
NPAC Technical Report SCCS 638, Paper 95-1752, 12th AIAA CFD Conference.

CFD ALGORITHMS IN HIGH PERFORMANCE

FORTRAN

K.A.Hawick,� E.A.Bogucz,y A.T.Degani,z G.C.Fox x G.Robinson,{

Northeast Parallel Architectures Center,

111 College Place, Syracuse, NY 13244-4100 k

Abstract

We evaluate the High-Performance Fortran (HPF) lan-

guage for expressing and implementing algorithms for

Computational Fluid Dynamics (CFD) applications on

high performance computing systems. In particular

we discuss: implicit methods such as the ADI algo-

rithm, full-matrix methods such as the panel method,

and sparse matrix methods such as conjugate gradi-

ent. We focus on regular meshes, since these can be

e�ciently represented by the existing HPF de�nition.

The codes discussed are available on the World Wide

Web at http://www.npac.syr.edu/hpfa/ alongwith

other educational and discussion material related to ap-

plications in HPF.

1. Introduction

Successful implementations of envisioned multidisci-

plinary analysis and design for large-scale aerospace sys-

tems require High Performance Computing and Com-

munications (HPCC) technology to provide faster com-

putation speeds and larger memory. HPCC is already

important for rapid and cost-e�ective execution of sim-

ulation codes in individual disciplines and is even more

necessary for the simultaneous execution of the various

components of multidiscipline design codes such as com-

putational uid dynamics (CFD), computational elec-

tromagnetics (CEM)1, thermodynamics and structural

models.

�Senior Research Scientist; HPF Applications Project Leader;

Member, AIAA.
yAssociate Director; Associate Professor; Associate Chairman,

Department of Mechanical, Aerospace and Manufacturing Engi-

neering, Syracuse University. Member, AIAA.
zAlex G. Nason Research Fellow, Member, AIAA.
xDirector; Professor, Computer Science and Physics, Syracuse

University; Member, AIAA.
{Research Scientist
kThis work sponsored, in part, by ARPA
0Copyright c1995 by A. T. Degani. Published by the

American Institute of Aeronautics and Astronautics, Inc. with

permission.

Although parallel and distributed machines have

shown the promise of ful�lling this objective, the

potential of these machines for running large-scale

production-oriented CFD codes has not been fully ex-

ploited yet. It is expected that such computations will

be carried out over a broad range of hardware platforms

thus necessitating the use of a programming language

that provides portability, ease of maintainance for codes

as well as computational e�ciency. Until recently, the

unavailability of such a language has hindered any com-

prehensive move toward porting codes frommainframes

and traditional vector computers to parallel and dis-

tributed computing systems.

High Performance Fortran (HPF)2 is a language def-

inition agreed upon in 1993, and being widely adopted

by systems suppliers as a mechanism for users to ex-

ploit parallel computation through the data-parallel

programming model.

HPF evolved from the experimental Fortran-D

system3 as a collection of extensions to the Fortran 90

language standard4. We do not discuss the details of

the HPF language here as they are well documented

elsewhere5, but simply note that the central tenet of

HPF and data-parallel programming is that program

data is distributed amongst the processors' memories

in such a way that the \owner computes" rule allows

the maximum computation to communications ratio.

Language constructs and embedded compiler directives

allow the programmer to express to the compiler ad-

ditional information about how to produce code that

maps well to the available parallel or distributed archi-

tecture. In this manner, the code runs fast and can

make full use of the larger (distributed) memory.

We have already conducted a preliminary study of

the general suitability of the HPF language for CFD6

using experimental HPF compilation systems developed

at Syracuse and Rice, and with the growing availability

of HPF compilers on platforms such as Digital's Alpha-

farm we are able to describe speci�c coding issues. Un-

fortunately, we are unable to report performance timing

�gures since we are working with an early release of a

1

American Institute of Aeronautics and Astronautics

proprietary HPF compiler.

To illustrate the main ideas of data distribution and

communication in an HPF code, we implement the

ADI algorithm and demonstrate how conicts between

the optimal data decomposition and the computational

structure of the algorithm may be resolved. Full ma-

trix algorithms can also be implemented in HPF, and

we illustrate these ideas with a panel method code.

Sparse matrix methods such as the conjugate gradient

method are not trivial to implement e�ciently in HPF

at present. The di�culty is an algorithmic one rather

than a weakness of the HPF language itself. We demon-

strate this idea with a conjugate gradient code, where

the resulting sparse matrix can be solved iteratively, re-

ducing the linear algebra component to essentially one

of matrix-vector multiplies. Practical implementations

for large problems require the matrix to be stored as

a sparse system, and the resulting indexing into the

packed storage scheme is not simple to implement in a

scalably e�cient manner.

For the purposes of carrying out multi-disciplinary

simulations which include CFD, it is generally of prime

importance to achieve a given level of numerical ac-

curacy for a given size of system in the shortest pos-

sible time. Consequently, there is a tradeo� between

rapidly converging numerical algorithms that are ine�-

cient to implement on parallel and distributed systems,

and more slowly converging and perhaps less numeri-

cally \interesting" algorithms that can be implemented

very e�ciently7. We illustrate these ideas in the imple-

mentation of the algorithms considered here.

2. Alternate Direction Implicit

The Alternate Direction Implicit (ADI) method is

an iterative technique commonly used to solve time-

dependent nonlinear set of equations. However, in order

to highlight the salient algorithmic features of the ADI

implementation in HPF, we consider the simple two-

dimensional Poisson equation for illustrative purposes.

Let

r2 = f on
 = (0; 1)� (0; 1); (1)

 = g on @
; (2)

where, for simplicity, we assume Dirichlet boundary

conditions on . The domain
 is discretized intoNx+1

and Ny+1 equal intervals along the x and y directions,

respectively, and the grid indices vary as 0 � i � Nx+1

and 0 � j � Ny + 1. A �nite-di�erence discretization

of equation 1 yields(
�2
x

�x2
+

�2
y

�y2

)
 = f; (3)

where � is the central-di�erence operator. Denoting �2
as the averaging operator over twice the mesh interval,

the central di�erence operator, �, in terms of �2 is given

by �2 = 2(�1 + �2). This identity may be used to

express equation 3 in two alternative ways, viz.(
�

2

�x2
+

�2
y

�y2

)
 = f �

2�2x

�x2
 ; (4)

�
�2
x

�x2
�

2

�y2

�
 = f �

2�2y

�y2
 : (5)

If we restrict our attention to a second-order accurate

formulation, then, for each i, 1 � i � Nx, equation 4 de-

�nes a tridiagonal system of equations subject to Dirich-

let boundary conditions at j = 0 and j = Ny + 1. In

the x-sweep of the ADI algorithm, i is varied from 1 to

Nx and at each i location, equation 4 is solved to obtain

updated values of for all j. Subsequent to the comple-

tion of the x-sweep, a y-sweep is initiated by varying j

from 1 to Ny, but now, the tridiagonal system in equa-

tion 5 is solved subject to Dirichlet boundary conditions

at i = 0 and i = Nx + 1. An x-sweep followed by a y-

sweep completes one ADI iteration. Figure 1 shows the

important code fragments for the sequential implemen-

tation of the ADI method written in FORTRAN 90.

The tridiagonal coe�cient matrix along with the right-

hand side of equations 4 and 5 are evaluated in the array

C(1:4,:). This array is then passed to the subroutine

THOMAS which uses the well-known Thomas algorithm

to solve the tridiagonal system of equations. The vari-

ables BCLFT, BCRHT, BCBOT and BCTOP are the Dirich-

let conditions on the four sides of the boundary and are

assumed constant. The coe�cient matrix for the Pois-

son equation is constant and need not be formed every

iteration; however, for nonlinear problems, the coe�-

cient matrix must be evaluated every iteration and the

code structure in �gure 1 reects this general situation.

Note that in both the x- and y-sweeps, the updated val-

ues of are used immediately in forming the tridiagonal

system of equations at the next station.

Prior to discussing the ADI implementation in HPF,

we �rst address the broader issue of data-parallel ex-

ecution and data dependency. To this end, consider

the evaluation of the right-hand side C(4,:) in the x-

sweep. The presence of PSI(I-1,1:NY) within the DO

loop causes a data dependency which prohibits data-

parallel execution. For nonlinear problems, the evalu-

ation of the coe�cient matrix may also introduce data

dependency. A similar argument also holds for the y-

sweep. Clearly, the sequential code in �gure 1 must

be modi�ed to enable data-parallel execution, and the

simplest alternative is to form all the coe�cient matri-

ces �rst before solving any of the tridiagonal system of

equations. This modi�cation is shown in the code frag-

ment in �gure 2. In e�ect, the data dependency shown

2

American Institute of Aeronautics and Astronautics

PROGRAM ADI_SEQUENTIAL

... declarations, interfaces and initializations ...

DO ITER = 1,ITERMAX ! begin iteration loop

DO I = 1,NX !x sweep

C(1,1:NY) = DY2INV

C(2,1:NY) = -2.0_FPNUM*(DX2INV+DY2INV)

C(3,1:NY) = DY2INV

C(4,1:NY) = F(I,1:NY) - &

DX2INV*(PSI(I+1,1:NY)+PSI(I-1,1:NY))

CALL THOMAS (NY,C,BCBOT,BCTOP,PSI(I,0:NY+1))

END DO

DO J = 1,NY !y sweep

C(1,1:NX) = DX2INV

C(2,1:NX) = -2.0_FPNUM*(DX2INV+DY2INV)

C(3,1:NX) = DX2INV

C(4,1:NX) = F(1:NX,J) - &

DY2INV*(PSI(1:NX,J+1)+PSI(1:NX,J-1))

CALL THOMAS (NX,C,BCLFT,BCRHT,PSI(0:NX+1,J))

END DO

... check convergence ...

END DO

END

SUBROUTINE THOMAS (NK,C,Z0,ZN,Z)

... declarations ...

D(1,0) = 0.0

D(2,0) = Z0

DO K=1,NK

D(1,K) = -C(1,K)/(C(2,K) + C(3,K)*D(1,K-1))

D(2,K) = (C(4,K)-C(3,K)*D(2,K-1))/ &

(C(2,K) + C(3,K)*D(1,K-1))

END DO

Z(NK+1) = ZN

DO K=NK,1,-1

Z(K) = D(1,K)*Z(K+1) + D(2,K)

END DO

Z(0) = Z0

RETURN

END

Figure 1: Sequential ADI solver for the two-dimensional

Poisson equation

within the DO loops in �gure 1 is removed by decom-

posing each DO loop into two: (i) in the �rst loop, the

coe�cient matrix is formed using the values of PSI from

the previous sweep, and (ii) in the second loop, which

is not shown in �gure 2, a set of tridiagonal system of

equations are solved. It may be noted that C needs

to be promoted to a three-dimensional array which in-

creases memory requirements | a common feature of

data-parallel constructs. Although data-parallel execu-

tion has been enabled by the modi�cations shown in

�gure 2, it should be noted that the convergence char-

acteristics of the ADI algorithm have also been altered

and this issue is discussed subsequently.

An important aspect of writing code in HPF is deter-

mining the optimal data distribution among the proces-

sors. Consider the thomas algorithm in �gure 1. The

two loops in K correspond to forward and backward sub-

stitution and use recursive relationships which necessar-

DO I = 1,NX !x sweep

C(1,I,1:NY) = DY2INV

C(2,I,1:NY) = -2.0_FPNUM*(DX2INV+DY2INV)

C(3,I,1:NY) = DY2INV

C(4,I,1:NY) = F(I,1:NY) - &

DX2INV*(PSI(I+1,1:NY)+PSI(I-1,1:NY))

END DO

... solve a set of tridiagonal system of equations

DO J = 1,NY !y sweep

C(1,J,1:NX) = DX2INV

C(2,J,1:NX) = -2.0_FPNUM*(DX2INV+DY2INV)

C(3,J,1:NX) = DX2INV

C(4,J,1:NX) = F(1:NX,J) - &

DY2INV*(PSI(1:NX,J+1)+PSI(1:NX,J-1))

END DO

... solve a set of tridiagonal system of equations

Figure 2: Modi�cation of x- and y-sweeps to enable

data-parallel execution

ily introduce data dependency. On the other hand, if

the coe�cient matrix and the right-hand sides are eval-

uated as suggested in �gure 2, the resulting set of the

tridiagonal system of equations may be solved in any

order. Thus, the order of execution in the x-sweep is

independent of I, and, for the y-sweep, is independent

of J. It then follows that the optimal data distribution

for the x- and y-sweeps is as shown in �gure 3 where,

for illustrative purposes, a machine with four processors

is assumed. The ADI method is a simple example that

serves to illustrate that the optimal data distribution

for e�cient execution is, in general, di�erent for various

sections of the code. One possible solution to this prob-

lem is to redistribute the data back and forth between

the two layouts shown in �gure 3, and this is considered

next in the implementation of the ADI method in HPF.

(a) x-sweep (b) y-sweep

P0

P1

P2

P3

P0 P1 P2 P3

Figure 3: Optimal data distribution for the x- and y-

sweeps of the ADI method.

Figure 4 shows a fragment of the HPF code, where

the directives are speci�ed by `!HPF$'. The processors P

are arranged in a one-dimensional array and the num-

ber of processors, NUMPROCS, is speci�ed in a module

3

American Institute of Aeronautics and Astronautics

PROGRAM ADI_DATA_PARALLEL_HPF

! this version is valid only for NX=NY

INTEGER :: NMAX = MAX(NX,NY)

... declarations, interfaces and initializations ...

!HPF$ PROCESSORS P(NUMPROCS)

!HPF$ TEMPLATE TEMPPSI(0:NMAX+1,0:NMAX+1)

!HPF$ TEMPLATE TEMPC(4,0:NMAX+1,0:NMAX+1)

!HPF$ DISTRIBUTE TEMPPSI(BLOCK,*)

!HPF$ DISTRIBUTE TEMPC(*,BLOCK,*)

!HPF$ ALIGN with TEMPPSI :: PSI,F,FT

!HPF$ ALIGN with TEMPC :: C

FT = TRANSPOSE(F) !transpose F and store in FT

DO ITER = 1,ITERMAX ! begin iteration loop

DO I = 1,NX !x sweep

C(1,I,1:NY) = DY2INV

C(2,I,1:NY) = -2.0_FPNUM*(DX2INV+DY2INV)

C(3,I,1:NY) = DY2INV

C(4,I,1:NY) = F(I,1:NY) - &

DX2INV*(PSI(I+1,1:NY)+PSI(I-1,1:NY))

END DO

CALL THOMAS (NX,NY,C,BCBOT,BCTOP,PSI)

PSI = TRANSPOSE(PSI) !transpose after x-sweep

DO J = 1,NY !y sweep

C(1,J,1:NX) = DX2INV

C(2,J,1:NX) = -2.0_FPNUM*(DX2INV+DY2INV)

C(3,J,1:NX) = DX2INV

C(4,J,1:NX) = FT(J,1:NX) - &

DY2INV*(PSI(J+1,1:NX)+PSI(J-1,1:NX))

END DO

CALL THOMAS (NY,NX,C,BCLFT,BCRHT,PSI)

PSI = TRANSPOSE(PSI) !transpose after y-sweep

... check convergence ...

END DO

END

Figure 4: ADI implementation in HPF

(not shown). Two templates, TEMPPSI and TEMPC are

de�ned and distributed to conform with the data layout

in �gure 3(a). The asterisk indicates that the data ele-

ments of that dimension are all mapped onto the same

processor. The arrays PSI, F and C are then ALIGNed

with the appropriate templates.

The data redistribution required between two suc-

cessive alternate direction sweeps may be best accom-

plished by the HPF directive REDISTRIBUTE. One of the

main objective in undertaking the present study was

to write HPF codes which compiled and executed us-

ing current state-of-the-art compilers. Unfortunately,

at present, the REDISTRIBUTE directive has not been im-

plemented in the compiler used here, and a less appeal-

ing alternative, viz. the intrinsic function TRANSPOSE

was utilized. In this case, modi�cations are required in

the code shown in �gure 4 to treat situations in which

Nx 6= Ny . In light of the fact that such changes are

not necessary with the HPF directive REDISTRIBUTE,

we restrict our attention henceforth to the case where

Nx = Ny.

The x-sweep is immediately followed by a TRANSPOSE

of PSI. In this fashion, the distribution of the transpose

PSI(J,I) according to the data layout in �gure 3(a) is

equivalent to the distribution of PSI(I,J) in �gure 3(b).

Thus the stage is set for the data-parallel execution of

the y-sweep. In comparing the DO loop in the y-sweep

in �gures 2 and 4, note that the arrays on the right-

hand side in the HPF implementation are transposes

of those in shown in �gure 2. The forcing function of

the Poisson equation, represented by the array F, needs

to be transposed only once, and, in the implementation

here, the transpose is stored in the array FT. Note that

in both the x- and y-sweeps, communication is required

along the processor boundaries in order to evaluate the

right-hand side in C(4,:,:). Finally, the subroutine

THOMAS (not shown) is modi�ed to include an outer DO

loop which steps along the direction of the sweep.

We now return to the issue of comparing the conver-

gence characteristics of the data-parallel and sequential

implementations. Since the former does not use the up-

dated values within a sweep, it may be expected that its

convergence rate is inferior to that of the latter. Indeed,

for Nx = Ny and the speci�c equation considered here,

it may be con�rmed that the data-parallel implemen-

tation requires twice as many iterations as the sequen-

tial algorithm. The degradation in convergence rate,

however, will generally depend on the equation being

solved. We now seek to modify the data-parallel imple-

mentation to improve the convergence rate by incorpo-

rating the oft-used `two-color' scheme. This method is

based on the observation that in the x-sweep, the solu-

tion PSI(I,1:NY) for odd (even) I depends only on the

values of PSI at the adjacent even (odd) I locations.

Thus, if I is restricted to be either odd or even, the

solution at these I locations may be executed in data-

parallel mode. In this manner, the updated values at

the odd locations are used immediately to evaluate the

solution at the even locations and vice-versa. A simi-

lar scheme may also be adopted for the y-sweep. The

modi�ed x- and y-sweeps are shown in �gure 5. With

the above modi�cation, the increase in the number of

iterations to obtain a converged solution reduces from

a factor of 2 for the version shown in �gure 4 to 4=3.

Moreover, this modi�cation does not introduce any ad-

ditional communication or other overhead. An added

bene�t of this implementation is that with some addi-

tional book-keeping, the storage requirements for C and

D may be reduced by half.

Additional tuning of the ADI implementation in HPF

is possible. One alternative is to execute the x- and

y-sweeps m times before redistributing the data. Al-

4

American Institute of Aeronautics and Astronautics

....

DO ICOLOR = 0,1

DO I = 1+ICOLOR,NX,2 !x sweep

C(1,I,1:NY) = DY2INV

C(2,I,1:NY) = -2.0_FPNUM*(DX2INV+DY2INV)

C(3,I,1:NY) = DY2INV

C(4,I,1:NY) = F(I,1:NY) - &

DX2INV*(PSI(I+1,1:NY)+PSI(I-1,1:NY))

END DO

CALL THOMAS (ICOLOR,NX,NY,C,BCBOT,BCTOP,PSI)

END DO

....

DO ICOLOR = 0,1

DO J = 1+ICOLOR,NY,2 !y sweep

C(1,J,1:NX) = DX2INV

C(2,J,1:NX) = -2.0_FPNUM*(DX2INV+DY2INV)

C(3,J,1:NX) = DX2INV

C(4,J,1:NX) = FT(J,1:NX) - &

DY2INV*(PSI(J+1,1:NX)+PSI(J-1,1:NX))

END DO

CALL THOMAS (ICOLOR,NY,NX,C,BCLFT,BCRHT,PSI)

END DO

...

Figure 5: Modi�cation of x- and y-sweeps to enable

data-parallel execution

though the convergence rate will degrade with increas-

ing m, the cost of the overhead in redistributing data

is amortized over a larger number of sweeps. The opti-

mum value of m, which results in a converged solution

in the minimum wall clock time, will depend on the

equation being solved and the hardware and software

characteristics of the machine on which the code is ex-

ecuted.

3. Panel Methods

Panel methods are e�ectively boundary element meth-

ods for Computational Fluid Dynamics problems.

These methods employ the surface of the body as the

computational domain rather than the entire ow re-

gion in which the body is immersed. This is not only

computationally more e�cient than a �nite-di�erence

method, for example, but it also allows more compli-

cated body shapes to be studied that otherwise may

not be tractable if the ow domain is discretized by a

regular mesh.

Consider �gure 6 which shows panels around an el-

lipse in a uniform incident velocity ow. Each k'th panel

is centred around a control point at ~rk and has a source

density wk. If the body is immersed in a uniform stream

of velocity Uinf parallel to the x-axis, then the distri-

bution of N source panels produces a potential given

by8

�(~rk) = U0xk +
1

2�

NX
j=1

wj

Z
ln ~jrj

k;j
dsj ; (6)

U

x

y

inf

wk

r jk x

ni
wj

Figure 6: Flying ellipse

where ~rk = (xk; yk) is the position of each panel's con-

trol point, ~jrj
k;j

is the distance between two panels, and

wk

R
dsk is the source strength of the k'th panel. The

source densities are determined by applying the bound-

ary condition of zero normal ow through the body sur-

face, i.e.,

vn =
@�

@nk
= 0: (7)

This generates a system of linear equations A � ~w = ~b

with each component of A given by

Ak;j =
�k;j

2
+

1

2�

Z
@

@nk
(ln rk;j)dsj ; (8)

and the right hand side vector is simply bk = U0 sin�k,

where �k is the angle between the panel and the x-axis.

Once the vector of source densities is determined, the

velocity �eld may be obtained from the potential given

in equation 6. Although the calculation of the inviscid

ow �eld past a body using the panel method consists

of several steps, we consider here only the numerically

intensive solution procedure for the dense matrix equa-

tion A � ~w = ~b.

Consider �rst the actions being performed upon the

matrix and the right-hand side as part of the LU so-

lution procedure. The relative advantages and dis-

advantages of two possible arrangements, viz. (i)
row distribution, and (ii) column distribution are dis-

cussed below. In the row distribution, the matrix rows

are distributed between processors either according to

BLOCK or CYCLIC structures as seen in �gure 7. The

determination of the pivot requires a distributed global

test and the subsequent broadcast of the results. The

pivot row is then exchanged and broadcasted so that

it can be used in the elimination process. Note that

if the rows are distributed in BLOCK structure, the

load-balance is poor since the elimination of the �nal

rows involves only a subset of the available processors

5

American Institute of Aeronautics and Astronautics

as indicated in �gure 7. Despite reduced broadcast com-

munication cost due to the reduction in the number of

processors involved in the computation and the reduced

computational load due to the shortening of the rows,

there is still a signi�cant load imbalance. This can be

improved by using a CYCLIC distribution where alter-

nate rows are on di�erent processors. Here the compu-

tation is load-balanced until the number of rows remain-

ing is less than the number of processors. A CYCLIC

distribution also ensures that at each stage, the compu-

tation is load-balanced �nely in contrast to the BLOCK

distribution where each processor is expected to per-

form the elimination operation until the current row is

part of the allocated set.

BLOCK CYCLIC

Figure 7: Row distribution

In the column distribution, the matrix columns are

distributed as in �gure 8. The global test to determine

the pivot location is restricted to a single processor but

the results must be broadcasted. The elimination pro-

cess requires only the broadcast of a multiplying factor

since all data for the elimination occur within columns.

The same arguments regarding load-balancing and the

relative merits of BLOCK and CYCLIC distributions

apply here also and are illustrated in �gure 8.

BLOCK CYCLIC

Figure 8: Column distribution

The di�erence between row and column distributions

can be summarized as follows. The row distribution fea-

tures a distributed global test for the pivot, whereas, for

column distribution, the global test is poorly balanced

but also requires no communication. The row decompo-

sition requires the broadcast of a partial matrix row in

comparison to the broadcast of a multiplication factor

in the column decomposition. The choice between these

di�erent structures may depend on the typical matrix

size, number of processors and relative communication

costs.

The forward elimination stage of the solver in the

Fortran 77 parent code is serial in nature as indicated

in �gure 9. Here the right-hand side is mapped accord-

ing to the elimination stored within the lookup tables.

The parallelism of the actual multiplication can be ex-

ploited, but this is a small fragment of the total work

involved. The use of a distributed list also causes dif-

�culties since the exchange of the entries in the right-

hand side subsequent to the pivoting operation in the

matrix must be performed in order. Note that the

! forward elimination:

nm = n -1

DO k=1,nm

kp = k+1

l = jpvt(k)

s = rhs(l)

rhs(l) = rhs(k)

rhs(k) = s

DO i=kp,n

rhs(i) = rhs(i) + a(i,k) * s

ENDDO

ENDDO

Figure 9: Use of list to sort RHS in forward elimination.

inner loop over i can be expressed as a FORALL and is

INDEPENDENT requiring a broadcast of the multipli-

cation factor s. This, however, represents a very small

and poorly load-balanced section of the algorithm.

The back substitution phase can be considered equiv-

alent to the factorization in �gure 10; however, there is

no pivoting since only one row can perform the required

elimination. For all distributions, this section is poorly

load-balanced and generates a low ratio of computation

to communication. The degree of parallelism could be

increased, but this would require writing complex code

or explicit knowledge of the data decomposition that

cannot be easily generalized.

For both the forward elimination and back substi-

tution, an alternative data distribuion could be con-

sidered. In �gure 11, we show di�erent possible data

layouts for the back substitution phase. Note that

a CYCLIC row distribution provides the best load-

balancing for both matrix and right-hand side vector

operations. The column distributions are poorly load-

6

American Institute of Aeronautics and Astronautics

f90 code

! back substitution:

do ka=1,nm

km = n - ka

k = km + 1

rhs(k) = rhs(k) / a(k,k)

s = - rhs(k)

do i=1,km

rhs(i) = rhs(i) + a(i,k) * s

enddo

enddo

rhs(1) = rhs(1) / a(1,1)

Figure 10: F90 code for back substitution.

balanced since a single processor is required to work

on the entire right-hand side vector of all stages of the

back substitution. It is also possible to mix vector and

matrix distributions; indeed, the cost of performing a

REDISTRIBUTE on the matrix may be too high, but

performing a REDISTRIBUTE on the right-hand side

vector may accrue a communication saving. The low

level of computation alongwith the global nature and

small size of the messages to be exchanged suggest that

this would be highly dependent on the problem size and

features of the target architecture.

Figure 11: Substitution inline with elimination

4. Conjugate Gradient Methods

The classic Conjugate Gradient non-stationary itera-

tive algorithm9 and references therein can be applied

to solve symmetric positive-de�nite matrix equations.

They are preferred over simple Gaussian algorithms be-

cause of their faster convergence rate if the matrix A is

very large and sparse.

Consider the prototype problem A~x = ~b to be solved

for ~x which can be expressed in the form of iterative

equations for the solution ~x and residual (gradient) ~r:

~xk = ~xk�1+ �k~pk (9)

~rk = ~rk�1 � �k~qk (10)

where the new value of ~x is a function of its old value, �

is the scalar step size, ~pk is the search direction vector

at the k'th iteration, and ~qk = A~pk.

The values of ~x are guaranteed to converge in, at

most, n iterations, where n is the order of the sys-

tem, unless the problem is ill-conditioned in which case

roundo� errors often prevent the algorithm from fur-

nishing a su�ciently precise solution at the nth step.

In well-conditioned problems, the number of iterations

necessary for satisfactory convergence of the conjugate

gradient method can be much less than the order of the

system. Therefore, the iterative procedure is continued

until the residual ~rk = ~bk � A~xk meets some stopping

criterion, typically of the form: k ~rk k� � � (k A k � k

~xk k + k ~bk k), where k A k denotes some norm of A

and � is a tolerance level. The CG algorithm uses

� =
�
~rk � ~rk

�
=
�
~pk �A~pk

�
; (11)

with the search directions chosen according to

~pk = ~rk�1 + �k�1~pk�1 (12)

with

�k�1 = (~rk�1 � ~rk�1)=(~pk�2 �A~pk�2) (13)

which ensures that the search directions form an A-

orthogonal system.

The non-preconditioned CG algorithm is summarized

as:

~p = ~r = ~b; ~x = 0; ~q = A~p

� = ~r � ~r; � = �=(~p � ~q

~x = ~x+ �~p; ~r = ~r � �~q

DO k = 2, Niter

�0 = �; � = ~r � ~r; � = �=�0
~p = ~r + �~p; ~q = A � ~p

� = �=~p � ~q

~x = ~x+ �~p; ~r = ~r � �~q

IF(stop criterion)exit

ENDDO

for the initial \guessed" solution vector ~x0 = 0.

Implementation of this algorithm requires storage for

four vectors, viz. ~x, ~r, ~p and ~q as well as the matrix A

and working scalars � and �. Note that the work per

iteration is modest, amounting to a single matrix-vector

7

American Institute of Aeronautics and Astronautics

product for A � ~p, two inner products ~pk � ~qk and ~rk �~rk,

and several simple �~x+ ~y (SAXPY) operations, where

� is scalar, and ~x and ~y are vectors. The number of

multiplications and additions required for matrix-vector

multiplication, inner products and SAXPY operations

are O(n2), O(n), and O(n), respectively, for a vector of

length n.

It is e�cient in storage to represent an n � n dense

matrix as an n � n Fortran array. However, if the ma-

trix is sparse, a majority of the matrix elements are zero

and they need not be stored explicitly. It is therefore

customary to store only the nonzero entries and to keep

track of their locations in the matrix. Special storage

schemes not only save storage but also yield computa-

tional savings. Since the locations of the nonzero ele-

ments in the matrix are known explicitly, unnecessary

multiplications and additions with zero are avoided. A

number of sparse storage schemes are known10 some

of which can exploit additional information about the

sparsity structure of the matrix. We only consider here

the compressed row and compressed column schemes

which can store any sparse matrix.

1 6

Compressed vector
representation of A

Sparse Matrix A

row: row:

1 2 6

col :

colcol col

a a a

a a a a

a a

a a

0 0 0

0 0

0 0 0 0

a

a

11 12 15

21 22 24 26

31 33

42 44

55

66

a

a

51

62

0 0 0

0000

0

0 0 0 0

Figure 12: Compressed Sparse Column(CSC) represen-

tation of sparse matrix A.

The Compressed Sparse Column (CSC) storage

scheme, shown in �gure 12, uses the following three ar-

rays to store an n�n sparse matrix with nz non-zero en-

tries: (i) A(nz) containing the nonzero elements stored

in the order of their columns from 1 to n, (ii) row(nz)
that stores the row numbers of each nonzero element,

and (iii) col(n+1) whose jth entry points to the �rst

entry of the j'th column in A and row. A related scheme

is the Compressed Sparse Row (CSR) format, in

which the roles of rows and columns are reversed.

The serial Fortran 77 code fragment in �gure 13 illus-

trates how BLAS level library routines such as SAXPY

and SDOT can be employed for a sparsely stored sys-

tem. Each iteration of the CG algorithm in �gure 13

INTEGER row(nz), col(n+1)

REAL A(nz), x(n), b(n), r(n), p(n), q(n)

REAL SDOT

DO i = 1, n

x(i) = 0.0

r(i) = b(i)

p(i) = b(i)

END DO

rho = SDOT(n, r, r)

CALL SAYPX(p, r, beta, n)

CALL MATVEC(n, A, row, col, p, q, nz)

alpha = rho / SDOT(n, p, q)

CALL SAXPY(x, p, alpha, n)

CALL SAXPY(r, q, -alpha, n)

DO n = 2, Niter

rho0 = rho

rho = SDOT(n, r, r)

BETA = RHO / RHO0

CALL SAYPX(p, r, beta, n)

CALL MATVEC(n, A, row, col, p, q, nz)

ALPHA = RHO / SDOT(n, p, q)

CALL SAXPY(x, p, alpha, n)

CALL SAXPY(r, q, -alpha, n)

IF(stop_criterion) GOTO 300

END DO

300 CONTINUE

Figure 13: Fortran 77 version of sparse storage CG

(CSC format).

performs three main computations: the vector-vector

operations, inner product (here shown using BLAS rou-

tines) and the matrix-vector multiplication, shown ex-

plicitly in �gure 14.

q = 0.0

DO j = 1, n

pj = p(j)

DO 10 k = col(j) , col(j+1) - 1

q(row(k)) = q(row(k)) + A(k) * pj

END DO

END DO

Figure 14: Sparse matrix-vector multiply in Fortran 77

(CSC format).

In any parallel implementation that distributes the

vectors and matrix A across processors' memories, the

inner-products and sparse matrix vector multiplication

require data communication. However, the data distri-

butions can be arranged so that all of the other opera-

tions will be performed only on local data.

8

American Institute of Aeronautics and Astronautics

If all vectors are distributed identically among the

processors, vector-vector operations such as SAXPY re-

quire no data communication in a parallel implementa-

tion since the vector elements with the same indices are

involved in a given arithmetic operation and thus are

locally available on each processor. Using P processors,

each of these steps is performed in time O(n=P) on any

architecture.

A parallel implementation of the inner product

(SDOT) with P processors, takes O(n=P) + ts � logP

time on the hypercube architecture, where ts is the

start-up time. If the reduction intrinsic functions are

well supported by hardware reduction operations then

the communication time for the inner-product calcula-

tions does not dominate.

It now remains to discuss the multiplication of an

n� n arbitrarily sparse matrix A with an n � 1 vector

p that gives another n� 1 vector q. As in a dense ma-

trix vector multiplication, each row of matrix A must

be multiplied with the vector p. The computation and

data communication costs vary depending on the dis-

tribution of the matrix A and vectors p and q. Here,

we will describe two di�erent data distribution schemes

and show the associated costs of each.

For the simplicity of the discussion, assume that the

average number of nonzero elements per row in A ismz ,

and the total number of nonzero elements in the entire

matrix is nz = mz � n. It may be desirable to control

the number of non zero elements stored on each proces-

sor if there is some identi�able structure to the sparse

matrix. Generally this would require a data mapping

that forces processors to perform the same number of

scalar multiplications and additions while multiplying

the matrix with a vector. This, however, requires that

A(i; i) and p(i) are no longer necessarily assigned to

the same processor, and thus requires communication

before the multiplication.

In the �rst scheme, the sparse matrixA is partitioned

row-wise among the processors in an even manner. The

vectors p and q are aligned with the rows of the matrix

A in all the processors. This distribution is shown in

�gure 15 and can be expressed in HPF as follows:

!HPF$ DISTRIBUTE A(BLOCK, *)

!HPF$ DISTRIBUTE p(BLOCK)

!HPF$ DISTRIBUTE q(BLOCK)

Since the nonzero elements are at random positions in

A, a row can have a nonzero entry in any column. This

requires the entire vector p to be accessible to each row

so that any of its nonzero entries can be multiplied with

the corresponding element of the vector. As the vector

p is partitioned among the processors, this obligates an

all-to-all broadcast of the local vector elements. This

all-to-all broadcast of messages containing n=P vector

elements among P processors, takes tstart�up � logP +

tcomm � n=P time if a tree-like broadcasting mechanism

is used. Here tstart�up is the start-up time, and tcomm

is the transfer time per byte.

In the second scheme, the matrixA is partitioned in a

column-wise fashion amongst the processors such that

each processor gets n=P columns. Vectors are parti-

tioned amongst the processors uniformly. This corre-

sponds to the following distribution directives in HPF:

!HPF$ DISTRIBUTE A(*, BLOCK)

!HPF$ DISTRIBUTE p(BLOCK)

!HPF$ DISTRIBUTE q(BLOCK)

where only the distribution of the matrix itself is di�er-

ent from that for row-wise partitioning.

As illustrated in �gure 16, the vector p is already

aligned with the rows of A, and hence performing the

multiplication will not require any interprocessor com-

munication. However, since each processor will have a

partial product vector q at the end of the operation,

these partial vectors should be merged into one �nal

vector. A global summation operation has to be per-

formed with messages of size n=P where each processor

sends its own portion of the partial vector to the owner

of that portion according to the distribution directives

given. This scheme is easily generalized to the CSC

format.

1

2

3

Procs

0

Vector qVector q

Procs

Matrix A Vector qVector q

Procs

Matrix A Vector qVector p

11

Vector q

0

2

1

Procs

Vector p

0 1 2 3

3

Figure 15: Communication requirements of Matrix vec-

tor multiplication where A is distributed in a (BLOCK,

*) fashion.

In the computation phase, each processor performs

an average of mz�n=P multiplications and additions if

a sparse storage format is used. After the computation

phase, each processor has the corresponding block of

n=P elements of the resulting vector which is assigned

9

American Institute of Aeronautics and Astronautics

Vector qVector p Vector q
(Merge of private copies)

0 1 2 3Procs

Matrix A

0

1

2

3

Procs
Procs

0 1 2 3

(merge) (merge) (merge)

Figure 16: Communication requirements of Matrix

vector multiplication where A is distributed in a (*,

BLOCK) fashion.

to that processor originally. Hence, no communication

is needed to rearrange the distribution of the results.

The communication time for column-wise partition-

ing is the same as the communication time for the global

broadcast used in row-wise partitioning. It is not pos-

sible to reduce the communication time whether the

matrix be partitioned into regular stripes either in a

row-wise or column-wise fashion.

It is important to note that this analysis assumes that

the average number of non zero elementsmz is represen-

tative of all rows or columns. In practice, this is often

not the case and individual rows or columns may have

signi�cant variations causing a load imbalance. The

data-parallel programming model, upon which HPF is

based, requires some well-de�ned mapping of the data

onto processors' memory to achieve a good computa-

tional load balance and thus an e�cient use of the par-

allel architecture. Clearly, this is not trivial for sparse

storage schemes.

If the matrix A is stored in CSC format then the fol-

lowing serial code fragment arises for the matrix-vector

multiply (A � ~p = ~q):

q = 0.0

DO j = 1, n

pj = p(j)

DO k = col(j), col(j+1)-1

q(row(k)) = q(row(k)) + a(k)*pj

ENDDO

ENDDO

In this case the use of indirect addressing on the write

operation within the row summation of ~q causes the

compiler to generate serial or sequential code. How-

ever, a directive could be used if it was known that

there were no duplicate entries in any one segment of

the loop. Such strategies have often been used success-

fully on vector machines although considerable care on

the part of the programmer and signi�cant reordering

of the datasets are required.

If, however, A is stored in CSR Format then the fol-

lowing HPF code fragment can be applied:

q = 0.0

FORALL(j = 1:n)

DO k = row(j), row(j+1)-1

q(j) = q(j) + a(k) * p(col(k))

ENDDO

ENDFORALL

where the FORALL expresses parallelism across the j-

loop. This works because A(i; j) = A(j; i) for the case

of CG where A must be symmetric. This works in row

order, �nishing up with one element of q at each itera-

tion and the iterations are independent of one another.

The HPF code for the CG algorithm for CSR format

can be expressed as in �gure 17.

REAL, dimension(1:nz) :: A

INTEGER, dimension(1:nz) :: col

INTEGER, dimension(1:n+1) :: row

REAL, dimension(1:n) :: x, r, p, q

!HPF$ PROCESSORS :: PROCS(NP)

!HPF$ DISTRIBUTE (BLOCK) :: q, p, r, x

!HPF$ DISTRIBUTE A(BLOCK)

!HPF$ DISTRIBUTE col(BLOCK)

!HPF$ DISTRIBUTE row(CYCLIC((n+1)/np)

(usual initialisation of variables)

DO k=1,Niter

rho0 = rho

rho = DOT_PRODUCT(r, r) ! sdot

beta = rho / rho0

p = beta * p + r ! saypx

q = 0.0 ! sparse mat-vect multiply

FORALL(j=1:n)

DO i = row(j), row(j+1)-1

q(j) = q(j) + A(i) * p(col(i))

END DO

END FORALL

alpha = rho / DOT_PRODUCT(p, q)

x = x + alpha * p ! saxpy

r = r - alpha * q ! saxpy

IF (stop_criterion) EXIT

END DO

Figure 17: HPF version of sparse storage CG (CSR

format).

A more extensive discussion of the Conjugate Gra-

10

American Institute of Aeronautics and Astronautics

dient method and High Performance Fortran may be

found elsewhere11;12.

5. Conclusions

We have illustrated some of the issues arising from the

use of HPF for expressing algorithms in CFD appli-

cations. The advantages are the potential for faster

computation on parallel and distributed computers, and

additional code portability and ease of maintainence

by comparison with message-passing implementations.

Disadvantages (in commonwith any parallel implemen-

tation) over serial implementations are additional tem-

porary data-storage requirements of parallel algorithms.

The basic concepts of HPF have been demonstrated

through examples which are characteristic of current

scienti�c and engineering codes. The removal of serial

features from sections of code has been as important

as adding parallelism, and the relative merits of alter-

native decompositions have been compared. The ac-

tual choice between the di�erent decompositions and

the remapping of data between the di�erent stages of

the algorithm will, in general, depend upon the prob-

lem sizes being considered and the performance of the

TRANSPOSE intrinsic function (or the REDISTRIBUTE di-

rective) for particular machines.

Current HPF distribution directives only allow ar-

rays to be distributed according to regular structures

such as BLOCK and CYCLIC. Whilst this is adequate

for dense or regularly structured problems, it does not

provide the necessary exibility for the e�cient storage

and manipulation of arbitrarily sparse matrices.

Finally, we repeat the general observation that im-

plementations of numerically intensive applications on

parallel architectures often encounter a tradeo� between

the most rapidly converging (in terms of numerical anal-

ysis) algorithm which do not parallelize well, and less

numerically advanced algorithms which, because they

can be parallelized, may produce the desired result in a

faster absolute time.

It is a pleasure to thank T.Haupt, K.Dincer and S.Ranka for

useful discussions regarding the work reported here.

References

[1] Cheng, Gang., Hawick, Kenneth A., Mortensen,

Gerald, Fox, Geo�rey C., \Distributed Computa-

tional Electromagnetics Systems", Proc. of the 7th

SIAM conference on Parallel Processing for Scien-

ti�c Computing, Feb. 15-17, 1995.

[2] High Performance Fortran Forum (HPFF), \High

Performance Fortran Language Speci�cation," Sci-
enti�c Programming, vol.2 no.1, July 1993.

[3] Bozkus, Z., Choudhary, A., Fox, G., Haupt, T.,

and Ranka, S., \Fortran 90D/HPF compiler for

distributed-memoryMIMD computers: design, im-

plementation, and performance results," Proceed-
ings of Supercomputing '93, Portland, OR, 1993,
p.351.

[4] Metcalf, M., Reid, J., \Fortran 90 Explained", Ox-

ford, 1990.

[5] Koelbel, C.H., Loveman, D.B., Schreiber, R.S.,

Steele, G.L., Zosel, M.E., \The High Performance

Fortran Handbook", MIT Press 1994.

[6] Bogucz, E.A., Fox, G.C., Haupt, T., Hawick,

K.A., Ranka, S., \Preliminary Evaluation of High-

Performance Fortran as a Language for Computa-

tional Fluid Dynamics," Paper AIAA-94-2262 pre-
sented at 25th AIAA Fluid Dynamics Conference,

Colorado Springs, CO, 20-23 June 1994.

[7] Hawick, K.A., and Wallace, D.J., \High Perfor-

mance Computing for Numerical Applications",

Keynote address, Proceedings of Workshop on
Computational Mechanics in UK, Association

for Computational Mechanics in Engineering,

Swansea, January 1993.

[8] Fletcher, C. A. J., \Computation Techniques for

Fluid Dynamics", Vol. II, Springer-Verlag, 1991.

[9] Dongarra, J.J., Du�, I.S., Sorensen, D.C., van der

Vorst, H.A., \Solving Linear Systems on Vector

and Shared Memory Computers", , SIAM, 1991.

[10] Barrett, R., Berry, M., Chan, T.F., Demmel, J.,

Donato,. J., Dongarra, J.J., Eijkhout, V., Pozo,

R., Romine, C., van der Vorst, H.A. \Templates

for the Solution of Linear Systems: Building Blocks

for Iterative Methods", SIAM, 1994.

[11] Hawick, K. A., Dincer, K., Robinson, G. and Fox,

G. C., \Conjugate Gradient Algorithms in Fortran

90 and High Performance Fortran", Northeast Par-

allel Architectures Center Report No. SCCS-691,

Syracuse University, 1995.

[12] Dincer, K., Hawick, K. A., Choudhary, A. and Fox,

G. C., \High Performance Fortran and Possible

Extensions to Support Conjugate Gradient Algo-

rithms", Northeast Parallel Architectures Center

Report No. SCCS-703, Syracuse University, 1995.

11

American Institute of Aeronautics and Astronautics

