
NPAC Technical Report SCCS 639

Implementation of Conjugate Gradient Algorithms in

Fortran 90 and HPF and Possible extensions towards

HPF-2

K.Dincer, K.A.Hawick, A.Choudhary, G.C.Fox.

Northeast Parallel Architectures Center

Syracuse University

111 College Place, Syracuse, NY 13244-4100

fdincer, hawick, choudhar, gcfg@npac.syr.edu �

October 1994
revised: March 1995

Abstract

We evaluate the High-Performance Fortran (HPF) lan-

guage for the compact expression and e�cient im-

plementation of conjugate gradient iterative matrix-

solvers on High Performance Computing and Communi-

cations(HPCC) platforms. We discuss the use of intrin-

sic functions, data distribution directives and explicitly

parallel constructs to optimize performance by minimiz-

ing communications requirements in a portable manner.

We focus on implementations using the existing Fortran

90 and HPF de�nitions but also discuss issues arising

that may in
uence a revised de�nition for HPF-2. Some

of the codes discussed are available on the World Wide

Web at http://www.npac.syr.edu/hpfa/ alongwith

other educational and discussion material related to ap-

plications in HPF.

1 Introduction

High Performance Fortran (HPF)[12] is a language def-

inition agreed upon in 1993, and being widely adopted

by systems suppliers as a mechanism for users to ex-

ploit parallel computation through the data-parallel

programming model.

HPF evolved from the experimental Fortran-D

system [10] as a collection of extensions to the Fortran

90 language standard [17]. We do not discuss the details

of the HPF language here as they are well documented

elsewhere [15], but simply note that the central tenet

�This work sponsored in part by ARPA

of HPF and data-parallel programming is that program

data is distributed amongst the processors' memories

in such a way that the \owner computes" rule allows

the maximum computation to communications ratio.

Language constructs and embedded compiler directives

allow the programmer to express to the compiler ad-

ditional information about how to produce code that

maps well to the available parallel or distributed archi-

tecture and thus runs fast and can make full use of the

larger (distributed) memory.

An excellent review of iterative solvers and some

of the general computational issues for their e�cient

implementation is given in [2]. We focus here on speci�c

implementation issues for the Fortran 90 and the HPF

languages.

Consider applications problems that can be for-

mulated in terms of the matrix equation A~x = ~b. The

structure of the matrix A is highly dependent on the

particular type of application and some applications

such as computational electromagnetics give rise to a

matrix that is e�ectively dense [9] and can be solved

using direct methods [8] such as Gaussian elimination,

whereas others such as computational
uid dynamics

[4] generate a matrix that is sparse, having most of

its elements identically zero. Conjugate Gradient (CG)

and other iterative methods are preferred over simple

Gaussian elimination when A is very large and sparse,

and where storage space for the full matrix would ei-

ther be impractical or too slow to access through a

secondary memory system. A large number of com-

putationally expensive scienti�c and engineering appli-

cations, e.g. structural analysis,
uid dynamics, aero-

dynamics, lattice gauge simulation, and circuit simula-

1

tion, are based on the solution of large sparse systems

of linear equations. Iterative methods are employed in

many of these applications. While the CG method it-

self is no longer considered a state-of-the art is terms

of its numerical stability and convergence properties,

its computational structure is similar to that of meth-

ods such as Bi-Conjugate Gradient (BiCG). CG codes

have been used in a number of benchmark suites such

as PARKBENCH [11] and NAS [1].

We focus on the CG and BiCG methods and it is

our intent in this paper to show how HPF makes it sim-

pler to write portable, e�cient and maintainable

implementations of this class of iterative matrix-solvers.

2 Conjugate Gradient

Algorithms

The classic Conjugate Gradient non-stationary iterative

algorithm as de�ned in [7] and references therein can

be applied to solve symmetric positive-de�nite matrix

equations. They are preferred over simple Gaussian al-

gorithms because of their faster convergence rate if A is

very large and sparse.

Consider the prototype problem A~x = ~b to be

solved for ~x which can be expressed in the form of iter-

ative equations for the solution ~x and residual(gradient)

~r:

~xk = ~xk�1 + �k~pk (1)

~rk = ~rk�1 � �k~qk (2)

where the new value of ~x is a function of its old

value, the scalar step size � and the search direction

vector ~pk at the k'th iteration and ~qk = A~pk.

The values of ~x are guaranteed to converge in,

at most, n iterations, where n is the order of the sys-

tem, unless the problem is ill-conditioned in which case

roundo� errors often prevent the algorithm from fur-

nishing a su�ciently precise solution at the nth step.

In well-conditioned problems, the number of iterations

necessary for satisfactory convergence of the conjugate

gradient method can be much less than the order of the

system. Therefore, the iterative procedure is continued

until the residual ~rk = ~bk � A~xk meets some stopping

criterion, typically of the form: k ~rk k� tol � (k A k � k
~xk k + k ~bk k), where k A k denotes some norm of A

and tol is a tolerance level. The CG algorithm uses:

� =
�
~rk � ~rk

�
=
�
~pk �A~pk

�
(3)

with the search directions chosen using:

~pk = ~rk�1 + �k�1~pk�1 (4)

with

�k�1 = (~rk�1 � ~rk�1)=(~pk�2 �A~pk�2) (5)

which ensures that the search directions form an A-

orthogonal system.

2.1 Computational Structure

The non-preconditioned CG algorithm is summarised

as:

~p = ~r = ~b; ~x = 0; ~q = A~p

� = ~r � ~r; � = �=(~p � ~q)
~x = ~x+ �~p; ~r = ~r � �~q

DO k = 2, Niter

�0 = �; � = ~r � ~r; � = �=�0
~p = ~r + �~p; ~q = A � ~p
� = �=~p � ~q
~x = ~x+ �~p; ~r = ~r � �~q

IF(stop criterion)exit

ENDDO

for the initial \guessed" solution vector ~x0 = 0.

Implementation of this algorithm requires storage

for four vectors:, ~x, ~r, ~p and ~q as well as the matrix A

and working scalars � and �.

Notice that the work per iteration is modest,

amounting to a single matrix-vector multiplication for

A � ~p, two inner products ~pk � ~pk and ~rk � ~rk, and several

simple �~x+ ~y (SAXPY) operations, where � is scalar,

and ~x and ~y are vectors. The number of multiplications

and additions required for matrix-vector multiplication,

inner products and SAXPY operations are O(n2), O(n),
and O(n), respectively, for vector length n.

2.2 Other CG Algorithms

The Bi-Conjugate Gradient (BiCG) method can be

applied to non-symmetric matrices, for which the resid-

ual vectors employed by CG cannot be made orthogonal

with short recurrences. More complex algorithms such

as GMRES make use of longer recurrences (which re-

quire greater storage). The BiCG [2] algorithm employs

an alternative approach of using two mutually orthog-

onal sequences of residuals. This requires three extra

vectors to be stored, and di�erent choices of � and �,

but otherwise the computational structure of the algo-

rithm is similar to CG. It can be implemented using the

2

same BLAS-level [7]operations as CG. BiCG does how-

ever require two matrix-vector multiply operations one

of which uses the matrix transpose AT , and therefore

any storage distribution optimisations made on the ba-

sis of row access vs. column access will be negated with

the use of BiCG.

The Conjugate Gradient Squared (CGS) al-

gorithm avoids using AT operations but also requires

additional vectors of storage over the basic CG. CGS

can be built using the operations and data distribu-

tions we describe here, but can have some undesirable

numerical properties such as actual divergence or irreg-

ular rates of convergence and so is not discussed further

here.

The Stabilized BiCG (BiCGSTAB) algorithm

also uses two matrix vector operations but avoids using

AT and therefore can be optimized using the data dis-

tribution ideas we discuss here. It does however involve

four inner products, so will have a greater demand for

an e�cient intrinsic for this than basic CG.

2.3 Preconditioners for Conjugate Gra-

dient

The CG algorithm will generally converge to the solu-

tion of the system A:~x = ~b in at most ne iterations,

where ne is the number of distinct eigenvalues of the

coe�cient matrix A. Thus in cases where A has many

distinct eigenvalues and those eigenvalues vary widely in

magnitude, the CG algorithmmay require a large num-

ber of iterations before converging. A preconditioner S

for A can be added to any of the algorithms described

above and which will increase the speed of convergence

of the CG algorithm. A nonsingular matrix S is cho-

sen such that A0 = S:A:ST has fewer distinct eigenval-

ues than A. The CG algorithm is then used to solve

A0:x0 = b0, where x0 = (ST)�1:x and b0 = S:b. This is

described in detail in [2].

The preconditioning may cause e�ciency trade-

o�s if the preconditioner matrix requires a di�erent data

distribution pattern to the main iterative solver. How-

ever, this overhead is compensated by a reduction in

the number of iterations required to achieve acceptable

performance and therefore in the total wall clock time

for problem completion.

There are certain problems with applying the CG

algorithm directly to the system A0:x0 = b0. Unless S

is a diagonal matrix, the sparsity pattern of A is not

preserved in A0. Moreover, the matrix multiplications

involved in computing A0 can be expensive. In prac-

tical implementations of the preconditioned conju-

gate gradient (PCG) algorithm, it is formulated such

that it works with the original matrix A but main-

tains the same convergence rate as that for the system

A0:x0 = b0.

The following PCG algorithm is one representa-

tive example of those optimised algorithms that avoid

computing A0 and works with A by using a precondi-

tioner matrix T = (STS)�1:

~r = ~b; ~x = 0

Solve the system T � ~z = ~r

 = ~r � ~z
~p = ~z

~q = A~p

� = ~r � ~r; � =
=(~p � ~q)
~x = ~x+ �~p; ~r = ~r � �~q

DO k = 2, Niter

Solve the system T � ~z = ~r

 = ~r � ~z

0 =
; ~p = ~z +
 � ~p=
0
�0 = �; � = ~r � ~r
~q = A � ~p
� =
=~p � ~q
~x = ~x+ �~p; ~r = ~r � �~q

IF(stop criterion)exit

ENDDO

The preconditioner T must be carefully chosen to

keep the overhead of solving T � ~z = ~r in each iteration

inexpensive compared to solving the original system of

equations. We describe below two parallelizable pre-

conditioning methods which do not involve a signi�cant

computation and communication overhead:

Diagonal preconditioning: The preconditioner

matrix T is a diagonal matrix with nonzero elements

only on the principal diagonal. This T can be easily de-

rived from the principal diagonal ofA(n; n). If we ALIGN

T (i; i) with A(i; i) in the processors' memories then the

elements with identical indices reside on the same pro-

cessor and solving the system T � ~z = ~r is equivalent to

dividing each element of r by the corresponding diag-

onal element of T , and this operation does not require

any communication. The iteration can be performed in

O(n=P) time on a P processor system.

Incomplete Cholesky(IC) preconditioning: T is

based on an IC factorization of A that factorizes it as

the product of two triangular matrices (i.e. L�LT). The

locations of the nonzero elements in LT and locations of

nonzero elements in L correspond with the nonzero ele-

ments in the upper and lower triangular portions of A,

respectively. T = L � LT is used as the preconditioner,

and the matrix vector system in the algorithm is solved

in two steps:

3

1. L � ~u = ~r

2. LT � ~z = ~u

Solution of these triangular systems of equations

take O(
p
n) time regardless of the number of processors

used. The other operations in an iteration of the IC

preconditioned CG algorithm take the same amount of

time as in the diagonal preconditioned CG algorithm.

3 A Fortran 90 Implementation

The non-preconditioned CG algorithm for a dense sys-

tem can be expressed using Fortran 90 intrinsic func-

tions as shown in �gure 1, where, for illustrative pur-

poses, we have provided the full array-section notation

for each vector or matrix reference even though these

are not necessary when the entities have been declared

of exactly dimension n.

REAL, dimension(1:n) :: x, b, p, q, r

REAL :: alpha, rho, rho0

REAL, dimension(1:n,1:n) :: A

x(1:n) = 0.0 ! An initial guess

r(1:n) = b(1:n) - MATMUL(A(1:n,1:n), x(1:n))

p(1:n) = r(1:n)

rho = DOT_PRODUCT(r(1:n), r(1:n))

q(1:n) = MATMUL(A(1:n,1:n), p(1:n))

alpha = rho / DOT_PRODUCT(p(1:n) * q(1:n))

x(1:n) = x(1:n) + alpha * p(1:n) !saxpy

r(1:n) = r(1:n) - alpha * q(1:n) !saxpy

DO k = 2, Niter

rho0 = rho

rho = DOT_PRODUCT(r(1:n), r(1:n))

p(1:n) = r(1:n) + (rho/rho0) * p(1:n)

q(1:n) = MATMUL(A(1:n,1:n), p(1:n))

alpha = rho / DOT_PRODUCT(p(1:n) * q(1:n))

x(1:n) = x(1:n) + alpha * p(1:n) !saxpy

r(1:n) = r(1:n) - alpha * q(1:n) !saxpy

IF (stop_criterion) EXIT

END DO

Figure 1: CG Fortran 90 version of dense storage CG.

Note, this is highly arti�cial, since CG �nds its

main use for sparse systems, which would not be stored

using full matrices and vectors as indicated. We simply

use this code to express the full algorithm, and note that

the Fortran 90 intrinsic DOT PRODUCT and array-section

notation allows compact expression of SAXPY and SDOT

[7] operations. An e�cient compilation system would

insert system-optimised run-time library routines for

these statements.

4 Sparse Matrix Representa-

tions

It is e�cient in storage to represent an n�n dense ma-

trix as an n � n Fortran array. However, if the matrix

is sparse, a majority of the matrix elements are zero

and they need not be stored explicitly. Furthermore,

for some very large application problems it would be

simply impractical to store the matrix as a dense ar-

ray either because of the prohibitive cost of enough pri-

mary memory, or because of the slow access speed of

a secondary storage medium. It is therefore customary

to store only the nonzero entries and to keep track of

their locations in the matrix. Special storage schemes

not only save storage but also yield computational sav-

ings. Since the locations of the nonzero elements in

the matrix are known explicitly, unnecessary multipli-

cations and additions with zero are avoided. A num-

ber of sparse storage schemes are described in [2], some

of which can exploit additional information about the

sparsity structure of the matrix. We only consider here

the compressed row and compressed column schemes

which can store any sparse matrix.

a11 a a a21 31 51 a a a a a a a a a12 22 42 62 33 24 44 15 55 a a26 66

col1 col6

a

row:

col :

a a

a a a a

a a

a a

0 0 0

0 0

0 0 0 0

a

a

11 12 15

21 22 24 26

31 33

42 44

55

66

a

a

51

62

0 0 0

0000

0

0 0 0 0

a

Sparse Matrix A

Figure 2: Compressed Sparse Column(CSC) represen-

tation of sparse matrix A.

The Compressed Sparse Column (CSC) stor-

age scheme, shown in �gure 2, uses the following three

arrays to store an n�n sparse matrix with nz non-zero

entries:

� a(nz) containing the nonzero elements stored in

the order of their columns from 1 to n.

� row(nz) that stores the row numbers of each

nonzero element.

4

� col(n+1) whose jth entry points to the �rst entry

of the j'th column in A and row.

A related scheme is the Compressed Sparse Row

(CSR) format, in which the roles of rows and columns

are reversed.

The serial Fortran 77 code fragment in �gure

3 illustrates how BLAS level library routines such as

SAXPY and SDOT can be employed for a sparsely

stored system.

INTEGER row(nz), col(n+1)

REAL a(nz), x(n), b(n), r(n), p(n), q(n)

REAL SDOT

DO i = 1, n

x(i) = 0.0

r(i) = b(i)

p(i) = b(i)

END DO

rho = SDOT(n, r, r)

CALL SAYPX(p, r, beta, n)

CALL MATVEC(n, a, row, col, p, q, nz)

alpha = rho / SDOT(n, p, q)

CALL SAXPY(x, p, alpha, n)

CALL SAXPY(r, q, -alpha, n)

DO n = 2, Niter

rho0 = rho

rho = SDOT(n, r, r)

BETA = RHO / RHO0

CALL SAYPX(p, r, beta, n)

CALL MATVEC(n, a, row, col, p, q, nz)

ALPHA = RHO / SDOT(n, p, q)

CALL SAXPY(x, p, alpha, n)

CALL SAXPY(r, q, -alpha, n)

IF(stop_criterion) GOTO 300

END DO

300 CONTINUE

Figure 3: Fortran 77 version of sparse storage CG (CSC

format).

Each iteration of the CG algorithm in �gure 3

performs three main computations: the vector-vector

operations, inner product (here shown using BLAS rou-

tines) and the matrix-vector multiplication, shown ex-

plicitly in �gure 4.

5 HPF Implementation

The data-parallel programmingmodel upon which HPF

is based requires some well-de�ned mapping of the data

onto processors' memory to achieve a good computa-

tional load balance and thus an e�cient use of the paral-

lel architecture. This is not trivial for the sparse storage

q = 0.0

DO j = 1, n

pj = p(j)

DO 10 k = col(j) , col(j+1) - 1

q(row(k)) = q(row(k)) + a(k) * pj

END DO

END DO

Figure 4: Sparse matrix-vector multiply in Fortran 77

(CSC format).

schemes that we will elaborate upon later.

In this section we assume that the vectors are rep-

resented as n-element one-dimensional arrays, and the

arbitrarily sparse matrix A is either represented as an

n by n two-dimensional matrix when a dense storage

format is used, and as a (row; col; a) trio when a sparse

storage format is employed.

In any parallel implementation that distributes

the vectors and matrix A across processors' memories,

the inner-products (SDOTs) and sparse matrix vector

multiplication require data communication. However,

the data distributions can be arranged so that all of the

other operations will be performed only on local data.

For each operation type we will show the optimum data

distribution patterns for obtaining best performance,

and how the operation can be represented in HPF.

Vector-vector operations

If all vectors are distributed identically among the pro-

cessors, vector-vector operations such as SAXPY re-

quire no data communication since the vector elements

with the same indices are involved in a given arithmetic

operation and thus are locally available on each pro-

cessor. Similarly, the element-wise multiplications in

the inner-product operations can be performed locally

without any communication overhead. However, the

inner-product involves a communication phase to add

up the partial local results from each processor.

Similarly, the vectors used in vector operations

are aligned and distributed in HPF as follows in order

to minimize the communication requirements.

!HPF$ ALIGN (:) WITH p(:) :: q, r, x

!HPF$ DISTRIBUTE p(BLOCK)

Vector p is chosen as the target of the ultimate align-

ment thus the distribution of p determines the distri-

bution of all other vectors aligned with it. Whenever

its distribution is changed, the others are also automat-

ically redistributed.

5

Using NP processors, SAXPY operations can be

performed in O(n=NP) time on any architecture. On

the other hand, the inner products take O(n=NP) time

for the local phase, but the communication or merge

phase changes according to the network architecture

type. For example on a hypercube architecture it is

done in tstart�up � logNP time, where tstart�up is the

start-up time. If the reduction intrinsic functions are

well supported by hardware reduction operations then

the communication time for the inner-product calcula-

tions does not dominate.

HPF readily supports the inner product opera-

tions by an intrinsic function, called DOT PRODUCT().

SAXPY operations are easily performed using HPF's

parallel array assignments.

Matrix-vector multiplication

We consider the multiplication of an n � n arbitrarily

sparse matrixA with an n�1 vector p that gives another
n�1 vector q. As in the dense matrix vector multiplica-

tion, each row of matrix A must be multiplied with the

vector p. The computation and data communication

costs vary depending on the distribution of the matrix

A and vectors p and q. We will keep the distributions

of vectors as de�ned above, and concentrate on the two

di�erent partitioning scenarios for the sparse matrix A

and their associated costs. Then, we will generalize the

results drawn from these scenarios to the cases where a

sparse storage format for matrix A is used.

Scenario 1: Row-wise partitioning

In the �rst scenario, we would like to partition

the rows of the sparse matrix A among the processors

in an even manner. We can do this by aligning the

�rst dimension of A with p. When the p vector is dis-

tributed, A's �rst dimension will be distributed in an

aligned manner (Figure 5.)

!HPF$ ALIGN A(:, *) WITH p(:)

Since the nonzero elements are at random posi-

tions in A, a row can have a nonzero entry in any col-

umn. This requires the entire vector p to be accessible

by each row so that any of its nonzero entries can be

multipliedwith the corresponding element of the vector.

As the vector p is partitioned among the processors,

this would require an all-to-all broadcast of the local

vector elements. This all-to-all broadcast of messages

containing n=NP vector elements amongNP processors,

takes tstart�up � logNP + tcomm �n=NP time if a tree-like

broadcasting mechanism is used. Here tstart�up is the

start-up time, and tcomm is the transfer time per byte.

After the local computation phase, each proces-

sor has the corresponding block of n=NP elements of

the resulting vector which is assigned to that proces-

sor originally. Hence, no communication is needed to

rearrange the distribution of the results.

If A is stored using the CSR format then

the sparse matrix A is represented by the trio of

(row; col; a). In order to keep the locality in accessing

the elements of individual rows, the HPF's BLOCK dis-

tribution is appropriate to partition all those vectors.

To ensure that the (n + 1)'th element of row is placed

in the last processor, we explicitly specify the block size

in the directive.

HPF DISTRIBUTE row(BLOCK((n+NP-1)/NP))

HPF ALIGN a(:) WITH col(:)

HPF DISTRIBUTE col(BLOCK)

When the CSR format is used for storing the

sparse matrix, the following HPF code fragment can

be applied for the matrix-vector multiplication:

q = 0.0

FORALL(j = 1:n)

DO k = row(j), row(j+1)-1

q(j) = q(j) + a(k) * p(col(k))

ENDDO

ENDFORALL

where the FORALL expresses parallelism across the j-

loop. This works because A(i; j) = A(j; i) for the case

of CG where Amust be symmetric. The operation runs

in row order, �nishing up with one element of q at each

iteration and iterations are independent of each other.

Similar to the dense storage format any row-based

sparse storage format like CSR will incur the same

broadcast overhead when a partitioning like shown in

�gure 5 is used. In addition, there is an additional over-

head not found in dense storage format. Since the in-

dex set of the FORALL in the outer loop is partitioned

among the processors, a processor that is responsible

from a speci�c row may not have all the actual data

elements (i.e., col and a) on that row. Therefore, addi-

tional communication is needed to bring in those miss-

ing elements.

Scenario 2: Column-wise partitioning

If a dense storage format is used to represent A,

then the second dimension of A should be aligned with

the p and q vectors. When vector p is distributed,

columns of A are automatically partitioned among the

processors (�gure 6). The HPF directive for this pur-

pose is:

!HPF$ ALIGN A(*, :) WITH p(:)

6

As the vector p is already aligned with the

columns of A, performing the element-wise multiplica-

tion will not require any interprocessor communication.

However, since each processor will have a partition of

the �nal vector q, each time some other processor pro-

duces a result corresponding to an element that is owned

by another processor, it has to communicate this value

to the owner of it. Since the owner may also update

the same element, this operation will cause an inter-

processor dependency. Therefore the matrix-vector op-

eration can not be performed in parallel and the follow-

ing serial code is used:

q = 0.0

DO j = 1, n

pj = p(j)

DO i = 1, n

q(i) = q(i) + A(i, j) * pj

END DO

END DO

If we used the message-passing SPMDmodel, then

each processor would have a private copy of the vector q

which would be used to gather the partial results locally,

and a merge operation would be employed at the end

to obtain the �nal product (q vector) of the matrix-

vector multiplication. We could simulate the same thing

using two dimensional temporary local vectors in place

of vector q in each processor. At the end of the outer

loop we use the HPF SUM intinsic to generate the �nal

vector.

paramater (NP = NUMBER_OF_PROCESSORS())

REAL, dimension(1:n) :: q

REAL, dimension(1:n, 1:NP) :: q_private

!HPF$ ALIGN q_private(*, :) WITH q(:)

!HPF$ ALIGN q(:) WITH p(:)

!HPF$ DISTRIBUTE p(BLOCK)

...

...

q_private = 0.0

BS = n/NP

FORALL (l = 1 : NP)

DO (j = (l-1)*BS+1 , l*BS)

pj = p(j)

DO i = 1, n

q_private(i, l) = q_private(i, l)

+ A(i, j) * pj

END DO

END DO

END FORALL

q = SUM(q_private, DIM = 2)

If the matrix A is stored in CSC Format then the

following distribution and alignment directives and se-

rial code fragment arises for the matrix-vector multiply

(A � ~p = ~q):

HPF DISTRIBUTE col(BLOCK((n+NP-1)/NP))

HPF ALIGN a(:) WITH row(:)

HPF DISTRIBUTE row(BLOCK)

...

q = 0.0

DO j = 1, n

pj = p(j)

DO k = col(j), col(j+1)-1

q(row(k)) = q(row(k)) + a(k)*pj

ENDDO

ENDDO

This operates in Fortran column-major order

where each i-iteration gives a partial sum at several ele-

ments of q. As in the dense case, there are dependencies

between j-iterations and no parallel loop execution is

possible. This part can also be parallelized by using a

two dimensional local array as described as above.

REAL, dimension(1:n, 1:NP) :: q_private

...

...

q_private = 0.0

BS = n/NP

FORALL (l = 1 : NP)

DO (j = (l-1)*BS+1 , l*BS)

DO k = col(j), col(j+1)-1

q_private(row(k),l)=q_private(row(k),l)

+ a(k)*pj

END DO

END DO

END FORALL

q = SUM(q_private, DIM = 2)

Computation and Communication Costs

For simplicity, assume that the average number of

nonzero elements per row in A is mz , and the total

number of nonzero elements in the entire matrix is

nz = mz � n.

It may be desirable to control the number of non

zero elements stored on each processor if there is some

identi�able structure to the sparse matrix that would

otherwise lead to a load imbalance. Generally this

would require a data mapping that forces processors to

perform the same number of scalar multiplications and

additions while multiplying the matrix with a vector.

This however requires that A(i; i) and p(i) no longer

7

necessarily be assigned to the same processor which re-

quires communication before the required multiplica-

tion.

Assuming that the average number of non zero

elements mz is representative of all rows or columns,

each processor performs an average of n � n=P multi-

plications and additions if a dense storage format is used

or mz � n=P multiplications and additions if a sparse

storage format is used in the computation phase.

The communication time for Scenario 2 is the

same as the communication time for the global broad-

cast used in Scenario 1. Hence, it is not possible to

reduce the communication time if the matrix is par-

titioned into regular stripes either in a row-wise or

column-wise fashion.

1

2

3

Procs

0 0

2

1

0

3

Procs
Procs

1 32

Vector pMatrix A Vector q

Figure 5: Matrix vector multiplication where A is dis-

tributed in a (BLOCK, *) fashion, and vectors are dis-

tributed in a (BLOCK) fashion.

The full HPF code for the CG algorithm for CSR

format is given in �gure 7.

6 Proposed HPF Extensions

We propose two kinds of extensions to the current HPF

de�nition that will make writing the above mentioned

algorithms easier and will enhance load balance to sup-

port CG codes.

The �rst one speci�cally addresses the CG codes

which uses the CSC format to store the sparse matrices.

As seen above, in the current HPF de�nition it is not

easy to express this loop in a parallel fashion although

an explicit message-passing program is able to do that.

1

2

3

Procs

0 0

2

1

0

3

Procs
Procs

1 32

Vector pMatrix A Vector q

Figure 6: Matrix vector multiplication where A is dis-

tributed in a (*, BLOCK) fashion, and vectors are dis-

tributed in a (BLOCK) fashion.

We propose a new way to eliminate the existing de-

pendencies caused by the many-to-one assignments and

partition the resulting parallel loops in an elegant way.

The second type of extensions are related to the

cases where the load imbalance may become an impor-

tant issue due to the sparsity of the data structures. We

propose ways to partition the sparse matrix in a manner

that will allow the compiler not to disturb the logical

structure of the matrix. That is rows and columns may

be identi�ed as indivisable entities while the distribu-

tion is performed.

6.1 Private variables and Reductions

In HPF, the DO loops have sequential semantics. Single-

or multi-statement FORALL and INDEPENDENT FORALL

or INDEPENDENT DO's are provided for expressing the

parallelism in loops. In the case of CG codes where the

A matrix is represented using CSC format, the main

obstacle that prevents us from parallelizing both loops

of the sparse matrix-vector multiply is that in the inner

loop, the row(k) values are not unique and so many left

hand sides accumulate into a single right hand side in

a many-to-one fashion which introduces a dependency

in the inner loop that even prevents us parallelizing the

outer loop.

The matrix-vector multiplication loops can not be

expressed in paralllel using neither the FORALL construct

nor the INDEPENDENT DO construct. The option of us-

ing a FORALL is eliminated because its semantics require

that all the right-hand sides should be computed before

8

REAL, dimension(1:nz) :: a

INTEGER, dimension(1:nz) :: col

INTEGER, dimension(1:n+1) :: row

REAL, dimension(1:n) :: x, r, p, q

!HPF$ PROCESSORS :: PROCS(NP)

!HPF$ ALIGN (:) WITH p(:) :: q, r, x, b

!HPF$ DISTRIBUTE p(BLOCK)

!HPF$ DISTRIBUTE row(CYCLIC((n+NP-1)/np)

!HPF$ ALIGN a(:) WITH col(:)

!HPF$ DISTRIBUTE col(BLOCK)

(usual initialisation of variables)

DO k=1,Niter

rho0 = rho

rho = DOT_PRODUCT(r, r) ! sdot

beta = rho / rho0

p = beta * p + r ! saypx

q = 0.0 ! sparse mat-vect multiply

FORALL(j=1:n)

DO i = row(j), row(j+1)-1

q(j) = q(j) + a(i) * p(col(i))

END DO

END FORALL

alpha = rho / DOT_PRODUCT(p, q)

x = x + alpha * p ! saxpy

r = r - alpha * q ! saxpy

IF (stop_criterion) EXIT

END DO

Figure 7: HPF version of sparse storage CG (CSR for-

mat).

an assignment to the left-hand sides be done. An accu-

mulation operation like we would like to express is not

allowed within the FORALL body. At the same time, the

write-after-write dependency violates Bernstein's con-

ditions [3], and eliminates the possibility of using an

INDEPENDENT DO.

Since the array q is causing the dependency, a

naive solution would be to extend the language de�ni-

tion to let arrays as well as variables be declared by the

NEW clause. However, even though, it accepted arrays

this semantics would require q's value to be forgotten

at the end of each iteration which would not suit our

purposes. We need something that will be associated

with processors and will survive until it is merged at

the loop termination.

If we could eliminate the dependency in the inner

loop by using private arrays, we could express the outer

loop in a parallel fashion. Hence, we propose a new

mechanism which we call PRIVATE abstraction to allow

the program to fork copies of a data structure that are

private to each processor. Private variables are di�er-

ent from the ones declared using the HPF NEW in loops

because they will stay alive until the end of the private

region as opposed to new variables that stays alive until

the end of the loop iteration that it is de�ned. The pri-

vate variables are merged into a global single copy again

(WITH MERGE option) (Figure 8) or discarded completely

(WITH DISCARD option) at the end of the loop(private

region.)

In practice, this can be implemented in HPF by

assuming NP virtual processors and by allocating stor-

age for NP temporary vectors each of length n. The

loop is then executed in parallel where each iteration of

the outer loop is assigned to a speci�c processor and

the operation of each processor is truly independent

of each other. A runtime library function similar to

Fortran 90 SUM intrinsic reduction function can provide

the necessary merging of these temporary values into a

single vector outside the loop. This is somewhat un-

satisfactory, due to the potentially unnecessary storage

requirements, particularly if n� NP , and our proposed

HPF extension would relieve the programmer of a lot

of the cumbersome temporary storage allocation and

alignments.

Using two-dimensional arrays as shown in the pre-

vious section seems to be favorable at �rst consider-

ing that it eliminates the allocation/deallocation costs

of vectors at each loop entry/exit. However, keeping

large vectors in each processor's memory permanently

is costly especially if both n and NP are very big and

this kind of loops are executed just a few times in the

lifetime of the program.

q = 0.0

!EXT$ ITERATION j ON PROCESSOR(j/np), &

!EXT$ PRIVATE(q(n)) WITH MERGE(+), &

!EXT$ NEW(pj, k), PRIVATE(q(n))

DO j = 1, n

pj = p(j)

DO k = col(j) , col(j+1)-1

q(row(k)) = q(row(k)) + A(k)*pj

END DO

END DO

C -- private copies of q() are merged to

C -- a global q at the termination of outer loop.

Once the privatization is established, the loop can

be parallelized. Most HPF compilers uses the well-

known owners compute rule where an iteration is as-

signed to the processor which owns the left-hand-side

(lhs) array element that is assigned to in that iteration.

As the array q is accessed through a level of indirec-

tion, the value of its index (i.e.row(k)) can be known

9

only at run-time. Inspector-executor mechanisms [14]

which are costly in nature should be employed for the

determination of the owner of the lhs. However, in our

case, a much simpler mechanism can be used. We pro-

pose using a ON PROCESSOR(f(i)) construct which will

map iteration i onto processor f(i). In this way we can

specify the iteration mapping at compile-time without

any runtime overhead. A similar mechanism was used

in the implementation of the Kali and Vienna Fortran

compilers [13, 5]. Actually, in some cases as above we

are obligated to specify the iteration mapping while us-

ing the private abstraction, because the lhs arrays have

been privatized and they have no speci�c owner. Of

course, if private arrays are used only on the rhs (pos-

sibly with a DISCARD option), then using the ON clause

is just an option. For those cases, private mechanism

helps the compiler to prefetch the future data before it

is needed and without necessitating expensive inspector

loops.

Cost Analysis

In terms of the implementation cost of this PRIVATE

mechanism, it is cheap and easy to implement in terms

of storage and computation time. Here we will com-

pare a serial implementation with one using the private

abstraction in a limited memory environment.

Assuming p, q and row, col are distributed in a

block fashion, and a, row and col were adjusted in a

suitable fashion that would not require interprocessor

requirement (this will be shown later), the sequential

code will be executed in

O(mz):Tfunc + (mz=NP):Tcomm: logNP

time.

On the other hand, the parallel version will take

O(mz=NP):Tfunc + 2 � ((mz=NP):Tcomm): logNP

time.

Here Tfunc is the time required to make the local

computation in the loop, NP is the number of proces-

sors, Tcomm is the time to transfer one byte of data to

another processor. We assume that a tree like broad-

cast/accumulation mechanism is used.

6.2 Compressed Sparse Block Distribu-

tions

Consider how the sparse data may be blocked prior to

distribution. We discuss two sparse block distributions:

PRV$pj=PRV$p(j) PRV$pj=PRV$p(j) PRV$pj=PRV$p(j) PRV$pj=PRV$p(j)

A p = PRV$q A p = PRV$q A p = PRV$q A p = PRV$q

j=l1:u1

BEGIN

j=l2:u2 j=l3:u3 j=l4:u4

MERGE PRV$q’s into q

END

Figure 8: Illustrating the use of private abstraction on

parallel loops.

one of them is regular or uniform which is used in cases

where the number of elements across rows or columns

of the sparse matrix is approximately the same and the

other one uses a load-balancing heuristic and distributes

and aligns related data structures accordingly since the

number of elements across rows or columns varies a lot.

6.2.1 Regular (Uniform) Sparse Block Distri-

butions

The uniform or regular sparse block distribution can be

used in cases where each sparse matrix row(or column)

is known to have approximately the same number of el-

ements, therefore there is an approximate load balance.

In such a case, it is su�cient to distribute A and row

(or col) so that each corresponding row (or column) is

stored in its entirety in only one processor. The HPF

regular block distributions divide the data array in an

even fashion without paying attention to whether the

division point is at the middle of a column or not. It is

su�cient to adjust the partition to reduce communica-

tion among intra-column elements.

Since in typical CG applications the number of

nonzero elements and the structure of the matrix is not

known until runtime, compiler cannot determine the

layout patterns for row (or col) and A at compile-time.

Therefore, these data structures are initially distributed

using HPF's regular distribution primitives. In the case

of CSC format, we use the following initial distribution

statements:

!HPF$ PROCESSORS :: PROC(NP)

!HPF$ DISTRIBUTE col(BLOCK((N+NP-1)/NP))

!HPF$ DYNAMIC, ALIGN a(:) WITH row(:)

!HPF$ DYNAMIC, DISTRIBUTE row(BLOCK)

10

The DYNAMIC keyword warns the compiler that

this distribution is temporary, actual data distribution

is dependent on the runtime data. Distributed array

descriptors (DAD) for the dynamically distributed ar-

rays are generated at runtime. DADs contain informa-

tion about the portions of the arrays residing on each

processor. The compiler uses this hint to generate com-

munication calls and to distribute corresponding loop

iterations.

We now introduce the concept of indivisable en-

tities within larger data structures. An indivisable en-

tity (atom) is a logical abstraction consisting of a chunk

of elements enclosed within two border elements, and

it cannot be divided among processors during the data

distribution process. It should completely belong to one

single processor. The following directive is used to in-

form the compiler on the logical grouping of subdata

within a larger data structure.

!EXT$ INDIVISABLE row(ATOM:i) :: col(i:i+1)

The above directive speci�es that atomic entity i of row

is encapsulated by the elements i and i + 1 of the indi-

rection array col.

The REDISTRIBUTE directive indicates that the

data is available for use in the partitioning of the

data arrays. The user is responsible for putting the

REDISTRIBUTE directive in the proper place to improve

the performance. Given the concept of atoms, redistri-

bution can be made, depending on the runtime data, in

an elegant manner.

!EXT$ REDISTRIBUTE row(ATOM: BLOCK)

This directive ensures that the elements of the row vec-

tor are distributed in a similar fashion to the regular

HPF BLOCK distribution, yet the atoms instead of in-

dividual elements are used as the basis in the distri-

bution. This ensures that elements of an atom is not

divided among two or more processors. We could use

an (ATOM: CYCLIC) distribution in a similar way. Since

we still keep the continuity of the column (or row) ele-

ments, the compiler avoids generating a full distribution

map of the size of the target arrays. A small array in

the size of the number of processors keeps the cut-o�

points, and it is replicated over all processors.

Another possibility may be extending the de�ni-

tion of HPF ALIGN to permit the alignment of atoms of

one array with the elements of another. For example, if

atoms of row array are aligned with the elements of col

array:

!HPF$ ALIGN row(ATOM:i) WITH col(i)

then any change in the distribution of the col array

is spontaneously followed by a corresponding change

the distribution pattern of the atoms (i.e., individual

columns) pointed to by the col array.

6.2.2 Irregular Sparse Block Distributions

In some types of problems, the structure of the sparse

matrix is completely irregular - or in fact has some prob-

lem speci�c structure that is identi�able to a human but

not to a compiler. For example, this might arise from a

very irregular grid model in which some grid points may

have many neighbours, while others have very few. In

those cases, neither the HPF regular block distributions

nor the above proposed uniform distributions will allow

a good load balance.

As in the regular case, the arrays are distributed

initially using HPF regular distribution directives. In-

divisable entities are de�ned in a suitable way.

!HPF$ PROCESSORS :: PROCS(NP)

!HPF$ ALIGN (:) WITH p(:) :: q, r, x, b

!HPF$ DISTRIBUTE p(BLOCK)

!HPF$ DYNAMIC, DISTRIBUTE row(CYCLIC((n+NP-1)/np)

!HPF$ DYNAMIC, ALIGN a(:) WITH col(:)

!HPF$ DYNAMIC, DISTRIBUTE col(BLOCK)

!EXT$ INDIVISABLE ROW(ATOM: i) :: COL(i:i+1)

!EXT$ INDIVISABLE A(ATOM: i) :: COL(i:i+1)

Sparse storage format speci�cation

Another alternative for informing the compiler that

there is a sparse matrix represented by a sparse matrix

storage scheme is to use an explicit directive:

!HPF$ SPARSE_MATRIX (CSR) :: smA(row, col, a)

This directive gives two clues to the compiler:

1) which sparse storage representation format is used.

2) what are the three vectors (possibly, in pointing or-

der) representing the sparse matrix, named smA.

A sparse matrix de�nition puts a tight binding between

the members of this trio, whenever any one's distribu-

tion is changed, the other two should be aligned ac-

cordingly. Furthermore, if an element of row is to be

accessed, most probably the elements it points to in col

and a will be also accessed, therefore compiler should

generate code for bringing them into memory if they are

not local. In short, the compiler can exploit the locality

rule by knowing the relation among the members of the

trio.

11

Load balancing sparse partitioners

It is possible to specify a load-balancing heuristic that

is applied to the A, row and col arrays to cluster the

rows in a way that can be distributed among the pro-

cessors in an almost even-load fashion. This could map

sparse columns onto processors in a balanced way if the

compiler applies the heuristic to the kernel arrays �rst,

and redistributes the elements of dependent vectors ac-

cordingly later. Several partitioners may be described

from simple ones that just take care of the load distri-

bution in the matrix vector multiplication to more elab-

orate ones that balances the number of columns (rows)

distributed to each processor as well as the number of

elements to ensure the load is also balanced in the other

vector operations.

Extended syntax for expressing the redistribution

of smA using a special partitioner in an HPF way might

be:

!EXT$ REDISTRIBUTE smA

USING CG_BALANCED_PARTITIONER_1

The compiler generates code for calling necessary

partitioners to determine the new data distribution and

arranging all dependent vectors accordingly.

A similar mechanism has been proposed in the

Vienna Fortran compilation system [6] whereby an in-

direct mapping is constructed and passed through the

HPF DISTRIBUTE or REDISTRIBUTE directives. It re-

mains to be seen whether this can be e�ectively imple-

mented on present generation architectures.

There are two approaches in the localization of

col array. In the �rst one, the index values of the row

(and a) array(s) are localized by the compiler by us-

ing a complicated runtime function. In the second case,

as a by-product of the partitioner, a new col array is

generated corresponding to the original vector whose

contents have been localized to point at the local row

array. It can be directly used without further manip-

ulation. This second approach is possible since it is

accessed in a read-only manner in the CG codes.

7 Conclusions

We have illustrated some of the issues arising from

the use of HPF for expressing conjugate gradient al-

gorithms. The advantages are the potential for faster

computation on parallel and distributed computers, and

additional code portability and ease of maintainance

by comparison with message-passing implementations.

Disadvantages (in common with any parallel implemen-

tation) over serial implementations are additional tem-

porary data-storage requirements of parallel algorithms.

We have identi�ed how existing features in HPF

allow e�cient expression and implementation of some of

the components of conjugate gradient algorithms. We

have also highlighted where possible extensions to HPF

will allow a compilation system to produce even more

memory-e�cient and compute-e�cient executable code.

Current HPF distribution directives only allow ar-

rays to be distributed according to regular structures

such as BLOCK and CYCLIC. Whilst this is adequate

for dense or regularly structured problems it does not

provide the necessary
exibility for the e�cient storage

and manipulation of arbitrarily sparse matrices. We

also propose extensions for the iteration mapping of the

loops employed by CG codes.

Although we have described the limitations of the

current HPF-1 de�nition and the basic requirements

for the further development of HPF-2, we have not at-

tempted to discuss how these should be implemented

within the compiler itself through directives, intrinsic

functions or some other mechanism. Instead we have

indicated in general terms that the provision of some

additional
exibility to cope with irregular problems

such as those described within this paper is essential

if HPF is to be widely adopted in place of existing mes-

sage passing technologies.

References

[1] Bailey, D., Barton, J., Lasinski, T. and Simon, H.,

Editors, \The NAS Parallel Benchmarks", NASA

Ames, NASA Technical Memorandum 103863,

July 1993.

[2] Barrett, R., Berry, M., Chan, T.F., Demmel, J.,

Donato,. J., Dongarra, J.J., Eijkhout, V., Pozo,

R., Romine, C., van der Vorst, H.A. \Templates

for the Solution of Linear Systems: Building Blocks

for Iterative Methods", SIAM, 1994.

[3] Bernstein, A.J., \Analysis of Programs for Paral-

lel Processing," IEEE Transactions on Computers,

15(5), October 1966.

[4] Bogucz, E.A., Fox, G.C., Haupt, T., Hawick,

K.A., Ranka, S., \Preliminary Evaluation of High-

Performance Fortran as a Language for Computa-

tional Fluid Dynamics," Paper AIAA-94-2262 pre-

sented at 25th AIAA Fluid Dynamics Conference,

Colorado Springs, CO, 20-23 June 1994.

12

[5] Chapman, B., Mehrotra, P., and Zima, H., \Pro-

gramming in Vienna Fortran," Scienti�c Program-

ming, 1(1):31-50, Fall 1992.

[6] Chapman, B., Mehrotra, P., Mortisch, H., and

Zima, H., \Dynamic data distributions in Vienna

Fortran," In Proceedings of Supercomputing '93,

Portland, OR, 1993, p.284.

[7] Dongarra, J.J., Du�, I.S., Sorensen, D.C., van der

Vorst, H.A., \Solving Linear Systems on Vector

and Shared Memory Computers", SIAM, 1991.

[8] Du�, I.S., Erisman, A.M., Reid, J.K., \Direct

Methods for Sparse Matrices", Clarendon Press,

Oxford 1986.

[9] Cheng, Gang., Hawick, Kenneth A., Mortensen,

Gerald, Fox, Geo�rey C., \Distributed Compu-

tational Electromagnetics Systems", to appear in

Proc. of the 7th SIAM conference on Parallel Pro-

cessing for Scienti�c Computing, Feb. 15-17, 1995.

[10] Fox, G., S. Hiranandani, K. Kennedy, C. Koelbel,

U. Kremer, and C.-W. Tseng, Wu, M., Fortran D

Language Speci�cation, Technical Report CRPC-

TR90079, Center for Research on Parallel Compu-

tation, December 1990.

[11] Hockney, R.W., and Berry, M., (Editors) PARK-

BENCH Committee Report-1, \Public Interna-

tional Benchmarks for Parallel Computers", Febru-

ary 1994.

[12] High Performance Fortran Forum (HPFF), \High

Performance Fortran Language Speci�cation," Sci-

enti�c Programming, vol.2 no.1, July 1993.

[13] Koelbel, C. and Mehrotra, C., \Compiling Global

Name-Space Parallel Loops for Distributed Ex-

ecution", IEEE Trans.of Par.and Dist.Systems,

2(4):440-451, October 1991.

[14] Koelbel, C.H., Mehrotra, P., Saltz, J., and Berry-

man, H., \Parallel Loops on Distributed Ma-

chines," in Proc. of the Fifth Distributed Memory

Computing Conference, 1990.

[15] Koelbel, C.H., Loveman, D.B., Schreiber, R.S.,

Steele, G.L., Zosel, M.E., \The High Performance

Fortran Handbook", MIT Press 1994.

[16] Kumar, V., Grama, A., Gupta, A., and

Karypis, G., \Introduction to Parallel Comput-

ing: Design and Analysis of Algorithms," Ben-

jamin/Cummings, 1994.

[17] Metcalf, M., Reid, J., \Fortran 90 Explained", Ox-

ford, 1990.

[18] Ponnusamy, R., \Runtime and Compilation Meth-

ods for Irregular Computations on Distributed

Memory Multiprocessors", Ph.D. Dissertation,

Syracuse Un., May 1994.

[19] Ponnusamy, R., Saltz, J. and Choudhary, A.,

\Runtime Compilation Techiques for Data Par-

titioning and Communication Schedule Reuse",

Technical Report, UMIACS-93-32, University of

Maryland, April 1993.

13

