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Abstract

The goal of the Em project is to make parallel programming easily acces-

sible to a broad community of scientists. Previous approaches such as the use

of general parallel programming languages and parallelizing compilers for se-

quential languages have fallen short in this respect. The approach is to design

a special purpose programming language which is oriented towards a speci�c

area of application. The result is a specialized and e�ective scienti�c tool.

Em is a high-level programming system which puts parallelism into the

hands of scientists who are not sophisticated programmers. By restricting and

simplifying the programming interface, Em eases both the conceptual task of

the programmer and the analytical task of the compiler. The model of success

is the �nancial spreadsheet, a specialized tool which makes programmers out

of relatively naive end-users and makes computer technology broadly accessible

to business. Here the initial prototype is described, motivated by practical

ecological modelling problems.

�Supported by a Patricia Roberts Harris Fellowship
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1 Introduction

Parallel computing hardware now is a�ordable to a broad range of scienti�c users.

Current parallel programming e�orts have focused on application areas where special-

ist programmers can extract the maximum possible performance from the hardware.

The decreasing cost of hardware will allow a much larger class of users to exploit

parallelism if the programming model can be simpli�ed. The main obstacle to the

widespread use of parallel computing hardware is the di�culty of the programming

model.

The goal of the Em 1 project is to put into the hands of knowledgeable scientists

the ability to program parallel systems. The approach is to design a special purpose

programming language which is oriented towards a speci�c area of application. By

restricting the problem domain the complexity for the programmer is reduced, and

at the same time compilation is simpli�ed. The result is a specialized and e�ective

scienti�c tool.

Two examples of specialized programming systems are �nancial spreadsheets such as

Lotus and symbolic computation systems such as Mathematica. Each of these tools

has allowed a community of users to write applications that previously required spe-

cialist programmers. Many users simply would be unable to develop such applications

without the use of these specialized software systems.

The successes of these tools share three principles:

1. Each addresses a restricted and well-de�ned problem domain.

2. The interface to each tool is designed to be intuitive to the target user commu-

nity.

3. Features from declarative and functional programming are incorporated into

the language, thereby freeing the user from programming details.

the need to manage storage and other machine resources.

The design of Em follows these same three principles:

1. Em's problem domain centers on the class of simulation problems which is stat-

ically decomposed, has communication localized to a �xed neighborhood, and

has time incremented synchronously after all cells are updated.

2. Em provides a high-level interface with a domain-speci�c library. The library

can be customized to a speci�c area of scienti�c investigation.

1pronounced �em
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3. Em programs are almost purely functional. This relieves programmer of the

need to manage storage and other machine resources, a most di�cult task when

writing parallel programs.

The rest of this paper is organized as follows. Section 2 details the advantages of

a domain-restricted language. Section 3 gives an overview of Em: �rst the major

components of the system are explained; next a wetland ecosystem example is de�ned,

along with it's implementation in the Em language. In Section 4 the Em programming

language is compared to existing parallel program systems, and the speci�c goals of

the project are related to design of the language. To better support parallelism, Em
enforces a set of array access rules. These rules are presented in Section 5. The unique

features supported by the Em language are explained in detail in Section 6 using the

wetland example. Section 7 justi�es the design decisions made in light of con
icting

requirements. Section 8 shows how the major paradigms for describing ecosystem

models map into Em programs. In Section 9 Em is compared and contrasted with

related work, and �nally, plans for future work are discussed.

2 Domain-Speci�c Parallel Programming

In the long run, high-level programming environments incorporating do-

main knowledge may well supersede current low level programming tools.
2

Em is designed to provide scientists with a powerful, convenient, and easily understood

tool for expressing, understanding, and modifying domain-speci�c programs. The

class of problems which Em addresses have been called loosely synchronous [FJL+88],

and the type of loop required to solve this class of problems has been called a

sequentially-iterated parallel loop [HA90]. The iterative structure of such problems

occurs commonly in in computational science [FJL+88, HA90].

The loop nest required for this domain-restricted problem is one in which the outer

temporal DO loop is sequential, synchronizing after each time step. The inner spatial

loops are those which may run in parallel, depending on data dependences, and update

large data sets.

The data for the inner spatial loops are partitioned across processors. Each proces-

sor executes the same code for di�erent portions of the data, and communication

is required for processors which must share neighboring data. Such problems are

computationally intensive, highly structured and amenable to a declarative style of

programming.

2from [ZC91], p. 4
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The strengths of Em as a parallel programming language for scientists who are not

programming specialists derive from the features of the restricted domain.

1. An Em program is data parallel: the same computational kernel is performed at

every cell of the grid by di�erent processors at each instant in simulated time.

The Em language re
ects the structure of a speci�c problem domain, and so is

architecture-independent.

2. The computational kernel is speci�ed in a declarative style, enabling the pro-

grammer to focus on what the model is to compute, and not how to compute

it. The ordering of statements, the reuse of memory, and the transformation of

loops to maximize parallelism are the responsibility of the compiler.

3. The domain-speci�c library used by Em is intuitive for scienti�c programmers

and is also an e�cient implementation of much of the kernel code. Each pro-

cedure in the library includes with it a procedure summary which re
ects an

analysis of data accesses made by that procedure.

3 Overview of Em

3.1 Components

A block diagram of the Em programming system is shown in Figure 1. Programming

using Em is divided between two components: Model Description and Domain-speci�c

Programming. The �rst component contains the code for the model description, i.e.,

code for problems which are loosely sunchronous. It is written in the Em language,

and consists of a high-level, declarative description of the model: space and time

bounds, state variables, and the procedures which the model calls.

All procedures which are called in the Em code are contained in the Domain Library,

DS-lib. These procedures are written in a source language, e.g. Fortran or C, for which

there is a compiler on the target architecture. Procedures are written to conform to

simple rules established by the Em programming system: the procedure's calling

sequence is standardized; each procedure in the DS-lib has a procedure summary: a

description of the data accesses performed by that procedure.

Both the Model Description and the Domain Library are user-written. In order for

Em to tailor the application program to a speci�c architecture, Em is bundled with

an Em Library, Em-lib, which contains data access routines. These routines are used

by the the programmer to read and write data.
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Figure 1: Block Diagram of Em Programming System

Generating executable code for the target architecture is a two-step process. The

Em compiler generates the main source code for the target architecture. Next, the

compiler/linker on the target architecture generates the �nal executable code, using

the main source code, the procedure source contained in the DS-lib, and data access

routines contained in the Em-lib.

Finally, the simulation code is run within a standardized I/O interface.

The unique features of models written using Em are detailed below.

3.2 An Example

Em is explained through the use of an example from ecology.

The Las Tablas de Daimiel National Park in the La Mancha region of Spain is a

wetland, and is home to many species of ducks. The region, hot and dry in the

summer, is known for its wine and cheese. Rainfall in the area has been relatively
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low for the past 15 years, causing farmers in the surrounding countryside to drill deep

wells to irrigate their crops. Compounding the lack of inadequate rainfall, the low

price of grapes has caused many farmers to switch to other crops, such as corn, which

require more water.

The pumping of water causes the water table in the park to drop, often to the point

where the wetland dries up and the ducks are forced to leave. In addition, the risk of

�re in the dry marshes is high. In order to develop policy for the rationing of water to

farmers, it is important to model the e�ect of such policies on the duck populations

and on the risk of �re.

This ecosystem is described easily using Em. Each cell in the simulation is de�ned by

�ve state variables:

1. the �xed geography of the region,

2. the concentration of water,

3. the amount of water being pumped,

4. habitation by ducks, and

5. the risk of �re.

The simulated ecosystem has �ve processes:

1. randomized determination of rainfall based on historical data,

2. 
ow of water at and below the surface,

3. determination of pumping levels according to the policy being simulated,

4. the movement of ducks, and

5. computation of the risk of �re.

The geographical area is modeled as a three-dimensional grid with the x coordinate

(corresponding to latitude) ranging from 1 to 100 and the y coordinate (corresponding

to longitude) ranging from 1 to 400. The z coordinate (corresponding to depth) ranges

from 1 at the surface to 10.

In this example, an Em-lib is assumed to include procedures which implement the

basic processes of the simulation. An Em program which describes this model is

shown in Figure 2.
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model wetland over time: 1..20000;

space

x: 1..100;

y: 1..400;

z: 1..10;

end space

variables

int geography;

int water;

int pumping;

int ducks;

float risk_of_fire;

end variables

simulation

initialize(geography)

initialize(water)

initialize(pumping)

initialize(ducks)

loop

flow(water,geography, water)

extract(water, pumping, water)

move(ducks, water, ducks)

estimate_risk(water, risk_of_fire)

rain(water,water)

end loop

save_results(ducks)

save_results(risk_of_fire)

end simulation

Figure 2: Em Wetland Model
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4 Design Features

4.1 Language Design Philosophies

The design philosophy for parallel programming systems often includes the struc-

ture of the target architecture and requirements for stringent performance. Lan-

guages which stress message passing and data parallelism were developed to meet

the immediate needs of the programmers of new MIMD and SIMD architectures re-

spectively [FJL+88, Hil85]. Highly parallel functional languages were embraced by

designers of dynamic data
ow architectures [NA89, Nik90]. Each of these approaches

has added to the understanding of parallel programming, achieving high performance

on problems which match the structure of the corresponding architectures.

These architecture-independent parallel programming have had limited success:

1. Data parallel programming model has found the widest application, being ap-

plied to vector, SIMD, and MIMD architectures [CFR+92, Thi89, CG89]. How-

ever not all algorithms have a natural and e�cient expression in a data parallel

language [FJL+88].

2. Functional languages support increaced parallelism, but have not achieved high

performance on any parallel execution platform [VB90, CFD90] because of their

reliance on dynamic data mechanisms and on compilers to map the language to

the target architecture.

3. Message passing extensions to sequential programming languages have been

developed which are portable between a wide variety of MIMD architectures

and which achieve high performance [GBD+93]. The parallel aspect of this

programming model is an irregular pattern of communication, and usually is

too di�cult for most non-specialist programmers. Additionally these extensions

limit the portability of the code.

In the design of Em, an element is borrowed from each of these successes:

1. Data parallelism is a natural programming paradigm for many scienti�c prob-

lems, and it allows a parallelizing compiler to reduce the problem of process

decomposition to that of data distribution.

2. Functional programming languages reduce data dependences by enforcing a

restricted storage model, thereby increasing parallelism.

3. Most parallel algorithms can be expressed in terms of sequential primitives

which are most naturally and e�ciently expressed in a conventional program-

ming language.
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4.2 Expression and Analysis of Parallelism

Data parallel and functional programming paradigms require the programmer to ex-

press algorithms so that parallelism is implicit in the program. In contrast, sequential

languages augmented with message passing require the programmer to express explic-

itly the parallelism in algorithms.

The programming model for explicit parallel systems directly re
ects the placement

of data and communication between computing elements as speci�ed by the program-

mer. But in order for the program to achieve high performance, the programmer must

perform a sophisticated ad hoc analysis of the program, and also must have a clear

understanding of the execution model. More implicit systems rely on a compiler or

some other tool to introduce parallelism automatically. The programmer thus has

less control over the use of parallelism and the allocation of resources.

In most current systems, resource allocation is shared between the system and the

programmer: the programmer speci�es the data placement and the system automat-

ically inserts the communication implied by the partition [ZBG88, CFR+92]. The

scienti�c community continues to use Fortran and its variants as a programming lan-

guage, and the compiling systems rely on the fact that the programmer provides the

data decomposition. Given such a standard imperative language, the compiler must

perform program analysis in order to transform the sequential program into equiv-

alent concurrent code for execution on the parallel machine. In Em, the goal is to

capture the power of implicit systems without sacri�cing the performance of explicit

parallel programming.

Compiler technology for vector and parallel computers has advanced both in lan-

guage analysis and in the mapping to the target machine. Parallelizing compilers

for imperative languages have concentrated on nested DO loops, which are of pri-

mary importance for scienti�c programming. The techniques developed for nested

DO loop optimization rely on subscript analysis, which characterizes the necessary

order between operations in di�erent iterations of a loop. When dependence analysis

can be expressed as an integer programming problem, its exact solution is exponen-

tial [Pug92]; in the general case it is undecidable.

Optimizing compilers also must make optimum use of the specialized hardware fea-

tures of the target machine. Loop transformations [Wol89, ZC91] performed by the

compiler must take into account not only the data dependence constraints but also

the machine architecture.

Two factors limit the e�ectiveness of these compilers: the structure of most programs

is not su�ciently regular, and low level code is hard to analyze. Even a program

which might be written in a regular style might not be parallelizable by the compiler,

simply because a general purpose language is used.
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The design of the Em language addresses the current state of compiler technology in

several ways:

1. Programs expressed in Em have regular communication patterns.

2. Em programs are data parallel and functional, and are expressed in terms of

calls to a domain-speci�c library, DS-lib.

3. The e�cient implementation of procedures in the DS-lib is accomplished using

conventional imperative languages and ad hoc analysis techniques.

4.3 Domain-Speci�c Compilation

Em not only simpli�es programming, but also simpli�es the task for the compiler.

The problem of compiling models is divided between two portions: the compilation

of regular programs consisting of pre-analyzed procedures; and the e�cient imple-

mentation and accurate analysis of those procedures. The scheduling of regular, fully

analyzed programs can be performed well using current compiler technology. The use

of a domain-speci�c library eliminates the need for the compiler to analyze irregular

code.

Because Em leaves the speci�cation of most resources to the compiler, it is a highly

implicit parallel programming system. The use of conventional programming lan-

guages and ad hoc analysis techniques in the development of the DS-lib will provide

performance close to that of an explicitly parallel programming system.

The Em language does not deal with resources explicitly. The Em compiler generates

the decomposition, which is used by the parallelizing compiler on the target machine.

The user selects the parallel communication package to be used, and the Em com-

piler inserts the communication messages. The parallelizing compiler distributes the

execution of the procedures across processors.

In the wetland example, as in most Em programs, the structure of the Em program is

trivial. The kernel of the computation takes place in a sequence of calls to procedures

in the domain-speci�c library. This reduces the problem of program analysis to that

of interprocedural analysis, a problem which is generally more di�cult than global

program analysis.

The compilation strategy of the Em compiler lies in the fact that data access charac-

teristics for the Em procedures are known to the compiler without any compile-time

analysis. The data access patterns of each DS-lib procedure are described in a proce-

dure summary which is entered into the library along with the code which implements

the procedure.
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The procedure summary speci�es exactly the information needed by the Em compiler

to perform resource allocation and parallelization. A range of strategies are available

for deriving the procedure summary: automatic analysis, programmer-aided analysis,

or explicit speci�cation by the programmer.

In the current implementation of Em, the information is explicitly provided by the

programmer. Clearly it is preferable to automate the derivation of program sum-

maries, but this is an open area of research. From an engineering point of view, it is

important that the project does not depend on such solutions.

The procedure summary is used for two tasks performed by the Em compiler: gener-

ating the target source code and generating the data partition. Such information has

already been used successfully for generating data partitions [HA90].

The Em compiler does not generate assembly language, but instead generates source

code for some standard imperative language supported by the target architecture.

Currently Em's high level language may be mapped to Fortran or C(++), thereby

giving the programmer 
exibility in porting application code to other machines. The

target language must be able to call the procedures in the DS-lib, so the choice of a

target language is not arbitrary.

Additionally, the programmer selects a serial model or a parallel model. This facil-

itates program debugging. Since parallel programs are di�cult to debug, Em will

generate serial code so that the model can be debugged easily. Em generates parallel

code for the parallel communication system that resides on the target machines.

5 Em Array Access Rules

Em restricts memory reads and writes in order to promote parallelism. These rules

serve to eliminate resource dependences.

The following simple rules are enforced:

1. A read may be to any previous time step.

2. Any read to the current time step causes textual order of procedure invocation.

3. All writes must be to the current time step.

4. Writes may overlap between procedures (causing an output dependence) pro-

vided the overlap is at the current cell. In this case the compiler must preserve

the textual order of procedure invocation.
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5. If a write is declared a reduction at any location, then procedure invocation

order is not important. This rule may be superceded by Rule 4.

6. Any other write is an error.

6 Em Language Features

The unique language features of Em are described through the use of the wetland

program shown in Figure 2.

Em has two unique data types: coordinate variable and abstract variable. An Em
program has three main components; coordinate declaration, abstract variable decla-

ration, and commands. All computations are performed within procedures from the

domain-speci�c library. Procedures are de�ned implicitly by use.

6.1 Em Data Types

6.1.1 Coordinate Variable

A set of coordinate variables are used to de�ne the Em model space. The model

space is composed of the spatial coordinates, textually ordered, and the temporal

coordinate, time, which is the last component of the space. By default coordinate

variables are incremented by 1.

time has two properties: a lower bound and an upper bound. A lower bound and

upper bound specify the minimum and maximum values, respectively, for the coor-

dinate in the model space. A spatial coordinate has three properties: lower bound,

upper bound, and wrapped.

The keyword wrapped speci�es a non-linear coordinate space. If not declared as

wrapped, the coordinate is in linear space. If it were wished to, say, de�ne the x

coordinate as wrapped, then x would be de�ned as wrapped x: 1..1000. Because

of the di�culty in handling boundary conditions in theoretical models such as forest

growth, spatial coordinates typically are wrapped [Bel]. But in the wetland example

a geographic area is being modelled, and wrapped is inappropriate.

The wetland model has three spatial coordinates, x, y and z, and the temporal coor-

dinate time. The compiler generated DO loop nest will consist of the variables x, y,

z, and time.

Coordinate variables are read only, and may be referenced (read) in order to in
uence
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the computation using a conditional expression.

6.1.2 Abstract Variable

The second Em data type is the abstract variable. Abstract variables are declared

within the delimiters variables ... end variables. The variables water and

ducks are two of the abstract variables in this program.

Notice how these variables look as though they are scalars. In the Em language, pro-

grammers use abstract variables instead of explicitly-de�ned arrays for state variables.

An abstract variable is an application-speci�c data type which allows the programmer

to describe what will be computed, but not how it will be computed.

Viewed functionally, a simulation calculates an iterated expression for a set of vari-

ables which are de�ned incrementally. Variables in a simulation have spatial com-

ponents and a temporal component, and are typically implemented as an array data

structure in an imperative language.

Without the ability to avoid implementation details, a programmer must use prevail-

ing languages. The syntax and associated semantics of array declaration and array use

in imperative languages vary signi�cantly. Being tied to a speci�c source language

hinders software portability. In addition, increasing the capability of the program

invariably requires the rede�nition of the data structures and those routines which

access them { a time consuming and error-prone task. Em's abstract variables allow

the programmer to abstract away implementation details.

A concrete variable is a �nite and bounded data structure which implements an ab-

stract variable using a �nite amount of memory. It is the job of the Em compiler

to generate a concrete variable for each abstract variable. Program summaries, dis-

cussed below, provide the means to deduce the concrete representation for an abstract

variable.

Abstract variables have two attributes: primitive data type and distribution. The

primitive data types are integer and real (
oat). The distribution may be de�ned

as either dense or sparse. Distribution directly re
ects implementation: state vari-

ables which are sparsely distributed may be more e�ciently implemented as a linked

list. The exact implementation is determined by the compiler. The default distri-

bution is dense. All variables in the example have dense distribution. Should it be

desired to model ducks as sparse, the declaration would be int ducks of sparse

distribution;.

Reads and writes to abstract variables are performed solely through the Em data

interface routines, comtained in the Em-lib. These routines are packaged with the Em
system, and are tailored to the target source language and target machine.
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6.2 Em Loop Command

Notice how the loop in the example is de�ned declaratively: a loop command is simply

loop ... end loop. The loop nest level of the variables and the loop bounds are

left unspeci�ed by the programmer. As before, Em allows the implementation details

of the loop nest to be abstracted away. The Em compiler determines the optimal

loop nest. The maximum loop bounds for each level (in this case for x, y, z, and

time) are also de�ned declaratively. The actual loop bounds are deduced using the

declared model space and data access information in the procedure summaries. An

optimized loop nest is determined based on the target source language and machine

architecture.

Typically optimizing compilers perform loops transformations by rewriting the orig-

inal loop nest written by the programmer. Em takes a di�erent approach: since the

Em compiler has facts about the loop variables, it can determine the optimal loop

nest. The programmer is not burdened with the task of specifying the loop in the

�rst place.

The loop command has restricted use: a loop command appears only once in an Em
program; a loop commands may not be part of a conditional command. In the event

that the use of loop commands requires expansion, the language can be modi�ed

appropriately.

6.3 Em Procedure Summary

Each Em library routine has a procedure summary, similar in spirit to [Cal88]. As

stated in Section 3, there is a standardized calling sequence for procedures which

bears a strong resemblance to procedure invocation in functional languages. Specif-

ically, a procedure uses value-result semantics for procedure paramaters, and has no

access to non-local variables. In essence, then, the procedures appear to act as func-

tions, returning one or more values, with no side-e�ects. Conventional programming

languages, and Fortran in particular, require extensive interprocedural analysis due

to the e�ects of aliasing, and equivalence statements. The restrictions placed on Em
procedures makes analysis much simpler.

At the statement level, Em uses standard imperative semantics: variables have values

which can be modi�ed by assignment statements. This programming paradigm is

quite natural to programmers familiar with conventional programming languages,

and makes programming in Em an easy task.

Figure 3 shows the procedure summaries for all procedures in the example. The

procedure summary contains data access information as read, write and +reduce
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procedure flow(oldwater, soilmap, newwater)

read oldwater [0,0,0,-1] [0,0,-1,-1]

read soilmap [0,0,0,na] [0,0,-1,na]

write newwater [0,0,0,0]

+reduce newwater[0,0,-1,0]

procedure extract(oldwater, pumping, newwater)

read oldwater [0,0,ub,-1]

read pumping [0,0,na,na]

write newwater [0,0,ub,0]

procedure move(oldducks, water, newducks)

read oldducks [1,0,na,-1] [1,1,na,-1] [0,1,na,-1] [-1,1,na,-1]

read oldducks [-1,0,na,-1] [-1,-1,na,-1] [0,-1,na,-1] [0,0,na,-1]

read water [0,0,lb,-1]

write newducks [0,0,na,0]

+reduce newducks [1,0,na,0] [1,1,na,0] [0,1,na,0] [-1,1,na,0]

+reduce newducks [-1,0,na,0] [-1,-1,na,0] [0,-1,na,0] [0,0,na,0]

procedure estimate_risk(water, fire)

read water [0,0,lb,-1]

write fire [0,0,na,0]

procedure rain(oldwater, newwater)

read oldwater [0,0,0,-1]

write newwater [0,0,0,0]

Figure 3: Procedure Summaries for Wetland Model

(sum reduction) and *reduce (product reduction).

A relative address speci�es a cell address in the model space relative to the current

cell. The textual de�nition of coordinates in the Em model space specify the order

of relative address coordinates. In a three-dimensional space, the current cell has

relative address [0,0,0] and absolute address [x,y,time]; \[1,-1,-1]" refers to

the the current cell's southeastern neighbor, in the previous time step. Thus the

absolute address of the southeastern neighbor is (x+1, y-1, time-1) .

An absolute address is used to isolate a slice of the iteration space. An expression

\[lbjub] [ [+j-] INT ]", where lb and ub denote, respectively, the declared lower bound

and upper bound of the coordinate, and INT denotes an integer. The lower and
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upper bounds are speci�ed symbolically in the program summary; the actual values

are determined by the Em compiler. Finally, the string, \na", denotes the coordinate

is inapplicable or unnecessary.

All coordinates must be speci�ed, that is, if the Em model de�nes a 4-dimensional

space, then a 4-tuple must be speci�ed for each variable.

The data access patterns are used by the Em compiler to

1. generate data dependences,

2. generate the data structures for the concrete variables,

3. de�ne DO loop bounds,

4. and generate, if necessary, conditional commands within the DO loop.

Let's examine a little further just what these data access patterns mean to the pro-

gramming model.

If all variables are read only from previous time steps, then there are no read depen-

dences in the current time step. In this case, all data reads can be arbitrarily ordered

within the current time step. As evidenced in the wetland example, this cannot be

done.

Notice that both routines flow and extractwrite to water at the current cell address.

This constitutes an output dependence. This dependence imposes sequentiality on

the order of execution of the two procedures.

The execution of procedure move is restricted in the x, y, and z coordinates: the

restriction on x and y are due to non-local reads and writes; the restriction on z is

due to execution of the procedure only at the \surface" of the grid, as evidenced by

the lb declaration in the procedure summary.

Notice that a dependence graph for this program can be generated even when the

scheduling of the program into loops has not been done. Because of the features of

the language, Em does not need to do loop normalization. The important aspect to

realize here is this: the nesting order of the loop is really a scheduling decision rather

than an inherent dependence relation.
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6.4 Output Code

For ease of explanation, Figure 4 shows the generated serial Fortran code optimized

only for Fortran's column-major array access ordering. Figure 5 shows generated

serial C code. The procedure summary information induces both the bounds on the

spatial variables, and the concrete data structures. Array storage is allocated only

for needed space.

Procedures move, estimate risk and extract operate on \slices" of the z-component

of the iteration space: move and estimate risk at the surface, and extract at the

lowest level. Hence the generated conditional execution of these procedures contingent

on z.

The conditional execution of flow contingent on z enforces flow to execute within

bounds. The conditional execution of move and estimate risk contingent on x and

y are for similar reasons. rain is the only procedure which has unconditional spatial

execution.

The procedure summaries contain reduction statements for variables ducks and water.

The variables water and ducks both require that two states are saved for the simu-

lation: the current time, and one time-step back. The generated code calls an Em-lib

function to initialize the reductions for ducks and water in the next time step. Be-

cause they are declared as sum reductions, the initialization values are integer zero.

Initialization for reduction is applied to these two variables at the end of the spacial

loop nest iteration. Local variables which are required are denoted zem, concatenated

with a number.
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program wetland

integer time

integer x

integer y

integer z

integer geography(100,400,10)

integer water(100,400,10,2)

integer pumping(100,400,1,1)

integer ducks(100,400,2,1)

real risk_of_fire(100,400,1,1)

integer zem1

call initialize(geography,100,400,10,1)

call initialize(water,100,400,10,1)

call initialize(pumping,100,400,1,1)

call initialize(ducks,100,400,1,1)

do time = 1,20000

do z = 1,10

do y = 1, 400

do x = 1, 100

if (z .gt. 1) then

call flow(water, geography, water, x, y, z, time)

endif

if (z .eq. 10) then

call extract(water, pumping, water, x, y, z, time)

endif

if (z.eq.1 .and. x.gt.1 .and. x.lt.100 .and.

& y.gt.1 .and. y.lt.100) then

call move(ducks, water, ducks, x, y, z, time)

endif

if (z .eq. 1) then

call estimate_risk(water, risk_of_fire, x, y, z, time)

endif

rain(water, x, y, z, time)

enddo

enddo

enddo

zem1=emcurtime(time)

do x = 1,100

call emwrite(water,x,1,1,zem1,0)

enddo

do y=1,400

do x=1,100

call emwrite(ducks,x,y,1,zem1,0)

enddo

enddo

enddo

call save_results(ducks,100,400,1,1)

call save_results(risk_of_fire,100,400,1,1)

end

Figure 4: Serial Fortran Code Generated by Em for Weland Example
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#include "emlibc.h"

#include "wetland.h"

#include <malloc.h>

int time, x, y, z;

int *geography;

int *water;

int *pumping;

int *ducks;

float *risk_of_fire;

int zem1;

main() {

geography = (int*)malloc(100*400*10* sizeof(int));

water = (int*)malloc(100*400*10*2* sizeof(int));

pumping = (int*)malloc(100*400*1*1* sizeof(int));

ducks = (int*)malloc(100*400*2*1* sizeof(int));

risk_of_fire = (float*)malloc(100*400*1*1* sizeof(float));

initialize(geography,100,400,10,1);

initialize(water,100,400,10,1);

initialize(pumping,100,400,10,1);

initialize(ducks,100,400,1,1);

initialize(risk_of_fire,100,400,1,1);

for (time=0; time < 20000; time++) {

for (x=0; x < 100; x++) {

for (y=0; y < 400; y++) {

for (z=0; z <10; z++) {

if (z > 0) flow(water,geography,water,x,y,z,time);

if (z == 9) extract(water,pumping,water,x,y,z,time);

if (z==0 && x>0 && x < 99 && y>0 && y < 99) {

move(ducks,water,ducks,x,y,z,time);

}

if (z==0) estimate_risk(water,risk_of_fire,x,y,z,time);

rain(water,x,y,z,time);

}

}

}

zem1 = emcurtime(time);

for (x=0; x<100; x++) {

emwrite(water,x,1,1,zem1,0);

}

for (x=0; x<100; x++) {

for (y=0; y<400; y++) {

emwrite(ducks,x,y,1,zem1,0);

}

}

}

save_results(ducks,100,400,1,1);

save_results(risk_of_fire,100,400,1,1);

}

Figure 5: Serial C Code Generated by Em for Weland Example
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7 Design Issues

� Em is a highly implicit system which relies heavily on automatic parallelization,

mapping, and resource allocation in the compiler.

This approach is known to generate non-optimal code in many cases. The design

of Em restricts the problem domain and requires that much program analysis

be performed by the implementer of the intrinsic library. The performance of

the compiler on the remaining regular program structure will be close to that

of hand-coded programs. For example, parallelizing compilers do not generate

code to do red-black tiling communication [FJL+88], but due to the restricted

computational problem domain, this type of communication pattern could be

generated by Em, thereby increasing performance.

� The large body of domain-speci�c code in the DS-lib may not be portable to

other architectures.

While programs written in the Em language are architecture-independent, port-

ing the library may be a daunting task. Since the library is implemented in

a standard language, the portability of the library should be no less than the

portability of those languages.

� The Em programming language is designed as a restriction on imperative pro-

gramming languages.

Goto statements, concealable side e�ects, and procedures as parameters are not

allowed. The result is that Em is a constrained language, which greatly simpli�es

program analysis and enhances the ability to perform program reasoning. As

will be discussed in Section 6, the most restrictive aspect of functional program-

ming is the treatment of aggregate data structures such as arrays. In order to

eliminate program dependences wherever possible, the model of storage update

must be constrained. These constraints have been weakened as far as is possible

without introducing program dependences. as is detailed in Section 8.3.

The minimization of program dependences allows Em programs to be mapped

to a wide variety of sequential and parallel architectures, without the need

for program rewriting. The strongest storage update model is write-once which

allows synchronization to be combined with reading and writing, and eliminates

resource dependences. Weaker models preserve this desirable property while

providing a more convenient programming model.

� Em is a new programming language, and most new languages have a problem

with user acceptance.

Mulitprocessor architectures are becoming increasingly complex, and so too

is the programming of these archtitectures with explicit message passing lan-

guages. If current trends continue, multiprocessing environments will become
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commonplace, and some form of high level programming environment will be

essential. The form of this environment is not yet established. Compilers for

sequential languages to parallel architectures do exist, but compilers cannot do

everything: programmers must help. Such compilers are used for \dusty decks",

but as the �eld matures, more and more code will be written, and rewritten, in

the newer languages.

Em will meet with acceptance provided there are bene�ts to its use. Em's

compiler optimization is greatly facilitated because of having a restricted lan-

guage and a library with procedure summaries: most compilers do not perform

interprocedural analysis, not even for sequential machines. Interprocedural op-

timizations that are missed by such compilers are handled in Em. This, coupled

with using a restricted language to achieve automatic scheduling will provide

the base on which to rate performance.

8 Ecosystem Modelling

In this section, the computational problem domain and the programming models used

to implement these problems are discussed. Based on the programming models, the

required memory models supported by Emare presented.

Ecosystemmodels typically specify the simulation space as a 2- or 3-dimensional space

in time. Each cell in the space has local, internal attributes, such as root density, tree

type, animal species. The entire space may also have global, external factors, such

as oxygen, sunlight, rain, climate, pollutants. External factors (also called forcing

functions, or exogenous variables) usually drive the simulation, but are not a�ected

by the simulation. Models may either be theoretical, or based on geographical areas.

Plant growth models are distinguished by the fact that the cell's attributes are �xed

in their location throughout the simulation. That is to say, trees grow and die, but

do not move to another cell; tree growth, by de�nition, never extends beyond a cell

boundary. This does not preclude the introduction of seeds for growth: in this case,

seeds are disbursed over the terrain, yet once planted, they remain �xed.

Population studies may describe migration, reproduction, and/or competition be-

tween species in a particular region. Typically the space is sparsely populated with

the species, usually one per cell. These models are distinguished by the fact that

migration of entities across cell boundaries occurs. Population models may or may

not involve external factors. For models which do not involve external factors, only

those cells which are occupied require simulation. Models which incorporate both are

more complex, and require all cells to be updated.

The calculation performed in each cell, then, is a function of the local and/or global
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attributes to which it has been assigned, and whether or not entities are densely or

sparsely distributed across the space.

In general the models have synchronous time steps, and each cell is updated at the

current state based on attributes (variables) contained in a de�ned neighborhood,

from previous states.

8.1 Ecosystem Paradigms

System Dynamics modelling is used extensively in ecosystem modelling [HJ77] and

may be considered a simpli�ed version of di�erential equation modelling. The change

of each state variable in a cell over time is determined by the input and output


ows. The change of a state variable in spacial simulations is determined for a cell

by 
ows between the cell and its neighboring cells. The rate of transfer of each 
ow

is determined by an equation, which expresses the rate of 
ow as a function of the

values in neighboring cells.

Ecological Field Theory (EFT) [WSPW89] is an extension of classic neighborhood

models. In the models just discussed, each cell reads data from neighborhood cells,

writes data only in it's own location. EFT models spatial in
uences between cells

as in
uence domains: a cell calculates it's in
uence(s) on each neighboring cell and

updates each neighbor's in
uence domains. In general the spatial composition of

the in
uence zone changes dynamically, e.g., with the growth or death of a plant.

In turn, plant growth calculated by a cell is a function of state variables within its

neighborhood, and of the accumulated in
uences written by neighboring cells.

Ecologists have begun to formalize theories [AN90] using the formal speci�cation

language z. The reasons stated for using such formalism are ease and clarity of

description, and to provide a mathematical basis for comparison between theories.

8.2 Programming Models

Programming models are used to implement ecosystem paradigms. In general, ecosys-

tem models solve recurrence equations. The programming model that is selected to

solve these equations is determined by the programmer. Some choices of program-

ming model are better than others; this is a matter of software design and not relevant

to this discussion.

The Em language supports three programming models: declarative cellular, impera-

tive cellular, and in
uence. These programming models appear su�cient to handle

the types of spatial simulations required for ecosystems.



22

A cellular automaton is a simple programming paradigm. For each time t, each cell

computes the same data, which is based upon simple rules involving variables in

neighboring cells at time t-1. Cellular automata are inherently parallel. The simplest

cellular automaton has only one variable to update.

Em divides cellular automata into two classes: declarative cellular and imperative

cellular. Declarative cellular computes a value for a variable only once in the cell at

time t. Imperative cellular computes an accumulated value for a variable in each cell

at time t. In other words, imperative cellular has successive updates to a variable

in each cell at time t. Cellang [Eck92] is an example of a system which supports a

imperative cellular automata.

A declarative cellular programming model exhibits the most data independence and

is inherently functional in nature. A variable value may be computed as soon as all

input values become available. Thus the ordering of statements in the inner loop is

unimportant because each variable is written at most once.

An imperative cellular model is restricted in that the order of variable update, espe-

cially between di�erent procedure calls, cannot be assumed to be commutative. Still,

this places a restriction only upon the current loop iteration, and keeps the important

property of no order between iterations due to reuse.

The EFT paradigm may be supported with an in
uence model. In an in
uence

model, the current cell at (x; y; z; t) writes to variables outside it's current location.

This paradigm is inherently di�erent from cellular because these are writes to variables

outside the current cell location.

8.3 Memory Models

Memory Model Programming Model

write-once declarative cellular

locally imperative imperative cellular

reduction in
uence

Figure 6: Correspondence Between Memory Models and Programming Models

There is a memory, or aggregate, model in Em which supports each of the program-

ming models.
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8.3.1 Write-Once Memory

In the write-once memory model, a memory location is written at most once. After

the memory location is written, any number of reads my be performed. This type

of memory model o�ers the most amount of parallelism [ANP89]. The only type of

data dependence which can occur is 
ow dependence. Write-once memory supports

a declarative cellular programming model.

8.3.2 Locally Imperative

The locally imperative memory model is a relaxation of write-once memory. Consider

the following assignment statement, which might appear in a Em library procedure.

The state variable Q is a formal parameter of the procedure.

Q(x; y; z; t) = Q(x; y; z; t) + (flow1 + flow2 + � � �+ flowk)

This assignment is a simple example of a di�erence equation. It is assumed that the


ows in this equation are not array values.

If the memory model were to adhere to the strictly write-once paradigm, this type of

assignment statement would require not only a new formal parameter name on the

left-hand side of the assignment statement, e.g.,

R(x; y; z; t) = Q(x; y; z; t) + (flow1 + flow2 + � � � + flowk)

but also a \new" variable name (as an actual parameter of the procedure) to be the

target of the assignment. Such an assignment maintains referential transparency.

The advantage of allowing only the write-once model is that the Em program is

declarative: the textual sequence of statements is irrelevant to state variable update.

The disadvantage is variable name explosion.

At the end of each iteration, all temporary variable assignments must be assigned to

the permanent state variable. Variable renaming can eliminate imperative cellular

references. However, the cost to the user, presumably an ecologist, with this type of

restriction is: the need to create several temporary variables; and, the need to name

the temporary variables in such a way that the compiler generates the correct update

sequence. It was considered that this programming style is too burdensome, even

with the potentially increased parallelism. This especially becomes apparent when

temporary variables are needed for several state variables.

By permitting locally imperative assignments, i.e., assignment updates which are local

to the cell, potential parallelism between iterations is not sacri�ced. The main cost

in this case is declarative style: locally imperative variable updates requires that the

compiler use the textual order of procedure invocation.
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The end result, from the viewpoint of compilation, is that the order of variable up-

date for write-once is determined by the compiler. For locally imperative the order

of variable update is the same order as the textual order. In one case, the program-

mer de�nes it indirectly through temporary variable use, and in the other case, the

programmer speci�es it directly through textual order.

It should be stressed that Em does not require locally imperative update over write-

once. Locally imperative update issupported to providea more convenient program-

ming model. For example, the wetland procedure summaries, Figure 3, are written

to be general: the input and output formal parameter names are di�erent. However,

the Em wetland code uses the same names for the for the actual parameters. Another

programmer may decide to use these procedures more functionally.

8.3.3 Reduction

A reduction operator applies a sum or product operator to elements of an array,

generating a scalar value. On machines which do not support reduction, this is

implemented in a loop, with imperative update to a scalar variable. An example is

the sum of an array of values:

SUM = 0

DO I = 1, N

SUM = SUM + A(I)

ENDDO

Arithmetic operators may or may not be associative in the application; non-arithmetic

functions, such as MAX, are associative.

Em supports declaration of reductions in the procedure summary. If a variable is

declared as a reduction, Em assumes that the operation is associative. By declaring

reduction, Em can implement the reduction e�ciently, and it is not necessary to

save all the data before the reduction, because the Em compiler has access to write-

many memory. Use of the reduction operator allows for more parallelism because

procedure invocation is order independent. The in
uence model is best supported

using reduction.
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9 Conclusions

Em is distinctive in that it incorporates a restricted language and a library with

procedure summaries in order to achieve automatic scheduling with high parallel

performance. Related research in language development and compilation techniques

will now be addressed.

Several parallel programming languages have been proposed to support general pur-

pose parallel programming. OCCAM [Cok91] is designed for the transputer. Lan-

guages such as Fortran [Thi89, CFR+92, CMZ92] and C [RS87], have been extended,

include new compiler directives, and have library routines to manage processes and

communication. Typically these languages are di�cult to analyze. Pointer code in

C makes analysis di�cult. In both languages code may be written so that subscript

analysis is di�cult, if not impossible, for the compiler. Equivalence statements and

common blocks in Fortran add to the di�culty of interprocedural analysis. Because

of the inherent di�culty, interprocedural analysis typically is not performed.

Languages like Em simplify both compiler transformations needed to extract paral-

lelism and interprocedural analysis because of value-result semantics for procedure

parameters and disallowal of access to non-local variables [MVR85, HC88]. An ad-

ditional bene�t of Em is the existence of procedure summaries for interprocedural

analysis, because only the interface to the procedures requires analysis.

With the exception of FIDIL [HC88] and Cellang [Eck92], Em appears to be the

only language which is domain-speci�c. FIDIL has a strongly applicative style and

requires many users to learn a new style of programming. Em is designed for users

accustomed to programming imperative languages. Cellang is a declarative and easy

to learn language, but is limited to integer data and lacks procedure invocation.

Languages such as BLAZE [MVR85] for shared memorymachines, and Kali [MVR90],

Vienna Fortran [CMZ92], DINO [RSW90], Booster [PvGS90], Fortran D [FHK+91],

Fortran 90D [WF91], Adaptor [Bra93], SUPERB [ZBG88] for distributed memory

machines, permit the user to specify the distribution and alignment of data. Adaptor

has a back end which maps to several communication packages. SUPERB maps to

SIMD and MIMD machines.

Crystal [Che86] and ASPAR [IFKF90] perform automatic data distribution based on

symbolic pattern matching. Crystal requires a loop nest similar to Em, and more

than one sequential loop may be de�ned. Neither performs interprocedural analysis.

Ecological modelling is the application area used herein to present the features of

Em. As stated before, Em is not restricted to this domain. Any statically decompos-

able domain which requires a sequentially iterated parallel loop nest can be modelled

using this system. Cellular automata, popularized as the game of Life [Gar70], are

used to model physical systems [Eck92, BH92, Dew84]. Other applications include
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solving partial di�erential equations using the �nite di�erence method, including re-

laxation [FJL+88, HA90].

The ease of developing models using Em as a programming language is due largely

to its declarative nature. Consider, for example, the automatic deduction of array

bounds. Suppose a set of domain-speci�c procedures induces a certain array bound.

Should the programmer modify the program to incorporate an additional (or merely

modi�ed) set of procedures which access di�erent portions of the array, the compiler

automatically adjusts the array declaration, thereby eliminating the need for the

programmer to modify the program.

Em also has several characteristics of literate programming [Knu84, Ben86], a style of

programming which promotes readability and comprehension. Programming details

are removed in Em, and variable declarations alone specify their semantic meaning in

the model. Modularity is supported through the use of procedures to perform all com-

putations. The standardized procedure interface supports model sharing. Because of

the declarative nature of Em, it is easily adaptable to graphical programming.

A further consideration for Em is it's input/output format. It is desriable to have the

format for both to be identical [Eck92] . This would allow models to be pipelined.

For ecosystems, however, the existence of various GIS databases does not directly

support an identical format. It is an area which should be addressed in the future.

A forthcoming report will discuss compilation of Em programs to a MIMD environ-

ment. There, the data partitioning and scheduling strategy is discussed, along with

the use of PVM [GBD+93] as the parallel communication package.
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