
APPLICATIONS AND ENABLING

TECHNOLOGY FOR NYNET UPSTATE

CORRIDOR

(Final Report)

Salim Hariri and Geo�rey Fox

Northeast Parallel Architectures Center,

Syracuse University,

Syracuse, NY 13244-4100

hariri@cat.syr.edu, gcf@nova.syr.edu

November 1, 1994

1

Abstract

Current advances in telecommunication and computing will have signi�cant impact on the

proliferation of high performance computing and communication (HPCC) applications. With

these emerging technologies, it is feasible to run parallel and distributed applications across

a high speed wide area network which was not possible a few years ago; the high latency and

low bandwidth were the main bottlenecks for the wide area network-based computing. This

has lead to the deployment of several high speed networks across the country (eg. NYNET).

In this report, we describe some of the HPCC applications and our experiences and lessons

learned from running them over the NYNET testbed. NYNET is one of the �rst wide area

networks to use commercially available ATM switches and �rst to have an agressive research

plan to develop a wide range of large scale HPCC applications. NYNET testbed covers all

the New York State and part of Massachussets State and provides an interconnection between

leading educational institutions, government laboratories and industrial labs.

The main objectives of this project were to develop and demonstrate HPCC applications and

evaluate current HPCC enabling technlolgies. We show the bene�ts that can be achieved from

applying HPCC technologies to implement applications encountered in military (eg. multi-

target tracker), industry (eg. �nancial modeling), scienti�c applications (eg. Electromagnetic

scattering) and health care. Furthermore, we benchmark and evaluate several parallel and

distributed platforms and software tools for developing such HPCC applications on NYNET.

2

1 Introduction

The 1980s spawned a revolution in the world of computing, a move away from central

mainframe-based computing to distributed networks of workstations. Today workstation

servers are fast achieving the levels of CPU performance, memory capacity, and I/O bandwidth

once available only in mainframes, at a cost orders of magnitude below that of a mainframe.

Workstations are being used to solve computationally intensive problems in science and en-

gineering that once belonged exclusively to the domain of supercomputers. The 1990s will

be the decade of high performance distributed computing where application programs run

transparently on a collection of computers that range from supercomputers or massively par-

allel computers down to high performance desktop or laptop computers. Such a collection

of computers and supporting software environment is called a high performance distributed

system (HPDS). A HPDS gives the perception of using a single, integrated computing system

where users can uniformly access and name local or remote resources, and run processes from

anywhere in the system, without being aware of which computers their processes are running

on.

The main objectives of this project were to develop and demonstrate HPCC applications

and evaluate current HPCC technologies that can transform NYNET into a HPDS. NYNET

(see Figure 1) is an ATM wide area network that covers all New York State and part of

Massachusetts State. NYNET provides interconnection betweenmany of the New York State's

leading educational institutions (Syracuse, Cornell, Columbia, SUNY Stonybrook, Polytechnic

Institute of New York), government labs (Rome Laboratory, Brookhaven National Labs),

industrial labs (NYNEX, GTE etc) and several medical institutions in New York State. Most

of the wide area portion of the NYNET operates at speed OC 48 (2.4 Giga bits per second)

while each site is connected with two OC 3 links (155 Million bits per second). We develop

and port several large scale applications (Financial Modeling, Multi-Target Tracker, Electro-

Magnetic Applications etc) over NYNET and evaluate their performance.

The organization of this report is as follows. In Section 2, we describe the applications

which we developed and discuss their performance over NYNET. In section 3, we evaluate

the current enabling technology for developing such large scale HPCC applications. Section

4 describes some of the demonstrations given by NPAC and Rome Laboratory researchers

involved in this project. Finally, we summerize the report and conclude with a discussion on

future research activities on the NYNET.

3

Figure 1: The NYNET ATM Testbed.

4

2 NYNET High Performance Computation and Com-

munication (HPCC) Applications

2.1 Multi Target Tracker

In a previous project sponsored by Rome Labs, we modi�ed the implementation of the tracker

so that it can be easily ported using existing parallel and distributed software tools. However

in this project, we develop di�erent parallel implementations of the tracker which are suitable

for NYNET and evaluate their performance on NYNET.

The tracker demonstrates the multi target tracking capabilities that is required by a Battle

Management Command Control and Communication System. It uses an extended 3 stage

Kalman �ltering formalism which is the primary \tool" used to provide and sort realistic

data. This �ltering formalism is general and can be used in problems related to pattern

recognition, signal and image processing. The 3 stage �lter model has helped the development

of a concurrent version of the tracker [1].

The multi target tracker, is designed to provide an estimation of launch vehicle parameters

for individual targets/missiles in multi-target scenarios. The system deals with a mass raid

scenario and is designed to process situations with varying number of targets and launch

sites. The tracker receives input from the Environment Generator and Synthesizer module in

terms of sensor scans and target information. The multiple target tracking system has two

geostationary sensors which scan speci�c launch sites for missiles or targets launched from

the surface of earth. The launch sites are speci�ed in terms of latitudes and longitudes. The

data from these two geostationary sensors are fed to two focal plane tracking (FPT) modules

(2 dimensional tracking) at 5 second intervals. The focal plane tracking modules process this

data using kinematic �ltering algorithms and track pruning and prediction algorithms. The

output of this module is an initial prediction of trajectories of launched missiles. This data is

then fed to a three dimensional tracking system which uses the data from the two focal plane

tracking modules to prune duplicate tracks (if any), extend existing tracks, prune bad tracks

and initiate new tracks. The output of the system is a list of target trajectories.

2.1.1 Concurrent Multi Target Tracking (CMTT)

The Multi target tracker was initially developed at California Institute of Technology under

Caltech concurrent Computation Project [1]. It was implemented using the CUBIX program-

ming model for embedded architecture (hypercube) viz. Mark III and CrOS III primitives.

The CUBIX model is a hostless programming model where there is only one program called

5

a `node' program which executes on every processor in the hypercube.

We modi�ed the implementation of the tracker so it can be easily ported using existing

parallel/distributed computing tools (EXPRESS, PVM, p4) on di�erent platforms. To achieve

this objective we developed a uniform structure of the multi target tracker [2]. We also

developed an e�cient implementation of CMTT algorithm. In what follows, we discuss two

parallel implementations of the CMTT system. In the �rst one, the sensors data are processed

sequentially (CMTT-SSDP) while in the second one the sensors data are processed in parallel

(CMTT-PSDP). Each scan of MTT begins with an existing track �le and new set of sensor

report. Existing tracks are extended using sensor reports which satisfy the gating criterion [1]

of track-split processor.

The concurrency in multi target tracking is achieved by using data parallelism. The data of

the global track �le, which has the details of processed data obtained from two geostationary

sensors, is partitioned among the nodes involved in the CMTT. So, each node executes the

same code, but using di�erent data segments of the global track �le. Every node has access

to full sensor reports �le at every scan, and it performs the sequential multi target tracking

algorithm on its subset of the global track �le.

The most time consuming step in CMTT-SSDP is the redistribution of global track �le(

step 2.1.3) and it is critical to achieve e�cient concurrent implementation. Redistribution

must be done such that all tracks ending at a given datum must be assigned to the same node

in the next scan. This will reduce the number of duplicate tracks. Because of the irregular

transfer of tracks between nodes during redistribution, the transfer of tracks among nodes is

done using the Crystal Router communication algorithm. It is an algorithm to redistribute

the track �le among all nodes involved in the parallel computation in log2N steps (where N is

number of processors).

Concurrent MTT with parallel sensor data processing (CMTT-PSDP) Figure 2

highlights the main tasks performed by Concurrent MTT with sequential sensor data pro-

cessing (CMTT-SSPD) algorithm. Figure 2 also shows the modi�ed version of this algorithm.

In CMTT-SSDP algorithm, the Do loop (for sensor 1 and sensor 2) in step 2.a is performed

sequentially i.e. �rst we do 2D tracking for sensor 1 and then perform 2D tracking for sensor

2. In this implementation redistribution of track �le (step 2.1.3 in Algorithm CMTT-SSDP)

is done between all the nodes in the cube, for both sensor 1 and sensor 2. The performance

of CMTT can be improved by overlapping communication and execution. In this case the

2D tracking of the two sensors data is performed concurrently. As a result of processing the

sensor data in parallel, the redistribution is done only between half of the nodes working on

same sensor data. This reduces the redistribution time considerably. However the 3D tracking

6

is done on all nodes/processors.

In Algorithm CMTT-PSDP, after concurrent 2D tracking of both sensors, they must com-

municate the results with each other before 3D tracking can be initiated. After 2D tracking

each node in same subcube has completed track and report �le for the sensor data assigned

to this subcube. Hence, instead of one processor sending results to every node, the communi-

cation occurs only between corresponding nodes in both subcubes. This allows to overlap the

communication between nodes and thus reduces its overhead. This exchange of results con-

stitute the extra overhead due to our new approach. But this extra overhead is insigni�cant

when compared to the performance gained from overlapping the communication during track

�le redistribution.

After communicating the results, we reinitialize the cube environment to form one cube.

The 3D tracking proceeds as in Algorithm CMTT-SSDP. We did not attempt to improve the

performance of the 3D tracking because its execution time can be ignored when compared to

the 2D execution time of the CMTT algorithm.

Algorithm CMTT-SSDP

1. Initialization

/* Initialize the parameters of sensors

*/

2. For I= 1,NO SCAN Do

(a) For J= 1,NO SENSORS Do

2.1 2D Focal Plane tracking

2.1.1 Compute focal plain

data for sensor J.

2.1.2 Extend existing tracks

2.1.3 Track Redistribution

2.1.4 Compute Focal Plane

report

2.1.5 Initiate new tracks

(b) 3D tracking (Combine results

from both sensors)

3. print results

Algorithm CMTT-PSDP

1. Initialization

2. For I= 1,NO SCAN Do

2.1 Partition processors into NO SENSORS

subcu bes

2.2. 2D Tracking

If processor ID mod NO SENSORS = J

perform 2D tracking for sensor data J

/*similar to Algorithm CMTT-SSDP step

2.1 */

2.3. Exchange the 2D results between proces-

sor w orking on di�erent sensors

2.4. Initialize the cube of N processors

2.5. Perform 3D tracking as in Algorithm

CMTT-SSDP step 2.2

3. print results

Figure 2: Algorithm CMTT-SSDP and CMTT-PSDP

7

2.1.2 Performance Results

In this section, we benchmark the implementation of the CMTT using di�erent parallel/distributed

tools. The main objective of this experimentation is to understand the issues related to port-

ing compute intensive applications (with more then 32,000 lines of code) on parallel and

distributed systems. Furthermore, we do need to determine the ideal problem size and type of

platform (parallel or distributed computing environment). We benchmark the CMTT system

on two classes of computing environments: Distributed Computing Environment(SUN, IBM

RS6000, IBM-SP11 and Parallel Computing Environment(CM5, iPSC 860).

Benchmarking CMTT on Cluster of Workstations On a distributed computing en-

vironment, the performance of the CMTT has been improved by increasing the number of

processors upto a certain threshold, after that the performance starts deteriorating. Table 1

shows the comparsions of times taken on ATM(LAN), NYNET and Ethernet respectively for

both CMTT-PSDP and CMTT-SSDP. We see that the performance of CMTT-SSDP on ATM

cluster is better than that on Ethernet cluster. We don't see any improvement in CMTT-

PSDP (for 2-nodes) because there is only nominal communication involved in the two node

implementation. From Table 1 and Figure 3 we see that execution time deteriorates after two

nodes and four nodes for CMTT-SSDP and CMTT-PSDP algorithms, respectively. It is clear

from these �gures that CMTT-PSDP performs much better than CMTT-SSDP because of

reducing the communication time associated with redistribution of the track �le.

In terms of platforms, IBM-SP1 out performed other distributed computing environments

(SUN SPARC, IBMRS6000 and heterogeneous environment of SUN SPARC and IBMRS6000).

For example, CMTT-PSDP implemented using PVM took 23.16 seconds on IBM-SP1 with

four processors, whereas it took 65.56 seconds on four SUN SPARC workstations, 60.10 sec-

onds on four IBM RS6000 workstations and 63.51 seconds on heterogeneous environment of

two SUN SPARC and two IBM RS6000 workstations. Furthermore, the PVM implemen-

tations outperformed other tools. However, for a small number of processors (say 2), the

di�erence between tools is insigni�cant, while it is large for four or more processors.

Benchmarking CMTT on Parallel Computers When we implemented the CMTT sys-

tem on parallel computers, we obtained consistent results with those of distributed computing

environment; CMTT-PSDP version outperforms CMTT-SSDP version. Also the execution

time reduces up to four nodes in CMTT-SSDP version and up to eight nodes in CMTT-PSDP

version. Thus, parallel computing environment works �ne for larger number of processors

1Con�guration of IBM-SP1 uses dedicated Ethernet for interprocessor communication.

8

Table 1: CMTT performance on SUN IPCs

of Nodes CMTT-PSDP CMTT-SSDP

ATM(LAN) NYNET Ethernet ATM(LAN) NYNET Ethernet

1 180.75 180.75 180.75 179.56 179.76 179.56

2 107.50 107.56 108.39 140.67 143.84 161.81

4 75.34 91.38 162.67 190.81

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

IBM-SP1 2 sites, 160 targets

CMTT-SSDP using p4

CMTT-SSDP using PVM

CMTT-PSDP using p4

CMTT-PSDP using PVM

Figure 3: Performance Result of CMTT on IBM-SP1 implemented with p4 and PVM

9

because the communication latency is less than that of Ethernet. For example, CMTT-PSDP

version using EXPRESS took 34.41 seconds on eight processors of iPSC 860, whereas CMTT-

PSDP version using PVM took 37.57 seconds on eight processors of IBM-SP1. When we

compare the performance of the tracker on iPSC 860 and CM5, we found that iPSC 860

implementation using EXPRESS performs better than CM5 using PVM.

2.2 Financial Modeling Application

2.2.1 Introduction and Problem description

Financial modeling represents a promising industry application of high performance comput-

ing. In previous work, parallel stock option pricing models were developed for the Connection

Machine-5 and DECmpp-12000 [5] [7], and later were ported on an IBM SP1 and a DEC

Alpha cluster. These parallel models run approximately two orders of magnitude faster than

sequential models on high-speed workstations. To further develop this application, a portable,

workstation based, interactive visualization environment was developed for a heterogeneous

computing environment. Application Visualization System (AVS) was used to integrate mas-

sively parallel processing, workstation based visualization, an interactive system control, and

distributed I/O modules.

Using a stock option price modeling application as a case study, we demonstrate a simple,

e�ective and modular approach to coupling network-based concurrent modules into an inter-

active remote visualization environment. Two prototype simulation on-demand systems are

developed, in which parallel option pricing models locally implemented on two system con�g-

urations (two meta machines): one with two MPP machines, a 32-node CM5 and a 8K-node

DECmpp-12000 [6]; another with two distributed systems, an Ethernet-based IBM SP1 and a

FDDI based network connecting a cluster of workstations [8], are coupled with an interactive

graphical user interface over the NYNET ATM-based wide area network.

Stock option pricing models are used to calculate a price for an option contract based on

a set of market variables, (e.g. exercise price, risk-free rate, time to maturity) and a set of

model parameters. Model price estimates are highly sensitive to parameter values for volatility

of stock price, variance of the volatility, and correlation between volatility and stock price.

These model parameters are not directly observable, and must be estimated from market

data. Using optimization techniques for model parameter estimation holds great promise for

improving model accuracy.

We use a set of four option pricing models in this study. Simple models treat stock price

volatility as a constant, and price only European (option exercised only at maturity of con-

10

tract) options. More sophisticated models incorporate stochastic volatility processes, and

price American contracts (option exercised at any time in life of contract) [3] [4]. These

models are computationally intensive and have signi�cant communication requirements. The

four pricing models are: BS { the Black-Scholes constant volatility, European model; AMC {

the American binomial, constant volatility model; EUS { the European binomial, stochastic

volatility model; and AMS { the American binomial, stochastic volatility model. Detailed

descriptions about these four modelis can be found in [3] [4] [5].

Analytic models are useful tools in the �nancial market, but require expert interpretation.

To further evaluate and optimize pricing models to run in a parallel computing environment,

we combine high performance computing modules for real-time pricing with real-time visual-

ization of model results and market conditions, and a graphical user interface allowing expert

interaction with pricing models. We envision a market expert using such a system to start

and stop a set of models, adjust model parameters, and call optimization routines according

to dynamically changing market conditions.

2.2.2 System Con�guration and Integration

Two prototype systems for this application are developed and experimented on the NYNET.

One focused on a meta computer consisting of two MPPmachines, and the other on distributed

workstation clusters.

Con�guration 1 | NYNET + CM-5 + DECmpp-12000 + Workstations Figure 4

is the system con�guration of the �rst prototype interactive simulation-on-demand system for

the option price modeling application, using an AVS/PVM framework proposed in [8] and

utilizing the network infrastructure and distributed computing facility at NPAC.

The AVS kernel runs on a SUN10 workstation which acts both as an AVS server to coor-

dinate data-
ow and top-level concurrent control among remote modules, and as a network

gateway which links the NPAC in-house host machines locally networked by an Ethernet

to the regional end-user through the NYNET. The ATM-based link is built around two Fore

switches that operate at 155 Mbps (OC3c) while the wide area network portion of the network

operates at OC48(2400 Mbps) speed.

Our heterogeneous computing system for stock option pricing consists of four compute

nodes, a home machine, and two �le server machines. All workstations, including the front-

ends of the DECmpp-12000 and CM-5, are connected by a 10MBit/second Ethernet based

LAN.

The four option pricing models run on remote compute nodes: BS model on a DEC5000,

11

Figure 4: System Con�guration 1 for the Financial Modeling on CM-5 and DECmpp-12000
12

AMC model on a SUN4, EUS model on a CM-5 and AMS on a DECmpp-12000(SX). Each

remote compute node has its own I/O capability. Our DECmpp-12000 is a massively parallel

SIMD systemwith 8192 processors. Each RISC-like processor has a control processor, forty 32-

bit registers, and 16 KBytes of RAM. All the processor elements are arranged in a rectangular

two-dimensional grid and are tightly coupled with a DEC5000 front-end workstation. The

theoretical peak performance is 650 M
ops DP. Our CM-5 is a parallel MIMD machine with

32 processing nodes. Each processing node consists of a SPARC processor for control, four

proprietary vector units for numerical computation, and 32 MBytes of RAM. The control node

of the CM-5 is a SUN4 workstation. The theoretical peak performance is 4 G
ops. Sequential

compute nodes include a DEC5000 and a SUN4. The DEC5000 performs at 6.8 M
ops, and

has 16 Mbytes memory. The SUN4 runs at 4.3 M
ops and has 32 Mbytes memory.

The user interface runs on a remote SUN4. This machine combines user runtime input

(model parameters, network con�guration) with historical market databases stored on disk,

and broadcasts this data to remote compute nodes. System synchronization occurs with each

broadcast.

An IBM RS/6000 is used as a �le server for non-graphical output of model data. In this

application, model prices calculated at remote compute nodes and corresponding market data

are written to databases for later analysis.

In summary, the heterogeneous computing system illustrated in Figure 4 provides dis-

tributed computing,distributed memory, and distributed input/output for the stock option

pricing application.

Our heterogeneous computing system integrates diverse functions{computation, visualiza-

tion, and system control over a diverse set of hardware. We use a mix of programming

languages on the remote compute nodes{Fortran77 on the DEC5000, C on the SUN4, CM-

Fortran on the CM-5, and MPL (data parallel C) on the DECmpp-12000. AVS integrates

visualization, networking functionality, and computation. At the operating system level, all

remote modules are compiled and linked as stand-alone programs. Input and output ports are

de�ned in modules by the programmer using speci�c library routines provided by AVS. Each

module represents a process. Inputs and outputs between remote modules are implemented

via socket connections.

There are two source of input data: historical market data read from disk �les, and runtime

input of model parameters by the user through a GUI. Output from all four models is rendered

in a graphics window, displayed numerically in a shell window, and written to a database by

the �le server.

Figure 5 illustrates the GUI for managing user runtime input and output, and the system

con�guration. Runtime input includes user de�ned model parameters and system execution

13

Figure 5: The Graphical User Interface on the Home Machine

styles. Outputs include 2-dimensional displays of model and market prices calculated by

the compute nodes. The system con�guration includes choice of pricing models, network

con�gurations and interface layouts.

Pricing models are extremely sensitive to model parameters for implied volatility, variance

of stock volatility and correlation between stock price and its volatility. These parameters

may be read from data �les (historical estimates), calculated just prior to running the pricing

model (by optimization), or de�ned at run time (expert user).

Con�guration 2 | NYNET + IBM SP1 + DEC Alpha Farm + Workstations

Figure 6 is the system con�guration of the second prototype interactive simulation-on-demand

system for the option price modeling application, using an AVS/PVM framework proposed in

14

[8] and utilizing the network infrastructure and distributed computing facility at NPAC.

The AVS kernel runs on a SUN10 workstation which acts both as an AVS server to coor-

dinate data-
ow and top-level concurrent control among remote modules, and as a network

gateway which links the NPAC in-house host machines locally networked by an Ethernet to

the regional end-user through the NYNET.

The two parallel pricing models (EUS model and AMSmodel) are implemented in PVM and

run respectively on a 8-node IBM SP1, networked by an Ethernet at the time of evaluation,

and a 8-node DEC Alpha cluster inter-connected by a FDDI-based GIGAswitch. They are

coupled under the proposed AVS environment with the other two sequential simple models(BS

model and AMC model) running on a SUN4 and a DEC5000 workstation, respectively. The

nodal processor of SP1 is IBM RISC/6000 processor running at 62.5 MHz and is one of the

most powerful processors available. The DEC Alpha farm consists of 8 Alpha model 4000

workstations which are supported by a high performance networking backbone of a dedicated,

switched FDDI segments. The GIGAswitch provides full FDDI bandwidth and low latency

switching to every workstation in the farm.

While displayed on the end-user's home machine, a user interface actually runs on a remote

SUN4 which combines user runtime input (model parameters, network con�guration) with

historical market databases stored on disk, and broadcasts this data to remote compute nodes.

Top-level system synchronization occurs with each broadcast.

An IBM RS/6000 is used as a �le server for non-graphical output of model data. In this

application, model prices calculated at remote compute nodes and corresponding market data

are written to databases for later analysis.

All models output are graphically displayed on the end-user's home machine(a SUN10) in

AVS graph viewers. Figure 5 gives the user interface showing the simulation control panel(left),

model output windows(top) and the
ow network(bottom).

2.2.3 Performance Analysis

The timings for one trade of the parallel option models on various models is given in the

Table 2. Note:

� The timing data is measured when the level of binomial tree is 17.

� On MIMD machines, all the two models weakly depend on communication but solely

depend on node performance of the parallel systems. But on SIMD machine, it also de-

pends on communication. Di�erent algorithms are used on MIMD (with explicit message

passing paradigm) and on SIMD (with Fortran90 data parallel paradigm) systems.

15

Figure 6: System Con�guration 2 for the Financial Modeling on IBM SP1 and DEC Alpha

Farm over NYNET

16

Table 2: Timing for One Trade of the Parallel Option Pricing Models on Various Platforms

Platform Machine EUS AMS Speedup

size (sec.) (sec.) EUS AMS

SUN10(seq.) 1 1.087 1.186

SUN4(seq.) 1 2.07 2.31

SUN IPC(seq.) 1 4.05 4.25

CM-5(with VU) 32 0.025

DECmpp-12000 8192 0.075 0.045

CM-2 8192 0.05

Alpha+Gigswitch 1 0.469 0.553 1 1

(PVM3) 2 0.239 0.279 1.96 1.98

4 0.130 0.151 3.61 3.67

8 0.089 0.099 5.27 5.59

IBM-SP1+Ethernet 1 0.505 0.568 1 1

(PVM3, EUI/IP) 2 0.260 0.290 1.94 1.96

4 0.145 0.160 3.48 3.55

8 0.094 0.110 5.37 5.16

IBM-SP1+HPswitch 8 0.0602 0.0663

(PVM3, EUI)

� EUS | EUropean Stocahstic volatility binomial model;

� AMS | AMerican Stocahstic volatility binomial model.

2.2.4 Conclusion

The �nancial modeling application implemented on NPAC supercomputer facility and ex-

perimented over the NYNET gives a promising application of simulation-on-demand on the

information superhighway which combines the high-performance computing at a supercom-

17

puter center like NPAC with high-bandwidth wide area network like NYNET for high-speed

remote access and distributed computing.

We are exploring new software framework in this area and plan to apply the integration

technique described in this work to other NYNET applications. We plan to add on top of

the AVS framework a network user interface, Mosaic, a distributed hypermedia software from

NCSA, to support InfoVision simulation-on-demand projects over the NYNET. We believe

that methodologies and tools for information integration will play a more and more important

role with the adoption of HPCC technologies in industry.

2.3 Electromagnetic Scattering

2.3.1 Introduction and Problem description

Electromagnetic scattering(EMS) simulation is an important computationally intensive ap-

plication within the �eld of electromagnetics. Advances in high performance computing and

communication (HPCC) and data visualization environment(DVE) provide new opportunities

to visualize real-time simulation problems such as EMS which require signi�cant computa-

tional resources.

Scienti�c visualization has traditionally been carried out interactively on workstations, or in

post-processing or batch on supercomputers. With advances in high performance computing

systems and networking technologies, interactive visualization in a distributed environment

becomes feasible. In a remote visualization environment, data, I/O, computation and user

interaction are physically distributed through high-speed networking to achieve high perfor-

mance and optimal use of various resources required by the application task. Seamless inte-

gration of high performance computing systems with graphics workstations and traditional

scienti�c visualization is not only feasible, but will be a common practice with real-time ap-

plication systems.

In this work, an integrated interactive visualization environment was created for an EMS

simulation, coupling a graphical user interface(GUI) for runtime simulation parameters input

and 3D rendering output on a graphical workstation, with computational modules running

on a parallel supercomputer and two workstations. Application Visualization System(AVS)

was used as integrating software to facilitate both networking and scienti�c data visualization.

This interactive visualization environment can be run from remote and distributed users via

the NYNET with su�cient network bandwidth to support run-time simulation and model

parameters steeling.

Electromagnetic scattering(EMS) is a widely encountered problem in electromagnetics, with

18

Figure 7: Pro�le of the electromagnetic scattering problem

19

important applications in industry such as microwave equipment, radar, antenna, aviation, and

electromagnetic compatibility design. Figure 7 illustrates the EMS problem we are modeling.

Above an in�nite conductor plane, there is an incident EM �eld in free space. Two slots of

equal width on the conducting plane, are interconnected to a microwave network behind the

plane. The microwave network represents the load of waveguides, for example, a microwave

receiver. The incident EM �eld penetrates the two slots which are �lled with insulation

materials such as air or oil. Connected by a microwave network, the EM �elds in the two slots

interact with each other, creating two equivalent magnetic current sources in the two slots. A

new scattered EM �eld is then formed above the slots. We simulate this physical phenomena

and calculate the strength of the scattered EM �eld under various physical circumstances. The

presence of the two slots and the microwave load in this application requires simulation models

with high performance computation and communication. Visualization is very important in

helping scientists to understand this problem under various physical conditions.

In previous work, data parallel and message passing algorithms for this application were

developed to run e�ciently on massively parallel SIMD machines such as Connection Machine

CM-2 and DECmpp-12000, and MIMD machines such as the Connection Machine CM-5

and iPSC/860. The data parallel algorithms run approximately about 400 times faster than

sequential versions on a high-speed workstation [9]. Parallel models on high performance

systems provides a unique opportunity to interactively visualize the EMS simulation in real-

time. This problem requires response time of the simulation cycle that are not possible on

conventional hardware.

Figure 7 also shows physical parameters of the electromagnetic scattering problem.

2.3.2 System Con�guration and Integration

Figure 8 illustrates the system con�guration and module components distributed over the

network connecting three high-end workstations and a supercomputer Connection Machine

5. The network is a 10 MBit/s Ethernet-based local network. Commercially available AVS

software is used to provide sophisticated 3D data visualization and system control functionality

required by the simulation. We use AVS to facilitate high level networking and data transfer

among visualization and computational modules on di�erent machines in the system.

AVS provides a data-channel abstraction that transparently handles type-conversion and

module connectivities. This software system is optimized for data movement by using tech-

niques such as shared memorymessage passing among modules on the same machine. Message

passing occurs at a high level of data abstraction in AVS. This approach helps to make op-

timal use of both the high performance computing resources and the rendering capabilities

20

Figure 8: System Con�guration for Electromagnetic Scattering21

of the local graphical workstation. The transparent networking capabilities of AVS open up

possibilities for visualization far beyond traditional graphics capabilities.

The local machine in our system is a IBM RS/6000 with a 24-bit color GTO Graphics

Adaptor. An AVS coroutine module (in C) on the local machine serves as a graphical input and

system control interface to monitor and collect user runtime interaction with the simulation

through keyboard, mouse and other I/O devices. The AVS kernel also runs on the local

machine, coordinating data
ows and control
ows among AVS (remote) modules in the

network.

The computationally intensive modules of this application are distributed to a CM5, a

MIMD supercomputer which is con�gured 32 processing nodes at NPAC. Each processing

node(PN) of the CM5 consists of a SPARC processor for control and non-vector computation,

four vector units for numerical computation and 32 MB of RAM. It also includes a Network

Interface chip which gives the node access to the CM5 internal Data Network and Control

Network. The two internal networks connect all the PNs with a control processor(CP) which

runs a custom version of SunOS on a SPARC host. Two Sun SPARC workstations are used

in our distributed visualization environment to run the computational modules with modest

communication requirements.

All modules other than those on the local machine are implemented as AVS remote mod-

ules. Their input/output ports are de�ned by speci�c AVS libraries for receiving/sending

data from/to other (remote) modules via socket connections. This con�guration allows the

interrupt driven user interface input mechanisms and rendering operations to be relegated to

the graphical workstation, while the computationlly intensive components run on the CM5

coupled with the two workstations. This distributed simulation environment implemented in

AVS provides a transparent mechanism for using distributed computing resources along with

a sophisticated user interface component that permits a variety of interactive, application-

speci�ed inputs.

2.3.3 Performance Analysis

Our experiments show that under a typical working environment(only 0.5 MBits/s of the Eth-

ernet's 10 MBits/s capacity are available), a complete simulation cycle takes about 8 seconds.

This response time is quite satisfactory for this application. Table 1 in the Figure 8 lists tim-

ing data of major system components. For comparison, timings of sequential implementation

on a SUN4 workstation of the two parallel modules are also given in the Table.

22

2.3.4 Conclusion

The performance limiting factors in this system are the sequential rendering operations on the

local machine, and high-latency data transfer over the local area network due to multiple com-

munication protocol layers. We focus here on the feasibility of applying a high-level distributed

programming environment to a real application problem which requires both sophisticated 3D

data visualization and high performance computing.

2.4 Parallel JPEG

2.4.1 Problem Description

Advances over the past decade in many aspects of digital technology - devices for image

acquisition, data storage, and bitmapped printing and display - have brought about many

applications of digital imaging. However, these applications tend to be specialized due their

relatively high cost. The main problem with digital imaging applications is, a vast amount of

data is required to represent a digital image directly. This problem magni�es when we have

to transfer images in real time such as in multimedia applications like Video-on-Demand. For

example, if an application requires 25 frames/second and where each frame is 640x480 pixel

with 24 bits per pixel for color information, then it needs a network with a bandwidth of 184

Mbits/second, which is not provided even by high-speed networks like ATM and FDDI. Thus,

because of high storage and transmission costs the use of digital images has not been widely

used. This problem is solved by image compression technology where original uncompressed

images are compressed to 1/10-1/50 of their original size without a�ecting image quality.

JPEG (Joint Photographic Experts Group) is emerging as a standard for image compression.

This is a standard image compression method which enables interoperability of equipments

from di�erent manufacturers. JPEG standard aims to be generic, to support wide variety

of applications for continuous-tone images. JPEG standard includes two basic compression

methods, each with various modes of operation. A DCT (Discrete Cosine Transform) based

method is speci�ed for lossy compression, and a predictive method for lossless compression.

JPEG features a simple lossy technique known as the Baseline method, subset of the other

DCT-based modes of operation.

In multi-media applications like video-on-demand, the speed at which compression and

decompression are performed is very critical. Hence, sequential compression algorithms may

not be suitable for such real-time applications. E�cient parallel compression/decompression

algorithms are needed for these types of applications. We have implemented a parallel JPEG

image compression/decompression method in a distributed computing environment.

23

2.4.2 System Environment and Con�guration

140 Mbits/sec

140 Mbits/sec

OC-3

NYNET

OC-3ASX-100

ATM switch

Syracuse University Rome Lab

Figure 9: System Environment for JPEG

We have compared the performance of this application on di�erent platforms which included a

cluster of workstations connected by Local ATM network, Wide area ATM network (NYNET),

and Ethernet. LAN ATM network consists of two SUN IPXs directly connected to a Fore

ASX-100 local ATM switch. Both SUNs are equipped with a Fore SBA-200 ATM network

interface on the SBus. Fore's SBA-200 uses an Intel i960 as an onboard processor. The

i960 takes most of the AAL and cell related tasks including the SAR (Segmentation and

Reassembly) functions for AAL 3/4 and AAL 5, and cell multiplexing. The physical media

is the 140 Mbits/sec TAXI interface (FDDI �ber plant and signal encoding scheme). A part

of NYNET which we have used consists of 2 SUN IPXs at Syracuse University and 2 SUN

SPARCstations at Rome Labs, connected by NYNET testbed as shown in Figure 9. Ethernet

set-up consists of SUN ELCs connected by 10Mbits/sec Ethernet network.

2.4.3 Implementation Description

This implementation of JPEG compression/decompression uses DCT-based lossy compression

method. The user can trade o� output image quality against compressed �le size by adjusting

a compression parameter.

Since JPEG sequential algorithm performs the image compression line by line where com-

pression of each line is independent of any other line, we could take advantage of the inherent

data parallelism in JPEG compression/decompression algorithm. So, we have used the data

parallel model while implementing JPEG on a cluster of workstations. The image to be com-

24

Table 3: JPEG performance

of Nodes Total Time (sec.)

ATM(LAN) NYNET Ethernet2

1 5.05 5.05 8.26

2 5.10 3.81 9.06

4 2.27 5.59

pressed or decompressed is divided into N (where N is number of processors) equal parts by

the master process and are shipped to the remaining processors. Then, each processor per-

forms the sequential JPEG compression algorithm on its portion of image. After compression

the processors send the compressed image to another set of N processors which perform the

decompression. Once decompression is done, the results are sent back to the master process

which combines them into one image. So, basically this algorithm involves �ve stages viz.

distribution of uncompressed image by master process, compression of the image by a set of

N processors, shipping of compressed image to another set of N processors, decompression of

the image by these processors, and displaying the image by master process after receiving all

the parts of the decompressed image.

2.4.4 Performance Results

Here, we demonstrate the performance of a distributed application over a high speed network

(eg. ATM). We compare the performance of this application when it is run over ATM network

with the performance when it is run over Ethernet.

The results of the performance for a image of size 596KB over NYNET are shown in

Table 3. The times shown indicate the total time (in seconds) taken by all �ve stages of

JPEG compression/decompression algorithm. The size of the image after compression was

32KB i.e. a reduction of more then 18 fold. This reduces both the problems of a digital image

application viz. tranmission and storage cost. We don't see any performance improvement

with two nodes because of the way the algorithm is implemented i.e. only half of the processors

are active at any time. Hence time taken by two node is slightly worse than one node because

of the interprocessor communication. The performance improvement over NYNET for two

processor is due to the fact that the machines at Rome labs are faster then the ones at Syracuse

University. The performance of this algorithm implementation can be improved if all nodes

are active during each stage of computation. We implemented this application in this form to

demonstrate the use of this application to transmit compressed image, from one location to

another across a high speed network (ATM network between NPAC at Syracuse University

25

and Rome Laboratory at Gri�th Airforce base).

2.5 Syracuse Language Systems

2.5.1 Problem Description

Most of the multimedia software that runs on PCs is being distributed over Compact Disk

medium. Consequently, to access this multimedia software, all PCs must have CD-ROM drives

and each user requires one copy of the CD-ROM software. In this project, we investigate the

development of a multimedia server that can store all the CD-ROM software and have PCs

access this server over a high speed network such as the NYNET. A proof of concept has

been demonstrated by porting the TriplePlay multimedia software developed by Syracuse

Language Systems (SLS) for teaching languages, to a server accessible from remote multiple

PCs. We have used PC-NFS, which is a PC version of the SUN Network File System (NFS),

to transparently access the �les of UNIX �le system. Further, we have demonstrated that our

approach is general and can be applied to any other multimedia software distributed on CDs.

2.5.2 System Environment and Integration

PC-NFS: software developed by Sun, Microsystems enables personal computers running

MS-DOS to share information and resources with workstations, minicomputers and main-

frames that run di�erent operating systems including UNIX and VMS. This sharing is pro-

vided transparently in a similar manner to the sharing of �les among a cluster of workstations

running NFS.

By using PC-NFS, the remote �le systems are mounted on local disk drives and remote

printers are mounted on three parallel printing devices that DOS recognizes, LPT1, LPT2,

LPT3. Once the remote �le systems or printers are mounted they can be accessed as though

they are separate local drives or local printers running under DOS environment.

SLS software Syracuse Language Systems is a company which develops multimedia soft-

ware for language education. In this project, we have used their "Playing with Language"

series to demonstrate Education on Demand. Their TriplePlay software helps the users learn a

foreign language. TriplePlay uses enhanced graphics to display objects of di�erent complexity

and sizes. When a single object is selected, the software pronounces the word corresponding

to this object. Further, TriplePlay's conversational features help users to learn, understand

and speak parts of realistic dialogues and conversations.

26

Porting SLS and Current Con�guration When many users want to share a CD-ROM

based multimedia software, they need to have CD-ROM drives and each one should have a

copy of CD-ROM software. Porting the software to a server accessible over a high speed

network reduces the cost as well as access time of the multimedia software. We have copied

all the �les of the software from the CDs to a disk on the server. Then, we installed PC-NFS

on all the PCs that need to access the software and mounted the directory containing the

�les to a local drive. This method of sharing a multimedia software by multiple PCs is not

restricted to SLS software but can be used with any other CD-ROM software.

PC 1 PC 2

Mount /export/multimedia/sls as E:

Run SLS Software

Server 1

Export /export/multimedia/sls

Mount /export/multimedia/sls as F:

Run SLS Software

/export/multimedia/sls directory has a copy of SLS software

PC-NFS will take care of the disk request on F:PC-NFS will take care of the disk request on E: Ethernet

Figure 10: Current Con�guration of SLS Project

Figure 10 shows the current con�guration of the SLS project. In this con�guration, the

server exports some part of its �le system to the PCs so that they can access the server

transparently using PC-NFS. From the PC side, they have to install communication driver

and PC-NFS software in order to access the server. After installing PC-NFS, the exported

�le system should be mounted by the PC-NFS. Consequently, the PC users can access the

UNIX based server's �le system in exactly the same way it accesses a local disk. TriplePlay

which is running on a PC can access its �les, stored at the server as if they are local, through

the network (ethernet) and thus eliminate the need for CD-ROM software and drive. This

represents an interesting approach to deliver information on demand to a large number of PC

users.

27

2.5.3 Performance Issues

The use of high speed network is critical to the development of a large scale multi-media

server. In the SLS multimedia server, the ethernet bandwidth could be a bottleneck when

a large number of PCs access this server simultaneously. The high bandwidths of NYNET

makes it an ideal network to implement this type of multimedia server. Moreover, the most

critical aspect of this server is it's storage capacity. For such a server to store hundreds of

CD-ROM multi-media programs it needs storage space of the order of 60 Gbytes (each CD-

ROM capacity is about 600 Mbytes). To reduce the disk space, one can use data compression

techniques. However, this approach must be studied carefully because it increases the access

time of the multimedia server. The NYNET multimedia server can universally be accessed if

it is connected to an ISDN network. We are currently investigating how ISDN network can

be used to access such a multimedia server.

3 Evaluations of NYNET enabling technology

3.1 Mosaic Server

NCSA Mosaic is a distributed hypermedia system designed for information over Internet. It

provides a uni�ed, intelligent graphical user interface to various protocols, data formats, and

information archives used on the Internet and enables powerful methods for discovering, us-

ing, and sharing information. Mosaic is the public domain software developed by the National

Center for Supercomputing Applications. It uses a client/server model for information distri-

bution. Units of information (documents) sent from servers to clients may contain plain text,

formatted text, images, sound, video and hyperlinks to other documents anywhere on the In-

ternet. Mosaic supports interfaces to Gopher, FTP, WAIS, Techinfo, TeXinfo, �nger, Whois

and other Internet data resources. Mosaic client can be installed and used on almost any

modern Unix-based graphic workstation (SunSparc, IBM RS/6000, DEC 5000, Alpha, Silicon

Graphics IRIS). The Macintosh and Microsoft Windows client also exists. To allow interac-

tion with a wide variety of data formats, JPEG,XWD,TIFF,RGB,MPEG,DVI,PostScript etc.,

Mosaic relies on a number of external viewers: xv, showaudio, mpeg play, xdvi or ghostview.

Mosaic is used as a user-friendly interface to the NPAC on-line information services which

include:

� database of information pertinent to NPAC, which specializes in High Performance Com-

puting and Communications, parallel processing, distributed computing, computational

science, education, and technology transfer through the InfoMall program.

28

� distribution of demo software and NPAC software products in such areas as simulation

and video on demand. The Mosaic software is extensible and supports on-line demo

sessions started remotely on computers in NPAC. To do this we installed Mosaic Hy-

perText Transfer Protocol (HTTP) server and Mosaic clients on several environment

platforms (Sun, SGI, DEC, Alpha, IBM RS, Micrsoft Window, Apple MacIntosh).

The NPAC WWW Server contains the following information:

� announcements (what's new in Web, important events)

� general information about NPAC (NPAC organization, contact addresses, phone list,

home pages of NPAC researches, NPAC seminars, administrative documents and forms,

local news server link, FTP server link, an overview of NPAC)

� description of research projects, divided into several categories: simulation and parallel

algorithms, parallel languages and compilers, parallel programing tools and software,

software integration, InfoVISion (Information, Video, Imagery, and Simulation on De-

mand) and education.

� computing facilities

� how to use NPAC's computing facilities

� technical reports and papers

� HPCC software and information

� the InfoMall technology transfer program

� education programs

� related HPCC projects, organizations, and information

� Syracuse University Web servers

The o�cial NPACWeb server can be accessed under the following URL: http://www.npac.syr.edu/

. We have developed an HTTP server to run NYNET demonstrations from a Mosaic front

end user interface. These demonstration programs include:

� A Grand Challenge Tornado Prediction Model

� Chemistry Transport in the Atmosphere

29

� Electromagnetic Scattering Simulation

� Radar Cross Section Simulation

� Stock Option Pricing Model

The results of these simulations on demand are accessible over NYNET through a sophisti-

cated network-based user interface Mosaic software. This is an example on future "simulation

on demand" products for home and school markets with high-speed networks providing the

essential link between High Performance Distributed Computing facilities and end users. The

currently available demonstrations are incorporated into an AVS based graphical interface to

provide the three dimensional rendering and interactive model control. The active role of

the user is supported by the system, the simulations are fully interactive, so user can change

some parameters dynamically. For example, users can learn the meteorology of tornados by

observing the simulation and by experimenting with pressure and temperature changes over

network. All these simulations are very demanding in terms of required high-performance re-

sources. Calculations are performed in real time on high-performance computers (SP2, CM5,

CM5, DECmpp, Alpha cluster) in NPAC.

The simulation-on-demand programs are started after clicking on a hyperlink in a Mosaic

interface. The front-end interface used to launch these demonstrations is based on the in-

teractive �ll-out forms and post-script execution under the control of Mosaic server daemon.

Support for �ll-out forms inside a html document enables usage of text entry areas, option

buttons, radio buttons, option menus, scrolled lists and image maps.

The Mosaic client/server software is also used as an interface to the experimental CNN

Newsource online videoclips. We have captured and digitized a number of short movies. Two

di�erent setups have been installed: Sun-based Parallax video cards and SGI Indy workstaions.

The cluster of workstations used for the video-on-demand demonstartions is linked via ATM

LAN supported by the FORE ASX-100 switch. ATM links are used to support compressed

video data delivery to the browsers via NFS protocol.

We have investigated:

� mapping �le extensions to the MIME types

� mapping MIME types to external viewers

� execution of shell scripts and post-scripts via hyperlinks.

The basic functionality of the VOD demonstration is provided by two independent software

modules: digital video browsers, implemented in NPAC, and Mosaic-based user interface. The

30

Mosaic interface to VOD has been chosen for compatibility with other InfoVision projects, as

simulation on demand and InfoSchool.

3.2 Communique Software

Communique! is the video conference tool developed by InSoft, Inc., that we have used for

demonstrating how the ATM networks like NYNET provides the high bandwidths required

for these applications. Communique! integrates the multimedia aspects of graphics, audio,

video, text and native application �les into a real-time, on-line conference.

Communique! contains of a suite of easily maneuvered iconic tools to guide the user through

de�ning and initiating an on-line, real-time conference with fellow workgroup members. Like

any conference room, the Communique! Virtual Conference Room contains tools that help

people exchange ideas and information. Audio Conferencing, Video Conferencing, a Shared

White Board, and shared Text Tools are just some of the tools integrated in the application

and available to the conference participants. Communique! can be used for real-time reviews

of projects, simultaneous, concurrent engineering activities, on-line presentations, training,

remote support, customer service applications, long distance interviews, and more. Commu-

nique has few supporting tools to facilitate video conferencing activities. These tools include:

� The Audio Tool using which users can talk with one another freely.

� The Shared Write Board allows the users of Communique! to distribute a blank text

screen that acts as a posting board for conference user's comments.

� The Shared Raster White Board allows users of Communique! to distribute a raster

image to others in the conference and simultaneously make markups on this image.

� The Text Tool lets the users incorporate any textual data into the conference.

� The graphics tool allows users to share Sun Raster data with other conference members.

� The Video Tool of Communique! allows the users to work with any video input to

capture still video images to be shared as graphics in the conference.

� The TV Tool enables a Communique! user to conduct a real-time Video Conference

from their desktop.

31

3.2.1 Discussion

Communique! software tool provided us with the video conferencing capability on NYNET

and played an important role in demonstrating NYNET applications. However, the tool has

limitations in handling large number of participants and the maximum frame rate (for Video)

that can be achieved. These limitations can be resolved by developing e�cient techniques

to perform group communication on ATM network. These primitives will provide e�cient

multicasting, synchronization and management of all the participant processes involved in

the conference. Furthermore, the current communication protocols (TCP/IP) do not support

e�ciently the communication services required in video conferencing. More research is needed

to develop a communication protocol that e�ciently provides the services required by video

conferencing softwares.

3.3 Benchmarking ATM and di�erent platforms

We experimented with the ATM API library and our results indicate that we are not getting

good performance when compared with TCP/IP over ATM. For example, Roundtrip time for

4096 bytes using TCP/IP over ATM is 4918 microseconds yielding a rough throughput (real

bandwidth might be a little more) of 12.71 million bits per second (Mbps). Roundtrip time for

4096 bytes using ATM API over ATM (ie. bypassing TCP/IP) is 4250 microseconds yielding

a throughput of 14.71 Mbps. This is much less than the 140 Mbps bandwidth that can be

provided by the switch.

In this experiment, we evaluate the communication latency between di�erent computer

architectures that are connected over ATM and/or Ethernet. Because of the wide use of

TCP/IP communication suite, our experimental results focus on benchmarking the perfor-

mance of TCP/IP over ATM network. IP packets are encapsulated in ATM PDUs using

AAL3/4 or 5 for segmentation, reassembling and framing of IP packets. Internet addresses

are mapped to ATM 64-bit addresses using ATM ARP protocol.

We have evaluated the communication latency between the following platforms.

� kepler - Sun IPX, SBA-200 ATM Sbus, SunOS 4.1.3

� hubble - Sun IPX, SBA-200 ATM Sbus, SunOS 4.1.3

� kopernik - SGI Challenge, VMA-200 ATM VMEbus IRIX 5.2

� brahe - SGI Indy, GIA-100 ATM , IRIX 5.2

� newton - SGI Indigo, GIA-100 ATM, IRIX 5.2

32

� fore-atm - ASX-100 FORE switch

We have installed 2.2.9 release of FORE software on all these platforms. We installed two

Mosaic servers on SGI Challenge and Sun IPX and measured access and delivery time to a

client via an ATM network and a dedicated Ethernet. Our benchmark results are summerized

below:

� Mosaic client/server connection works faster for TCP/IP over ATM than over Ethernet,

but the di�erence is not signi�cant.

� IMAGE (gif �le, 340Kbytes, res 1152x900)

1. it takes 7 seconds to display the local gif �le on SunIPX and 4 seconds on SGI

Indy/Indigo using xv viewer in command line mode

2. Mosaic takes about 8 seconds to download this �le from the server, spawn xv viewer

and display the �le on Sun IPX

3. We have noticed that Mosaic on SGI Indy/Indigo downloads gif �les much slower

when ATM network is used than when dedicated Ethernet is used.

� The experiments with communication between SGI computers show that the TCP/IP

over ATM is much SLOWER than TCP/IP over dedicated Ethernet. The problem lies in

the default TCP window sizes de�ned in IRIX5.2 UNIX kernel. The poor performance

of ATM connection between SGI computers disappeared after modifying the of TCP

window sizes, socket space reservation and recon�guration of UNIX kernels on all SGI

workstations and SGI Challenge. Now the throughput for TCP/IP over ATM between

SGI computers is around 20 Mbps and limited by end-stations.

� The waiting time for delivery of mpeg/jpeg/mvc1 movie is almost unchanged when one

starts three or four such connections simultaneously over ATM. It was much longer

in case of Ethernet. So, using ATM we can increase the number of clients working

simultaneously without any degradation in performance.

� The general problem with Mosaic images and movies is that Mosaic downloads the whole

�le from the server to the local disk and then spawns an external viewer/player. In case

of ATM or dedicated Ethernet, the transfer time is determined by disks throughput

on the client and server sides rather than network bandwidth. 30 MBytes movie �le is

downloaded by Mosaic in approximately 40 seconds (a throughput of 6Mbps)whereas

the spawning of a movie player takes only 3 seconds.

33

� We tested the Fore Systems's user-level ATM libray routines which provide an interface

to the ATM data link layer. We checked a connection-oriented client/server model using

SPANS signaling protocol and discovered that API over ATM is only slightly better then

TCP/IP over ATM.

� The limitations which we observe in playing movies on SGI or Sun IPX are mainly due to

the workstations (UNIX �le system performance, frame bu�er access and CPU speed).

� We haven't also noticed any performance gain in digital video delivery when permanent

virtual channels are used instead of switched virtual channels.

� FTP binary transfer of 27 MBytes takes 15 seconds over ATM and 31 seconds over Eth-

ernet. It gives an average throughput (including disk I/O operations, access to memory,

transfer, switch activity) of 14.4 Mbps (ATM) and 7.0 Mbps (dedicated Ethernet). These

numbers vary slightly from computer to computer.

� The roundtrip of 4096 bytes measured by PING gives 3ms for ATM and 9ms for dedi-

cated Ethernet.

Summary: We have evaluated the performance of the standard UNIX applications on both

ATM and Ethernet. These applications include FTP, PING, CP as well as local previewers

XV, MPEG-PLAY, MPEGMOVIE �red up manually or through Mosaic.

TCP/IP over ATM gives an average throuput of 16 Mbps (peak 21 Mbps) while TCP/IP

over Ethernet gives an average throughput of 7 Mbps (peak 8.8 Mbps).

It takes about 21 seconds to make a copy of a local 27 MByte �le on a local disk, 21 seconds

to copy NFS mounted �le via ATM and 38 seconds to copy NFS mounted �le via Ethernet.

The performance of TCP/IP based applications running over ATM can be improved by tun-

ning some kernel parameters (tcp sendspace, tcp recvspace, udp sendspace, udp recvspace)

The maximum theoretical speedups that can be obtained on the IPXs is around 49 Mbps

on TCP and around 43 Mbps on UDP. The SGI should be able to give 80 Mbps.

3.4 Parallel/Distributed Software Tool Evaluation

In this project we study and evaluate the performance of di�erent applications implemented

using di�erent tools and when they are run on di�erent platforms. We used three message

passing tools Express, p4, and PVM for this benchmark. The computer architectures studied

include IBM-SP1, Alpha cluster, SUN workstations. These computers are interconnected by

one or more combinations of three networks viz. Ethernet, FDDI, ATM.

34

3.4.1 Primitives supported by di�erent Software Tools

The primitives of any parallel/distributed software tool can be broadly characterized into

four groups: Communication primitives, Synchronization primitives, Management/Control

primitives and Exception Handling primitives.

The experimental results presented later evaluate the performance of send/receive, broad-

cast/multicast, ring communication and global summation primitives of the studied software

tools.(see Table 4).

Table 4: Communications primitives for evaluating tools at TPL

Primitive Express p4 PVM

Send/Receive exsend p4 send pvm send

exreceive p4 recv pvm recv

Broadcast/Multicast exbroadcast p4 broadcast pvm mcast

Ring exsend p4 send pvm send

exreceive p4 recv pvm recv

Global Sum excombine p4 global op Not Available

These communication primitives play an important role in determining the performance

of a large class of parallel/distributed applications. Hence, the tool that provides the best

performance in executing its communication primitives will also give the best performance

results for a large number of distributed applications.

3.4.2 Applications Benchmark Suite

Low level benchmark tests such as communication primitive performance can some time be

misleading by suggesting performance advantages for one tool over another that may not be

relevant in actual applications. So in this level, we evaluate the tools from application perfor-

mance perspective. We have used di�erent classes of applications from the parallel/distributed

applications benchmark suit (SU PDABS) that is currently being developed at NPAC (North-

east Parallel Architectures Center) at Syracuse University.

We have divided the applications into four classes namely, Numerical algorithms, Sig-

nal/Image Processing applications, Simulation/Optimization applications, and Utilities. Ap-

plications under di�erent classes are shown in Table 5. We have chosen applications to include

simple, medium, and complex problems, to represent a broad spectrum of applications. Even

though it covers a broad spectrum of applications, it is not comprehensive. All applications

35

Table 5: SU PDABS

Numerical Algorithms Signal/Image Simulation/Optimization Utilities

Processing

1. Fast Fourier Transform JPEG Compression N-body Simulation ADA Compiler

2. LU Decomposition Hough Transform Monte Carlo Parallel Sorting

Integration

3. Linear Equation Solver Ray Tracing Traveling Salesman Parallel Search

4. Matrix Multiplication Data Compression Branch and Bound Distributed Spell

Checker

5. Cryptology Distributed Make

in this suit are written in C using di�erent distributed/parallel tools viz. Express, p4, and

PVM.

From this benchmark suit, we have chosen JPEG Compression, Fast Fourier Transform

(FFT), Monte Carlo Integration and Parallel sorting applications for benchmarking the soft-

ware tools.

3.4.3 Experimental Results

In this subsection, we discuss the experimental results of the tool primitives and performance

of the applications when implemented on di�erent platforms using di�erent tools. These

results can be used to assist in determining the best platform, network technology, and PDC

tool to run a given class of applications.

1. Software Tool Primitives' results: In what follows, we benchmark the point-to-

point and group communication primitives of three parallel/distributed software tools

on di�erent distributed computing platforms.

(a) Send/Receive Primitives: Table 6 shows the execution time of snd/rcv prim-

itives when implemented in Express, p4, and PVM and for di�erent message sizes

up to 64 Kbytes. For example, for message size of 16 Kbytes, snd/rcv primitive

takes approximately 111, 44, and 61 milliseconds when it is implemented using

Express, p4, and PVM, respectively over Ethernet. It is clear from this table that

the p4 implementation of point-to-point communications on SUNWorkstations has

the best performance when compared to the other tool implementations.

Table 6 shows the snd/recv time for these tools on SUN SPARCstations over ATM

LAN and NYNET. Similarly to the Ethernet results, p4 implementation of the

36

send/receive primitives outperformed the other tool implementations. Express per-

forms a little better than PVM for small message sizes (upto 1 Kbytes) but PVM

outperforms Express for large messages. This table shows the signi�cant improve-

ment in throughput when ATM networks are used as the underlying communi-

cation network of high performance distributed systems. Furthermore, this table

shows that NYNET performance of send/receive primitives is similar.to those of

ATM LAN. Hence, it is feasible to build distributed computing systems across an

NYNET and their performance is comparable to those based on LANs.

Table 6: snd/recv timing for SUN SPARCstations (in milliseconds)

Mesg Size PVM p4 Express

(Kbytes) Ethernet ATM NYNET Ethernet ATM NYNET Ethernet ATM

(LAN) (LAN) (LAN)

0 9.655 7.991 7.764 3.199 2.966 3.636 4.807 4.152

1 11.693 8.678 8.878 3.599 3.393 4.168 10.375 7.240

2 14.306 9.896 10.105 4.399 3.748 4.822 18.362 11.061

4 25.537 13.673 14.665 9.332 4.404 5.069 32.669 16.990

8 44.392 18.574 19.526 24.165 6.482 7.459 59.166 27.047

16 61.096 27.365 28.679 44.164 11.191 13.573 111.411 46.003

32 109.844 48.028 53.320 98.996 19.104 22.254 189.760 82.566

64 189.120 88.176 91.353 173.158 35.899 41.725 311.700 153.970

(b) Broadcast Primitives: For this group communication primitive, p4 has the

best performance while Express has the worst performance. It is worth noting that

the tool with better snd/rcv performance does not necessarily imply the better

performance for broadcast/multicast primitives. This is because of the fact that

broadcast/multicast performance greatly depends on the algorithm used for its

implementation. We observe similar results on NYNET network.

(c) Ring Communication: Ring communication was implemented using snd/recv

primitive in all three tools. As with other communication primitives p4 performs

best among all other tools. One interesting point to note is that even though PVM

performs better than Express in snd/recv primitive, Express outperforms PVM for

ring communication and this indicates that Express is better suited for continuous

ow of incoming and outgoing data when compared to PVM. However, p4 is the

best among the three for this type of applications.

37

(d) Global Summation: Global operations are very important in measuring perfor-

mance of PDC tools. We selected global summation for our performance measure-

ment as this is the most commonly used global operation. PVM does not support

any global operation and thus it is not evaluated for this operation. For this global

operation, P4 implementation is also better than Express.

Table 7 summarizes the results of our evaluation of these tools with respect to their

communication primitives. From this table we can see that p4 outperforms Express

and PVM in all classes of communication primitives. This can be attributed to

the e�cient implementation of p4 communication primitives which add very small

amount of overhead to the underlying transport layer.

Table 7: Summary of Tool Performance on di�erent Platforms

SUN/Ethernet SUN/ATM

snd/rcv broadcast ring global sum snd/rcv broadcast ring

p4 p4 p4 p4 p4 p4 p4

PVM PVM Express Express PVM PVM PVM

Express Express PVM Express

2. Applications' Performance: We evaluate the parallel/distributed software tools by

comparing the execution times of four applications (JPEG Compression, Two-Dimensional

Fast Fourier Transform, Monte Carlo Integration, Sorting by Regular Sampling) that

are commonly used in distributed systems.

We have benchmarked these applications on all the platforms discussed before and when

they are implemented using p4, PVM, and Express tools.

For ALPHA cluster, the p4 implementation of JPEG compression and 2D-FFT per-

formed the best, whereas PVM and Express implementations were best for sorting and

Monte Carlo integration, respectively. Since JPEG compression involves heavy com-

munication, p4 implementation of JPEG compression is understandably performs best,

since it involves least communication overhead among all three tools as shown in the

previous subsection.

For IBM-SP1, the results are consistent with those obtained on the ALPHA cluster.

However, the execution times are signi�cantly higher on IBM-SP1 compare to ALPHA

cluster because SP1 uses slower processing nodes and interconnect network.

38

Comparing the applications performance when they are implemented on NYNET (ATM

WAN) and on Ethernet LAN shows that distributed computing is feasible across wide

area networks and can outperform LANs if higher speed network technology such as

ATM is used.

3.4.4 Discussion

Although many criteria have been excluded while evaluating the software tools, the results

presented above give where the tools stand as far as performance is concerned. Many details

like application development (how easy is it to develop an application using a given tool),

capabilities of a tool to support debugging and user interface should be taken into consideration

when necessary.

4 Demonstrations

We have been demonstrating the capabilities of NYNET to provide the communication, stor-

age and computations for large scale HPCC applications. In what follows, we brie
y describe

the main NYNET demonstrations that were organized to show the bene�ts that can be gained

from running the HPCC applications developed in this project over NYNET.

Congress Demo: This demonstration was given to the U.S. House Representatives Sub-

committee on Science, Space and Technology on October 25, 1993. The application which

were demonstrated included Concurrent Multitarget Tracking System, Financial Modeling

application, Electromagnetic Scattering Simulation which have been discussed in the previous

sections of this report and Integrated Multimedia Environment which is brie
y described

below.

Integrated Multimedia Environment demonstrates the use of high speed network and multi-

media technology to reduce health cost, improve the quality of providing health care, education

and military. This demo used a commercially multimedia software, Communique, developed

by InSoft Inc. that allow the transfer of audio, video, text, and images over the TCP/IP net-

work. The description of the software is given in one of the previous sections. This technology

is still in its infancy and Syracuse University researchers are working on improving this tech-

nology by developing multimedia communications software that utilizes the high bandwidth

o�ered by NYNET. This application demonstrated the following functions:

� Audio/Video Teleconferencing

39

� Transfer of medical images and how physicians interconnected by a high speed network

can collaborate on studying patient images. Currently, regular/express mail, and phone

conferencing are used to achieve this task. In this function, we transfer hand x-ray image

and ultra sound image.

� Education: A delicate surgery (e.g., open heart surgery) can be transferred to medical

students across a high speed networks. Several specialists can collaborate on performing

a medical procedure performed by another doctor at remote location (e.g, disadvanged

place). Here, we will show a medical operation performed on an arm by using a VCR

tape provided by Upstate hospital.

� Military. Two commanders can discuss a battle scenario by discussing detailed diagrams

related to the theater of operation. In this scenario, the image of Gri�th Air force

Base is transferred and discussed. This application, demonstrates the use of high speed

networking, multimedia technology in medicine, education, and military.

Visit of Hillary Clinton: On April 5, 1994, First Lady Hillary Clinton and Senator Daniel

Patrick Moynihan visited NPAC to witness how InfoMall is helping to integrating today's

promising high performance computing and communications (HPCC) technologies for im-

portant applications in industry. Prof. Geo�rey Fox has demonstrated an experimental

telemedicine system running over NYNET. Using this telemedicine system, it was demon-

strated how doctors could use this technology to analyze multimedia information on patients

at remote locations. Ms Clinton watched as doctors in NPAC and doctors in Rome Labs were

communicating with each other through audio and video about a child's condition.

NYNEX/Rome Labs Demo: Several High Performance Communication and Computa-

tion (HPCC) applications were used to demonstrate the capabilities of NYNET to members

of NYNEX. This demonstration took place at NPAC. The applications included a multimedia

language learning software developed by Syracuse Language Systems. This software uses au-

dio and pictures for teaching a new language. The setup included two PCs and a unix server

connected by Ethernet. The software and data are located in the server and are accessed from

PCs. The idea of Education on Demand (PCs in class rooms accessing data in remote server

via high speed networks) was demonstrated here. Other applications included Mosaic server

and Video on Demand applications.

TOA/COA Conference Demonstration This demonstration was a part of the confer-

ence held at Sheraton Inn, Liverpool, Syracuse, NY during June 6, 7, and 8 1994. NYNEX

40

has added a temporary o� ramp to NYNET. Prof. Geo�rey Fox has demonstrated the Video

on Demand applications which use the high bandwidths of ATM NYNET and computing

capabilities available at NPAC. During these demonstrations we have experienced network

routing problems that have prevented us from accessing the parallel computers at NPAC.

This problem was caused by IP tra�c routing tables. This problem triggered the need to

have a uniform IP routing technique to be used by all NYNET participants.

5 Summary and Conclusions

In this project we have developed in a relatively short period of time a wide range of HPCC

applications and demonstrated the bene�ts of running these applications on a high speed wide

area network such as the NYNET. The applications include Multitarget Tracker, Financial

Modeling application, Electromagnetic Scattering, JPEG compression, Fractal generation.

We also evaluated the use of Mosaic as a user interface to launch HPCC applications running

on a geographically dispersed high performance computers ranging from supercomputers or

parallel computers down to desktop computers.

This project has identi�ed several limitations in current HPCC technologies that must be

addressed. These areas and research issues are summerized below:

1. Need for an e�cient communication system: TCP/IP protocols were designed in the

days when bandwidth was not high and there were frequent errors in transmission. As

a result TCP/IP protocols add a lot of overhead doing error detection,
ow control etc.

and thus are not suitable for high speed ATM networks like NYNET. Thus there is a

need for an e�cient communication system which is suitable for high speed networks.

More research is needed to make communication protocols e�cient.

2. Multimedia software: Multimedia is still in its infancy and more research is needed to

develop an evaluation methodology and improve their performance. The proliferation

of powerful personal computers will play an important role in the widespread use of

PCs to access and run multimedia applications across high speed networks. The use of

PCs as client machines to access multimedia servers raise interesting issues that need

to be investigated. The performance of multimedia applications when the PCs access

the NYNET through Ethernet or ISDN network should be studied. Currently existing

multimedia software does not support e�cient collaboration among large number of par-

ticipants. More research is needed on how to improve their performance and scale their

capability so that a large number of users interconnected over NYNET can collaborate

41

and interact to solve large scale applications. The goal of one of the projects at NPAC

it to develop e�cient tecniques for delivering multimedia application over the NYNET

through ISDN network.

3. Information services on Demand: The use of high speed network and high performance

computers will facilitate the deployment of information servers that can be accessed

over a high speed network like NYNET. Questions on how the server's information

should be accessed need further research. Two possibilities for this are 1) a local server

acts as a cache and provides required services to the clients and 2) use several remote

servers that can be accessed concurrently by the clients through the NYNET. One

important class of such information servers is Video On Demand (VOD) server. More

research is needed to evaluate the best platform (parallel/distributed) and to develop

and implement VOD on NYNET. Also, what type of communication protocols are best

suited for VOD applications should be addressed.

4. ISDN and B-ISDN internetworking: The ISDN is intended to be a worldwide public

telecommunication network to replace existing public telecommunication networks and

deliver a wide variety of services. One important problem that must be addressed

is the internetworking of ISDN and ATM based B-ISDN. Proliferation of the use of

information servers will grow explosively when the issue of internetworking of ISDN and

B-ISDN networks is resolved. By solving this issue we can allow 100 or 1000 of PCs

access the NYNET information servers by using ISDN network. Access then, is as easy

as dialing the number of the required information server. This allows the users to access

NYNET servers from anywhere in the world.

References

[1] T. D. Gottschalk, "CALTRAX The Tracking Program for Simulation 87", Caltech Report

C3P-478, California Institute of Technology, Pasadena, California 91125.

[2] Salim Hariri et. al. "Parallel Software Benchmark for BMC3/IS Systems", Northeast

Parallel Architectures Center, 111 College Place, Syracuse University, Syracuse, NY.

[3] F. Black, and M. Scholes. "The Pricing of Options and Corporate Liabilities," Journal of

Political Economy, 81, 1973, 637-59. 1973.

[4] T. Finucane, "Binomial Approximations of American Call Option Prices with Stochastic

Volatilities," published in Journal of Finance. 1992.

42

[5] Mills, K., Vinson, M. and Cheng, G., "A Large Scale Comparison of Option Pricing

Models with Historical Market Data," in Proc. of the 4th Symposium on the Frontiers of

Massively Parallel Computation, McLean, VA, IEEE Computer Society Press, October

1992.

[6] G. Cheng, K. Mills and G. Fox, "An Interactive Visualization Environment for Financial

Modeling on Heterogeneous Computing Systems, " Proc. of the 6th SIAM Conference on

Parallel Processing for Scienti�c Computing, R. F. Sincovec, eds., SIAM, Norfolk, VA,

March 1993.

[7] Mills, K., Cheng, G., Vinson, M., Ranka, S. and Fox, G.,"Software Issues and Performance

of a Stock Option Pricing Model on the Connection Machine-2 and DECmpp-12000," in

Proc. of Fifth Australian Supercomputing Conference, Melbourne, Australia, December,

1992.

[8] G. Cheng, G. Fox, K. Mills and Marek Podgorny, "Developing Interactive PVM-based

Parallel Programs on Distributed Computing Systems within AVS Framework," to be

presented at the 3rd Annual International AVS Conference, JOIN THE REVOLUTION:

AVS'94, Boston, MA, May 2-4.

[9] Y. Lu, A. G. Mohamed, G. Fox and R. F. Harrington, \Implementation of Electromag-

netic Scattering from Conductors Containing Loaded Slots on the Connection Machine

CM-2", in Proc. of the 6th SIAM Conference on Parallel Processing for Scienti�c Com-

puting, March 1993, Norfolk, VA.

[10] G. Cheng, Y. Lu, G. C. Fox, K. Mills and T. Haupt, "An Interactive Remote Visualization

Environment for an Electromagnetic Scattering Simulation on a High Performance Com-

puting System," in the Proceedings of Supercomputing '93, Portland, Oregon, November

15-19, 1993.

43

