures Center at Syracuse University. The NPAC CM-5 is con�gured with all 32

nodes in a single partition, so user software was required to de�ne the number of processors used

to actually solve a linear system. Empirical data collected on the parallel Gauss-Seidel algorithm

will be presented in two ways. We �rst present speedup and e�ciency data from the three power

systems matrices. Relative speedup and e�ciency are presented using the times required to perform

four iterations and a single convergence check. Next, we provide a detailed performance analysis

using actual run times for the individual subsections of the parallel Gauss-Seidel linear solver. This

detailed performance analysis illustrates the e�cacy of the load balancing step in the preprocessing

phase, and illustrates other performance bottlenecks.

De�nition | Relative Speedup Given a single problem with a sequential algorithm running

on one processor and a concurrent algorithm running on p independent processors, relative speedup

is de�ned as

Sp �
T1

Tp

; (13)

where T1 is the time to run the sequential algorithm as a single process and Tp is the time to run

the concurrent algorithm on p processors.

De�nition | Relative E�ciency Relative e�ciency is de�ned as

Ep �
Sp

p

; (14)

where Sp is relative speedup and p is the number of processors.

9.1 Performance Analysis

As an introduction to the performance of the parallel Gauss-Seidel algorithm, we present a pair of

graphs that plot relative speedup and relative e�ciency versus the number of processors. Figure 8

plots the best speedup and e�ciency measured for each of the power systems matrices for 2, 4, 8,

16, and 32 processors. These graphs show that performance for the EPRI-6K data set is the best of

the three data sets examined. Speedup reaches a maximum of 11.6 for 32 processors and speedups

of greater than 10.0 were measured for 16 processors. This yields a relative e�ciency of 63% for 16

processors and 36% for 32 processors.

Relative speedups for the BCSPWR09 and BCSPWR10 matrices are less than for the EPRI-6K

matrix, but each has speedup in excess of 7.0 for 16 processors. The reason for reduced performance

with these matrices for larger numbers of processors is the size of the last block after ordering. For

both the BCSPWR09 and BCSPWR10 matrices, the last diagonal block requires approximately 5%

of the total calculations while the last block of the EPRI-6K matrix can be ordered so that only

1% of all calculations occur there. As the number of processors increases, communications overhead

becomes a signi�cant part of the overall processing time because x(k+1) values in the last diagonal

block must be broadcast to other processors before processing can proceed to the next color. Even

though the second ordering phase is able to three-color the last diagonal blocks, communications

overwhelms the processing time for larger numbers of processors and minimizes speedup in this

portion of the calculations. There are insu�cient parallel operations when solving for x(k+1) in the
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Figure 8: Relative Speedup and E�ciency | 2, 4, 8, 16, and 32 processors
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Figure 9: Relative Speedup and E�ciency for EPRI-6K Data | 2, 4, 8, 16, and 32 processors

diagonal blocks for these matrices to o�set the e�ect of the nearly sequential last block. The e�ect of

Amdahl's law is visible for larger numbers of processors due to the sequential nature of one portion

of the algorithm.

The BCSPWR09 matrix encounters an additional problem in that the ordering phase was unable

to e�ectively balance the workload in the portion of the software that processes all but the last block.

This matrix is the smallest examined, and there is insu�cient available parallelism in the matrix to

support 16 or more processors.

A detailed examination of relative speedup and relative e�ciency is presented in �gure 9 for

the EPRI-6K data. This �gure contains two graphs that each have a family of four curves plotting

relative speedup and relative e�ciency for each of four maximummatrix partition sizes used in the

node-tearing algorithm. The maximum partition sizes used when preprocessing this data are 128,

192, 256, and 320 nodes. The family of speedup curves for the various matrix orderings clearly

illustrates the e�ects of load imbalance for some matrix orderings. For all four matrix orderings,

speedup is nearly equal for 2 through 16 processors. However, the values for relative speedup diverge

for 32 processors.

17



1

2

4

8

16

32

64

2 4 8 16 32

M
IL

LI
S

E
C

O
N

D
S

NUMBER OF PROCESSORS

Diagonal Blocks and Lower Border

RUN TIME - 128
RUN TIME - 192
RUN TIME - 256
RUN TIME - 320

0.5

1

2

4

8

2 4 8 16 32

M
IL

LI
S

E
C

O
N

D
S

NUMBER OF PROCESSORS

Update Last Block

RUN TIME - 128
RUN TIME - 192
RUN TIME - 256
RUN TIME - 320

0.5

1

2

4

2 4 8 16 32

M
IL

LI
S

E
C

O
N

D
S

NUMBER OF PROCESSORS

Last Block

RUN TIME - 128
RUN TIME - 192
RUN TIME - 256
RUN TIME - 320

1

2

4

8

16

2 4 8 16 32

M
IL

LI
S

E
C

O
N

D
S

NUMBER OF PROCESSORS

Check Convergence

RUN TIME - 128
RUN TIME - 192
RUN TIME - 256
RUN TIME - 320

Figure 10: Timings for Algorithm Components | EPRI-6K Data | 2, 4, 8, 16, and 32 processors

We can look further into the cause of the disparity in the relative speedup values in the EPRI-6K

data by examining the performance of each of the four distinct sections of the parallel algorithm.

Figure 10 contains four graphs that each have a family of four curves that plot the processing time

in milliseconds versus the number of processors for each of four values of maxDB from the node-

tearing algorithm. The values of maxDB used when preprocessing this data are 128, 192, 256, and

320 nodes. These graphs are log-log scaled, so for perfect speedup, processing times should fall on a

straight line with decreasing slope for repeated doubling of the number of processors. One or more

curves on each of the performance graphs for the diagonal blocks and lower border, for updating the

last diagonal block, and for convergence checks illustrate nearly perfect speedup with as many as

32 processors. Unfortunately the performance for calculating values of x(k+1) in the last block does

not also have stellar parallel performance.

The performance graph for the diagonal blocks and lower border clearly illustrates the causes for

the load imbalance observed in the relative speedup graph in �gure 9. For somematrix orderings, load

balancing is not able to divide the work evenly for larger numbers of processors. This always occurs

for larger values of maxDB, the maximum size of a block when ordering a matrix. Nevertheless,

when ordering a matrix for sixteen or more processors, selecting small values of maxDB will provide

good speedup for larger numbers of processors. The performance curves presented in �gure 8, shows

the best performance observed for the four matrix orderings.

Performance of updating the last block by performing sparse (matrix� vector) products and then
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performing irregular communications yields good performance even for 32 processors. The times to

perform updates is correlated to the size of the last diagonal block, which is inversely related to

the magnitude of maxDB . The relationship between the magnitude of maxDB and the size of the

last block is intuitive, because as the magnitude of maxDB increases, multiple smaller blocks can

be incorporated into a single block. Not only can two smaller blocks be consolidated into the single

block, but in addition, any elements in the coupling equations that are unique to those network

partitions could also be moved into the larger block.

The performance graph for convergence checking illustrates that the load balancing step does

not assign equal numbers of rows to all processors. The number of rows on a processor varies as a

function of the load balancing. While the family of curves on this graph are more erratic than the

curves representing performance in diagonal blocks and the lower border and the performance of

updating the last diagonal block, performance generally is improving with near perfect parallelism

even for 32 processors.

Information on the relative performance as a function of maxDB and the number of processors

would be required when implementing this parallel algorithm in a load-
ow analysis application.

To minimize the e�ects of data movement, the application would require that the entire process to

calculate the Jacobian when solving the systems of non-linear equations consider the processor/data

assignments from the sparse linear solver. The time to solve each instance of the linear equations

generated by the Jacobian is so small that all data redistribution must be eliminated, otherwise, the

bene�ts observed from parallel processing speedup in an application will be lost.

Performance of this parallel Gauss-Seidel linear solver is dependent on the performance of the

matrix preprocessing phase. We must reiterate that all available parallelism in this work is a result

of ordering the matrix and identifying relationships in the connectivity pattern within the structure

of the matrix. Power systems load 
ow matrices are some of the most sparse irregular matrices

encountered. For the EPRI-6K data, the mode in a histogram of the number of edges per node is

only two! In other words, the most frequent number of edges at a node is only two. 84.4% of the

nodes in the EPRI-6K data have three or less edges. For the BCSPWR10 matrix, 71% of the nodes

have three or less edges. Consequently, power systems matrices pose some of the greatest challenges

to produce e�cient parallel sparse matrix algorithms.

In �gures 11 and 12, we present two orderings of the EPRI-6K data with maxDB equal to 128

and 256 nodes respectively. Non-zero entries in the matrix are represented as dots, and the matrices

are delimited by a bounding box. Each of these �gures contain three sub-�gures: the ordered sparse

matrix and two enlargements of the last block | before and after multi-coloring. Both matrices

have been partitioned into block-diagonal-bordered form and load-balanced for eight processors.

The numbers of nodes in the last diagonal blocks are 153 and 120 respectively, while the numbers

of edges in this part of the matrix are 34 and 22 respectively. The graph multi-coloring algorithm is

able to color these portions of the matrices with three and two colors respectively. These matrices

represent the adjacency structure of the network graphs, and clearly illustrate the sparsity in these

matrices.
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Figure 12: Ordered EPRI-6K Matrix | maxDB = 256
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Total Error

Iteration
P
8i abs(x

(k+1)
i � x

(k)
i ) min

8ix
(k+1)
i max

8ix
(k+1)
i

1 0.983654764216 0.000000119293 0.000478248320

2 0.000143661684 0.000000124521 0.000478321438

3 0.000000018556 0.000000124522 0.000478321442

4 0.000000000002 0.000000124522 0.000478321442

5 0.000000000000 0.000000124522 0.000478321442

Table 1: Convergence for EPRI-6K Data | maxDB = 256

9.2 Convergence Rate

Critical to the performance of an iterative linear solver is the convergence of the technique for a

given data set. We have applied our solver to sample positive de�nite matrices that have actual

power networks as the basis for the sparsity pattern, and random values for the entries. We have

examined convergence for various matrices and various matrix orderings. A sample of the measured

convergence data is presented in table 1. This table presents the total error for an iteration, and the

minimumand maximumvalues encountered that iteration. All initial values, x(0), have been de�ned

to equal 0:0. Convergence is rather rapid, and after four iterations, total error equals 2 � 10�12.

Consequently, only a few iterations are required for reasonable convergence with this procedure on

this data. We hypothesize that this good convergence rate is in part due to having good estimates

of the initial starting vector. For actual solutions of power systems load 
ows, this solver would be

used within an iterative non-linear solver, so good estimates of starting points for each solution also

will be readily available.

9.3 Comparing Communications Paradigms

Underlying the whole concept of active messages is the paradigm that the user takes the responsibility

for handling messages as they arrive at a destination. The user writes a handler function that

takes the data from a register and uses it in a calculation or assigns the data to memory. By

assigning message handling responsibilities to the user, communications overhead can be signi�cantly

reduced. The e�ect of reduced overhead can be clearly seen in this algorithm, when performance of

an active message-based algorithm is compared to performance of an algorithm with more common

blocking send and receive commands. The requirement in this algorithm to broadcast the values

of x(k+1) before the next color can proceed causes substantial amounts of communications. In the

portion of the algorithm that solves for values of x(k+1) in the last diagonal block, the amount of

communications is O(n2procs), and as the number of processors increases, the size of the messages

for conventional message passing decreases. For traditional message passing paradigms, the cost for

communications increases drastically as the number of processors increases, because each message

incurs the same latency regardless of the amount of data sent. Meanwhile, with active messages,

latency is greatly reduced because the user has the responsibility to process the message. This

increase in the number of messages can be seen in �gure 10, as the performance for solving for
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values in the last block eventually increases slightly as the number of processors increases. For an

algorithm based on a more traditional send and receive paradigm, performance quickly becomes

unacceptable in this portion of the calculations as the number of processors increases.

10 Conclusions

We have developed a parallel sparse Gauss-Seidel solver with the potential for good relative speedup

and relative e�ciencies for the very sparse, irregular matrices encountered in electrical power system

applications. Block-diagonal-bordered matrix structure o�ers promise for simpli�ed implementation

and also o�ers a simple decomposition of the problem into clearly identi�able subproblems. The

node-tearing ordering heuristic has proven to be successful in identifying the hierarchical structure

in the power systems matrices, and reducing the number of coupling equations so that the graph

multi-coloring algorithm can usually color the last block with only two or three colors. All avail-

able parallelism in our Gauss-Seidel algorithm is derived from within the actual interconnection

relationships between elements in the matrix, and identi�ed in the sparse matrix orderings. Conse-

quently, available parallelism is not unlimited. Relative speedup tends to increase nicely until either

load-balance overhead or communications overhead cause speedup to level o�.

We have shown that, depending on the matrix, relative e�ciency declines rapidly after 8 or 16

processors, limiting the utility of applying large numbers of processors to a single parallel linear

solver. Nevertheless, other dimensions exist in electrical power system applications that can be

exploited to use large numbers of processors e�ciently. While a moderate number of processors

can be e�ciently applied to a single power system simulation, multiple events can be simulated

simultaneously.
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