
Distributed Computational Electromagnetics Systems�

Gang Chengy Kenneth A. Hawicky Gerald Mortensenz Geo�rey C. Foxy

Abstract

We describe our development of a \real world" electromagnetic application on distributed

computing systems. A computational electromagnetics (CEM) simulation for radar cross-
section(RCS) modeling of full scale airborne systems has been ported to three networked

workstation cluster systems: an IBM RS/6000 cluster with Ethernet connection; a DEC

Alpha farm connected by a FDDI-based Gigaswitch; and an ATM-connected SUN IPXs
testbed. We used the ScaLAPACK LU solver from Oak Ridge National Laboratory/University

of Tennessee in our parallel implementation for solving the dense matrix which forms the

computationally intensive kernel of this application, and we have adopted BLACS as the
message passing interface in all of our code development to achieve high portability across the

three con�gurations. The performance data from this work is reported, together with timing

data from other MPP systems on which we have implemented this application including an
Intel iPSC/860 and a CM-5, and which we include for comparison.

1 Introduction

Traditional electromagnetic engineering simulations are largely limited by memory requirements, as

well as by sequential processing time. Most electromagnetic applications on high performance com-

puting systems so far implemented have been on either massively parallel processors or traditional

vector-based supercomputers [5, 6]. The advances in workstation cluster technology, represented

by clusterable IBM RS/6000 systems and Digital's Alpha farm with both high performance node

processors and large memory capacity, provides new opportunities for computational electromag-

netic applications which are both CPU time and memory intensive. Together with the emergence

of portable distributed linear algebra packages such as BLACS/ScaLAPACK and portable message

passing interfaces such as PVM and MPI, cluster-based computational electromagnetics systems

provide an attractive solution to numerical simulations in engineering electromagnetic analysis and

design with modest problem sizes. They achieve better cost/performance than the Massively Par-

allel Processors (MPP) solutions and this is especially important to real world applications where

workstation clusters are more readily accessible to engineers.

One of the major motivations for our work was to port the CEM application to multipleMPP

and distributed computing systems and to evaluate and demonstrate their capabilities. Portability,

as well as performance scalability, was among our top objectives [7]. Our use of the distributed

linear algebra packages ScaLAPACK[3, 8] and BLACS[1] in our parallel implementation allowed

us to achieve true code portability across: Intel machines (the Intel Delta, an Intel Paragon and a

Intel iPSC/860); an IBM SP-1 with either Ethernet or switch connection, and the three distributed

con�gurations described above. We focus our discussion in this paper on portability issues and

benchmarking aspects of this CEM application on cluster systems. Results of the related MPP

e�orts will be reported separately.

�This work is sponsored by Syracuse Research Corporation and the agency set forth: Plans and Programs

Directorate (Signature Technology) Wright Laboratory Air Force Material Commend (ASC) US Air Force,
Wright-Patterson AFB OH 45433-5000.

yNortheast Parallel Architectures Center, Syracuse University, Syracuse, NY 13244
zSyracuse Research Corporation, Syracuse, NY 13244

1



2 G. Cheng, K. Hawick, G. Mortensen, and G. Fox

2 The RCS Application Problem

The CEM application used in this work is a well-established CEM package from Syracuse Research

Corporation (SRC), named ParaMoM which stands for Parametric patch Method of Moments

(MoM). The most distinctive feature of the ParaMoM is its use of basis functions that conform

to parametric surfaces with curvature and thus generate accurate and stable simulation results.

ParaMoM utilizes a general parametric surface formulation. All surface integrals are performed

on the curved surface rather than on a at facet approximation as has been traditionally done. The

basis (expansion) functions are a parametric surface generalization of the well-known Rao-Witon-

Glisson functions[12]. The domains of these functions are curved three-sided surface patches which

conform exactly to the underlying global surface representation. The parametric surface patch

approach is a foundation to which a comprehensive set of capabilities have been developed and

included in ParaMoM 1.0[11]. These include: acceptance of IGES 114 and IGES 128 parametric

surfaces, at facets and IGES 110 wires; wire antenna modeling for user-de�ned loads, feed points,

and connections to surfaces; wires may radiate or scatter; E, H, and combined-�eld formulations;

up to three symmetry planes may be used to reduce memory and computation requirements for

problems with geometric symmetry; impedance-sheet formulation for treatment of resistive cards

(R-cards); graphics-based preprocessor to perform gridding and other model preparation functions

not included in a general-purpose CAD package.

3 Porting the Application

The ParaMoM code consists of �ve major consequent processing phases which have di�erent

computational requirements in terms of CPU time and memory consumption, shown in Table 1

in terms of the number of unknowns N which is the number of basic functions and is proportional

to the target surface area.

Table 1

Processing Phases of Sequential ParaMoM and Their Computational Requirements

Phase Component CPU time Memory

1 Setup O(N ) O(N )

2 Matrix �ll O(N2) O(N2)

3 RHS vector �ll O(N ) O(N )

4 Matrix factor/solve O(N3) O(N2)

5 Far-�eld computation O(N ) O(N )

The role of the setup phase is to read in the geometric target description (i.e. the parametric

surface representation along with the triangulation, material, and wire connection information) and

to precompute speci�c geometry information required by the �ll algorithm which include positions

and tangent vectors for the surface points used in matrix �ll expansion and testing integrals. We

used a block cyclic data partition so that each node precomputes evenly its piece of the geometry

arrays and broadcasts its results to the other nodes. Each node then maintains a private copy of

these arrays of the manageable size (O(N )) in its local memory.

Our algorithm design is focused on Phase 2 of �lling the impedance matrix (Z-matrix), while

ScaLAPACK LU routines are used to factor and solve the single complex dense Z-matrix in Phase

3. The major task in our implementation is to partition the computation of Z-matrix elements

amongst processors by distributing its elements amongst processors. Since the ScaLAPACK LU

solver uses a scattered square block (SSB) partition scheme, in order to avoid the communication

overhead of redistributing the Z-matrix between Phase 2 and Phase 3, we choose to use the same

partition scheme for the Z-matrix in the two phases.

The Basic Linear Algebra Communication Subprograms (BLACS) [9] is a library providing

simple, portable message-passing for matrix-based operations in parallel linear algebra programs

on distributed memory machines. It supports both point-to-point operations between processors

and collective communications on a virtual two-dimensional processor grid. ScaLAPACK is a two-



Distributed Computational Electromagnetics Systems 3

dimensional distributed memory version of the LAPACK[10] package and relies on calls to the Basic

Linear Algebra Subprograms (BLAS) for local computation, and calls to the PB-BLAS[4] for global

computation. For portability reasons, communications takes place inside the PB-BLAS through

calls to the BLACS.

We were fortunate in gaining early access to the ScaLAPACK library and adopted an early

release of the REAL variable arithmetic version in writing our COMPLEX routines. It is important

to parallelize the full applications code so as to optimize and balance the overall performance of this

application[2]. The BLACS interface also provided a suitable level of abstraction for us to implement

the \Setup" and \Far-�eld" components. The full schematic of our parallelized ParaMoM code is

shown in Figure 2.

The internal storage mechanisms of ScaLAPACK have been well described elsewhere [3],

however it is necessary to explain how the matrix and vectors involved are blocked and scattered

so as minimize the inter-node communication requirements. There are three major user tunable

parameters in BLACS/ScaLAPACK: P;Q and Nb. They represent how a two-dimentional matrix

with a block size Nb is partitioned on a virtual processor grid of P � Q. Consider a simpli�ed

example shown in Figure 1 where a vector of length 15 (can be either a single vector or all columns

in each row of a matrix) is distributed across the memory belonging to four processor nodes which

are conceptually arranged in a row (P = 1, Q = 4). If a block size Nb of the full vector length of

15 is used, all vector elements are in fact stored in the �rst processor's memory only. The opposite

extreme is if an Nb of 1 is used, then alternate elements are stored in all four processors' memories

as shown. Di�erent blocked partitions are shown for Nb of 2 and 3.

The MoM matrix �lling is well suited to distributed memory systems. Figure 3(a) gives the

sequential �lling algorithm in pseudo-Fortran code. The sequential algorithm has the following

features which are well utilized and highlighted in our Single Program Multiple Data (SPMD)

parallel algorithm.

Calculation of any Z-matrix element is completely independent of other elements in the matrix

and is only dependent on its memory allocation. This property makes it possible to perform the

Z-matrix calculations locally \in-place" on the processors on which the Z-matrix elements are stored

and the performance of the parallel algorithm solely depends on the locality of the Z-matrix partition

and not upon the networking topology of physical processors.

c loop over source patch

Do isource = 1, nfaces

c loop over �eld patch

Do i�eld = 1, nfaces

c calcul ate integration points for patch pair (i�eld,isource)

call patch-interaction(i�eld,isource)

c loop over basis functions of the source patch

Do isrcnode = 1, 3

c look up the index in pre-de�ned table

j = lookup(isource,isrcnode)

c loop over integration points of the �eld patch

Do ipnt = 1, 4

c calcul ate potential integrals for the patch pair { main routine

call pots(isource,i�eld,isrcnode)

c loop over basis functions of the �eld patch

Do idnode = 1, 3

c look up the index in pre-de�ned table

i = lookup(i�eld,idnode)

c calcul ate intermediate result

tmp = exp(i�eld,idnode,ipnt)

c accumulate the Z-matrix element where cz is the N by N Z-matrix

cz(i,j) = cz(i,j) + tmp

Enddo idnode

Enddo ipnt

Enddo isrcnode

Enddo i�eld

Enddo isource

Fig. 3(a): The Sequential Matrix Filling Algorithm

Our algorithm is strongly inuenced by the characteristics of the numbering of basis functions

among patches since the calculation for a patch pair (isource; ifield) is based on the 9 associated

basis functions (isrcnode = 1 : 3; ifldnode = 1 : 3) and is eventually �lled into the Z-matrix as





Distributed Computational Electromagnetics Systems 5

shown in Figure 3(b), where j; l are column-index related to the source path (isource) and i; k

row-index related to the �eld patch (ifield). From Figure 3(b), it is clear that a column-major

blocked partition of the Z-matrix achieves the best locality for a patch pair. It guarantees at least 6

Z-matrix elements mapped to a processor and the maximumnumber of processors used to calculate

the total 9 elements is 2. In an average case when a general SSB partition is used, the maximum

number of processors for a patch pair is 4. Compared to the ideal partition in which all the 9

elements are mapped to a single processor, the only overhead for the column-major block partition

is one redundant computation of the routine \patch-interaction" which takes less than 20% of the

total computation for a patch pair.

The locality issue examined above is for a single patch pair. We must also investigate the load-

balance issue for all patch pairs to see if the overall Z-matrix computation is evenly distributed to all

processors. Fortunately, the numerical model ensures that statistically the Z-matrix computation

of all patch pairs is evenly distributed. Actually, for all Z-matrix elements except those related

to boundary patches, an element's �nal value is accumulated from four patch pairs and we know

a patch pair contributes to nine di�erent Z-matrix elements in most cases. Our measurements in

testing cases also proved this is true.

It becomes clear that a larger Z-matrix size gives better data locality, and a larger machine size

makes a relatively better balanced load of the Z-matrix amongst processors. Therefore, the parallel

�lling algorithm will guarantee scalable performance in terms of machine size and problem size.

Our complete parallel implementation includes: (1) In the setup phase, parallel �le input for

target geometry data and a parallel algorithm for precomputation in which only global broadcast

operations are used; (2) An embarrassingly parallel algorithm for Z-matrix �lling which requires

some redundant calculation of patch-patch interactions but no inter-node communication; (3) A

similar embarrassingly parallel algorithm for RHS excitation vectors �lling which has no inter-node

communication; (4) A COMPLEX parallel ScaLAPACK LU solver was implemented and adopted;

and (5) A parallel algorithm for the far-�eld calculation which has only global summations.

4 Performance Comparison and Discussion

We report in this section timings for the Z-matrix �lling and LU factorization parts which take more

than 95% of the total execution time. The �lling part is almost 50% dominated by MFLOPS and

50% by memory access, while the LU part is more than 90% dominated by MFLOPS. Elapsed time

for �lling and both elapse time and MFLOPS for LU are listed.

The DEC Alpha farm consists of 8 Alpha model 4000 workstations running at 133 MHz and

with 64 MB memory per processor, interconnected by a dedicated Gigaswitch which provides full

FDDI bandwidth and low latency switching to every processor in the farm. The Ethernet-based

IBM cluster has 8 IBM RS/6000 model 370 processors running at 62.5 MHz each, and with 64 MB

memory per processor. The ATM link between two SUN IPXs operates at a peak bandwidth 155

Mbps(OC3c). Each SUN IPX has 32 MB memory and runs at 40 MHz.

Di�erent modest problem sizes are used to show the performance comparison and scalability.

For comparison purpose, timings of this application on an Intel iPSC/860 (40 MHz, 16 MB/node)

and a CM5 (25 MHz, 16 MB/node) are also listed. The Intel implementation, with BLACS linked

to its NX version, has exactly the same source code as that on the clustered systems, while the

CM5 implementation used a completely di�erent approach in which the �ll part was written in a

message-passing CMMD program and the LU part was a data parallel CMFortran program using

a vendor-supplied CMSSL LU solver to utilize CM5's high-performance vector units. The CM-5

implementation used out-of-core DataVault (or SDA) disk memory to hold and transfer the Z-matrix

between the two di�erent components. For some problem sizes, more processors have to be used

on the iPSC/860 and CM-5 due to the memory requirement. Notice that a block size Nb = N=Np,

P = 1 and Q = Np are used for all the tests reported here, where Np is the total number of

processors used, N the matrix size and P � Q the virtual processor grid. As discussed in Section

3, this partition is optimized for the matrix �ll algorithm on all the platform and good for the LU

part on the three distributed systems, but it is not optimized for the LU solver on the iPSC/860.

Table 2 gives an overall breakup of timings which indicates the two dominated components



6 G. Cheng, K. Hawick, G. Mortensen, and G. Fox

and relatively balanced results. In Table 3-4, the clustered systems show compatible or even better

performance than the MPP platforms with comparable number of processors, although the LU part

is poorer, limited by the networking bandwidth and high latency of message-passing protocols on

the cluster systems. The LU performance on the ATM-based con�guration (Table 4-5) is extremely

poor and non-scalable with the problem size. There may be two reasons for this: (1) TCP/IP is used

instead of ATM's own protocol, so that high latency compounded by that of PVM dominate the

overall communications performance; (2) no optimized (CPU chip-speci�c) BLAS library is utilized.

The scalability of �ll and LU parts are shown in Figure 4-5.

ScaLAPACK can make use of any system supplied BLAS routines that will help performance

optimization at the node level. This is important since many of the recent parallel architectures

employ vector operations at the node level, and processors such as the i860 employed by the Intel

iPSC/860 is well endowed with vector registers and can carry out BLAS operations very e�ciently.

Furthermore, even on the super-scalar nodes used by machines like the IBM RS/6000 cluster, the

BLAS operations provide a valuable level of abstraction for node level optimization.

5 Conclusion

Our work shows that both high portability and performance can be achieved in electromagnetics

applications on distributed system by adopting a portable parallel linear algebra package such

as BLACS/ScaLAPACK and minimizing the use of communication primitives. The BLACS in

particular we found to be invaluable since it allowed us to design a degree of software portability

into the MoM application code that would otherwise have been impossible.

Finally, we note the suitability of our parallel application for benchmarking purposes based

upon its distinct but well characterised computational and memory access proprties.

Acknowledgements It is a pleasure to thank: J. Choi, J. J. Dongarra, A.Petitet and

R.C.Whaley at UTK/ORNL for early access to ScaLAPACK/BLACS/PB-BLAS and for help and

advice in employing it; X. Shen at NPAC for the CM5 implementation; and C. Cha and J. Lauer

at SRC for useful discussions.

References

[1] E. Anderson, A. Benzoni, J. J. Dongarra, et al, Basic Linear Algebra Communication Subprograms,
Proc. of the 6th Distributed Memory Computing Conference, 1991.

[2] G. Cheng, G.C. Fox, and K. A. Hawick, A Scaleable Paradigm for E�ectively-Dense Matrix Formulated

Applications, Proc. of the European Conference on High-Performance Computing and Networking,
Munich, Germany, 1994.

[3] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker, Scalapack: A scalable linear algebra library for

distributed memory concurrent computers, Proc. of the 4th Symposium on the Frontiers of Massively
Parallel Computation, pp. 120-127, 1992.

[4] J. Choi, J. J. Dongarra, and D. W. Walker, PB-BLAS: A Set of Parallel Block Basic Linear Algebra

Subprograms, Proc. of the 1994 Scalable High Performance Computing Conference, May, 1994.
[5] T. Cwik, J. Patterson, D. Scott, "Electromagnetic Scattering Calculations on the Intel Touchstone

Delta," Proc. of Supercomputing `92, IEEE Press, 1992, pp. 538-542.

[6] T. Cwik and J. Patterson (Eds.) Progress in Electromagnetic Research: Computational Electromag-
netics and Supercomputer Architecture, EMW Publishing, Cambridge, MA, 1993.

[7] Development and Implementation of Computational Electromagnetics Techniques on Massively Parallel

Architectures, Vol. 1-5, �nal project reports, SRC/NPAC, Syracuse, NY, 1994.
[8] J. J. Dongarra, R. A. van de Geijn and D. W. Walker, A look at scalable dense linear algebra libraries,

Proc. of the Scalable High-Performance Computing Conference, pp. 372-379, 1992.

[9] J. J. Dongarra, R. A. van de Geijn and R. Clint Whaley, A Users Guide to the BLACS, Technical

Report, ORNL/UTK, November 1993.

[10] LAPACK Users' Guide, E.Anderson, Z.Bai, C.Bischof, J.Demmel, J.Dongarra, J. Du Croz,

A.Greenbaum, S.Hammarling, A.McKenney, S.Ostrouchov and D.Sorensen, SIAM, 1992.
[11] Parametric Method of Moments (ParaMoM) RCS Prediction Packages, Version 1.0, User's Manual,

Syracuse Research Corporation, TD92-1321, October, 1992.

[12] S.M. Rao, Electromagnetic Scattering and Radiation of Arbitrarily-Shaped Surfaces by Triangular Patch
Modeling, PhD Dissertation, University of Mississippi, August 1980.



Distributed Computational Electromagnetics Systems 7

Table 2

Timing Comparisons for N = 4889 (in second)

Platform Np Fill LU LU(mop) Setup RHS+Field Total

Alpha(FDDI) 8 1420.0 1119.9 295.5 12.3 18.0 2570.2

IBM RS(Ethernet) 8 1500.7 1804.7 183.4 51.4 28.2 3385.0

Intel iPSC/860 64 525.6 280.9 1178.8 45.4 53.0 904.9

CM-5 32 3295.2 170.7 1938.8 21.1 4.3 3491.3

Table 3

Timing Comparisons for N = 3060 (in second)

Platform Np Fill LU LU

(mop)

Alpha(FDDI) 8 450.4 713.5 91.6

IBM RS(Ethernet) 8 495.1 1210.3 54.0

Intel iPSC/860 16 830.9 175.6 372.1

CM-5 32 1207.0 79.5 821.9

Table 4

Timing Comparisons for N = 1504 (in second)

Platform Np Fill LU LU

(mop)

Alpha(FDDI) 8 114.9 76.2 110.5

IBM RS(Ethernet) 8 127.1 131.8 63.9

Intel iPSC/860 8 478.6 61.5 136.9

CM-5 32 358.9 11.0 824.3

SUN(ATM) 2 2087.4 1941.4 4.3

Alpha(FDDI) 2 411.0 278.6 30.2

IBM RS(Ethernet) 2 475.6 262.0 32.1

Intel iPSC/860 2 1950.7 93.9 89.7

Table 5

Timings of Di�erent N on 2 SUN

IPXs Interconnected by an ATM Link

N Fill LU LU

(mop)

1504 2087.4 1941.4 4.3

988 981.1 560.6 4.3

672 449.3 176.4 4.5

468 229.2 60.7 4.3

368 147.8 29.9 4.1

187 45.4 4.0 4.1


