
Northeast Parallel Architectures Center
at Syracuse University

Software Tool Evaluation Methodology 1

Salim Hariri2 , Sung-Yong Park, Rajashekar Reddy,

Mahesh Subramanyan, Rajesh Yadav, and Geo�rey Fox

Northeast Parallel Architectures Center

Syracuse University

Syracuse, NY 13244

Manish Parashar

Department of Computer Sciences & Center for Relativity

University of Texas, Austin, TX

(SCCS #643)

1This research is funded by Rome Laboratory (contract number F-30602-92-C-0063), Rome, NY
2Dr. Salim Hariri, Professor, ECE Department, Syracuse University, Syracuse, NY 13244, email:

hariri@cat.syr.edu



Abstract

The recent development of parallel and distributed computing software has introduced
a variety of software tools that support several programming paradigms and languages.
This variety of tools makes the selection of the best tool to run a given class of appli-
cations on a parallel or distributed system a non-trivial task that requires some inves-
tigation. We expect tool evaluation to receive more attention as the deployment and
usage of distributed systems increases. In this paper, we present a multi-level evalua-
tion methodology for parallel/distributed tools in which tools are evaluated from di�er-

ent perspectives. We apply our evaluation methodology to three message passing tools
viz Express, p4, and PVM. The approach covers several important distributed sys-
tems platforms consisting of di�erent computers (e.g., IBM-SP1, Alpha cluster, SUN
workstations) interconnected by di�erent types of networks (e.g., Ethernet, FDDI,
ATM).



1 INTRODUCTION 3

1 Introduction

The recent decades have seen an increasing interest in parallel/distributed multi-

computer systems (multiple independent computing units interconnected by local-

area or custom networks) as a feasible and cost-e�ective means of achieving the high-

performance computing capabilities demanded by existing and future applications.

Consequently there has been a proliferation of (commercial as well as academic) soft-

ware systems aimed at providing the communication infrastructure required to exploit

such computing environments. Available software systems or parallel/distributed

computing tools (PDC tools) vary signi�cantly in terms of the application domain

targeted and corresponding functionality provided, the computational & communica-

tion model supported, the underlying implementation philosophy, and the computing

environments supported.

General purpose systems like MPI, PVM and P4 provide a wide class of basic commu-

nications primitives while dedicate systems like BLACS (Basic Linear Algebra Com-

munication System) and TCGMSG (Theoretical Chemistry Group Message Passing

System) are tailored to speci�c application domains. Furthermore, some systems

provide higher level abstractions of application speci�c data-structures (e.g. VSG

(Virtual Shared Grids), GRIDS, CANOPY). Existing systems also di�er in the com-

putational model they provide to the user; for example loosely synchronous data

parallelism, functional parallelism, or shared memory. Di�erent systems use di�erent

implementation philosophies such as remote procedure calls, interrupt handlers, ac-

tive messages, or client-server based, which makes them more suited for a particular

type of communication. Finally certain systems (such as CMMD and NX/2) are tied

to a particular system; in contrast to portable systems like PVM and MPI.

Given the number and diversity of available systems, the selection of a particular sys-

tem for an application development is non-trivial. Factors governing such a selection

include application characteristics and system speci�cations as well as the usability

of a system and the development interface it provides. It is critical therefore, that

there exists a methodology for generating a normalized evaluation of available sys-

tems which can assist users in evaluating the suitability of any particular system to

their needs. In this paper we de�ne such an evaluation methodology. The proposed

methodology provides a comprehensive characterization of PDC tools by de�ning

their evaluation from three di�erent perspectives:

1. A low-level performance perspective evaluates the basic communication primi-

tives provided by the tools. These include point-to-point communications (send/receive),

collective communications (bcast/mcast), ring communications (all nodes send

and receive), and global reduction operations.

2. An application-level performance perspective evaluates the PDC tools from the

application's point of view. Here we evaluate the performance of representative

NPAC/ECE, Syracuse University



2 MULTI-LEVEL TOOL EVALUATION METHODOLOGY 4

applications developed using di�erent tools. Applications are chosen so that

they incorporate a wide set of basic algorithmic building blocks.

3. A development interface (or usability) perspective characterizes the tools in

terms of the functionality provided, computational/communication models sup-

ported, the ease of application development (coding, testing, and debugging

support), computing environment supported, portability, etc.

The proposed methodology has two key objectives:

1. To provide a means for evaluating, quantifying and comparing the suitability of

PDC tools with regard to user requirements, thereby enabling the selection of

the most appropriate PDC tools for a particular application class and system

con�guration.

2. To serve as a uni�ed platform for PDC tool developers for identifying the de-

�ciencies and bottlenecks in existing systems and for de�ning the requirements

of future systems.

The application of the proposed evaluation methodology is illustrated using a selection

of widely used academic and commercial PDC tools. The low-level and application-

level performance metrics are obtained experimentally using a diverse set of paral-

lel/distributed multi-computer systems (IBM SP-1 using custom crossbar switch &

LAN; and workstation clusters (Dec Alpha & SUN Sparcstations) interconnected us-

ing Ethernet, FDDI and ATM networks). The application suite that can be used

to evaluate PDC tools from application perspective, includes codes from four broad

classes: numerical applications, signal and image processing, simulation, and system

utilities (such as parallel make, spell checker compiler). Finally, a set of criteria are

outlined for characterizing the usability of the tool and its development interface.

The tools considered in this study are Express [10] (Parasoft Inc.), p4 [9](Argonne

National Labs), and PVM [8] (Oak Ridge National Labs).

The rest of this paper is organized as follows: Section 2 describes the proposed eval-

uation methodology and details the three evaluation perspectives. In Section 3, we

apply the methodology to evaluate three PDC tools. The corresponding experimental

results are also presented. Finally Section 4 summarizes the evaluation methodology

and outlines future research directions.

2 Multi-level Tool Evaluation Methodology

Currently, there are no general criteria to evaluate a parallel/distributed tool nor it

is easy to lay down such criteria [5]. One of the main di�culties in obtaining such an

NPAC/ECE, Syracuse University



2 MULTI-LEVEL TOOL EVALUATION METHODOLOGY 5

evaluation criteria set is that the importance and relevance of each criterion depends

on many factors which include the type of available computers, the typical set of

user applications, and the type of computing environment (education, government,

military, industry etc.). For example, a user would give the response time as the

most important performance metric to evaluate an application execution. On the

other hand, a system manager might consider the system utilization or throughput

as the main evaluation criterion and attempts to push the utilization to saturation

(100%). By doing so, the application response time increases and reaches in�nity

when the system is fully saturated. These two measures are contradicting each other.

Consequently, one needs to decide �rst the point of view (user or system manager)

that needs to be considered in evaluating the performance of a given tool.

We do believe it is a challenging task to identify a meaningful criterion that takes

into consideration all these factors. Hence our approach to evaluate tools is based on

multi-levels where each level is representing one perspective for tool evaluation. By

using weight factors, an overall tool evaluation can be tailored to take into account

the most relevant factors associated with certain types of users. In this paper, we

present a three level approach to evaluate parallel/distributed software tools. These

levels are as follows:

1. Tool Performance Level (TPL): In this level, we evaluate the performance of tool

primitives when they run on distributed systems that utilize di�erent computer

architectures and networks.

2. Application Performance Level (APL): In this level, we evaluate the performance

of parallel/distributed applications that are implemented using these tools and

run on di�erent platforms.

3. Application Development Level (ADL): In this level, we evaluate the tool capa-

bility to support and facilitate the development of parallel/distributed applica-

tions.

In this paper, we evaluate three tools viz, Express, p4, and PVM with respect to each

level. However, other levels can be added if necessary to take into consideration any

additional set of criteria that has not been considered in these three levels. In what

follows, we discuss the set of criteria to be used at each level.

2.1 Tool Performance Level (TPL)

In this level, we evaluate the performance of the primitives supported by a given

tool. The primitives of any parallel/distributed software tool can be broadly charac-

terized into four groups: 1) Communication primitives 2) Synchronization primitives

3) Management/Control primitives and 4) Exception Handling primitives.

NPAC/ECE, Syracuse University



2 MULTI-LEVEL TOOL EVALUATION METHODOLOGY 6

1. Communication Primitives: These primitives can be divided into two types:

point-to-point and group communication primitives.

(a) Point-to-Point Communication: It is the basic message passing prim-

itive for any parallel/distributed programming tool. To provide e�cient

point-to-point communication, most systems provide a set of function calls

rather than the simplest send and receive primitives. The main primi-

tives include synchronous and asynchronous send/receive, synchronous and

asynchronous data exchange, non-contiguous or vector data.

(b) Group Communication: These primitives can be divided into three

categories: one-to-many, many-to-one, and many-to-many.

2. Synchronization Primitives: A parallel/distributed program can be divided

into several di�erent computational phases. To prevent asynchronous messages

from di�erent phases interfering with one another, it is important to synchronize

all processes or a group of processes. Usually, a simple command without any

parameter, such as, exsync in Express can provide a transparent mechanism to

synchronize all the processes. But, there are several options that can be adopted

to synchronize a group of processes. In PVM, pvm barrier, which requires two

parameters group name and num, blocks the caller until a certain number of

calls with the same group name are made.

3. System Management: The tasks of con�guration, control, and management

of a system are quite di�erent from system to system. Most of the con�gu-

ration, control and management primitives supported by the studied software

tools include primitives to allocate and deallocate one processor or a group of

processors to load, start, terminate, or abort programs, for dynamic recon�g-

uration, process concurrent or asynchronous �le I/O, and query the status of

environment.

4. Exception Handling: In a parallel/distributed environment, it is impor-

tant that the network hardware and software failures must be reported to the

user's application or system kernel. In traditional operating systems such as

UNIX, exception handling is processed by an event-based approach, where a

signal is used to notify a process that an event has occurred and after that, a

signal handler is invoked to take care of the event. Basically, an event could

be a hardware condition (e.g., bus error) or software condition (e.g., arithmetic

exception). Express supports tools for debugging and performance evaluation.

The experimental results presented later evaluate the performance of send/receive,

broadcast/multicast, ring communication and global summation primitives of the

studied software tools (see Table 1).

These communication primitives play an important role in determining the perfor-

mance of a large class of parallel/distributed applications. Hence, the tool that pro-

vides the best performance in executing its communication primitives will also give

NPAC/ECE, Syracuse University



2 MULTI-LEVEL TOOL EVALUATION METHODOLOGY 7

Primitive Express p4 PVM

Send/Receive exsend p4 send pvm send

exreceive p4 recv pvm recv

Broadcast/Multicast exbroadcast p4 broadcast pvm mcast

Ring exsend p4 send pvm send

exreceive p4 recv pvm recv

Global Sum excombine p4 global op Not Available

Table 1: Communications primitives for evaluating tools at TPL

# Numerical Algorithms Signal/Image Simulation/Optimization Utilities

Processing

1. Fast Fourier Transform JPEG Compression N-body Simulation ADA Compiler

2. LU Decomposition Hough Transform Monte Carlo Parallel Sorting

Integration

3. Linear Equation Solver Ray Tracing Traveling Salesman Parallel Search

4. Matrix Multiplication Data Compression Branch and Bound Distributed Spell

Checker

5. Cryptology Distributed Make

Table 2: SU PDABS

the best performance results for a large number of distributed applications as will be

shown later in section 4.

2.2 Application Performance Level (APL)

Low level benchmark tests such as communication primitive performance can some

time be misleading by suggesting performance advantages for one tool over another

that may not be relevant in actual applications. So in this level, we evaluate the

tools from application performance perspective. We have used di�erent classes of

applications from parallel/distributed applications benchmark suit (SU PDABS) that

is currently being developed at NPAC (Northeast Parallel Architectures Center) of

Syracuse University.

We have divided the applications into four classes namely, Numerical algorithms, Sig-

nal/Image Processing applications, Simulation/Optimization applications, and Util-

ities. Applications under di�erent classes are shown in Table 2. We have chosen

applications to include simple, medium, and complex problems, to represent a broad

spectrum of applications. Even though it covers a broad spectrum of applications,

it is not comprehensive. All applications in this suit are written in C using di�erent

distributed/parallel tools viz. Express, p4, and PVM.

NPAC/ECE, Syracuse University



2 MULTI-LEVEL TOOL EVALUATION METHODOLOGY 8

From this benchmark suit, we have chosen JPEG Compression, Fast Fourier Trans-

form (FFT), Monte Carlo Integration and Parallel sorting applications for bench-

marking the software tools in this paper.

2.3 Application Development (Usability) Perspective

The application development perspective characterizes PDC tools on the basis of their

usability (ease of use), their functionality, and the development overheads incurred

in using them. In what follows we outline a set of criterion that can be used in this

characterization.

Programming Models Supported: The development of any parallel or distributed

application is based on an underlying programmingmodel which determines its imple-

mentation. A number of parallel/distributed programming models have been de�ned

to meet varied requirements; the choice of the appropriate programming model be-

ing dictated jointly by the characteristics the application and the speci�cations of

the target computing environment. The Data Parallel programming model achieves

parallelism by identifying data elements that can be operated on in parallel; while

Functional Parallelism decomposes the application into tasks that can be performed

concurrently. A Shared Memory programming model assumes a common memory

space and achieves cooperation via shared data elements. A Message Passing pro-

grammingmodel, on the other hand, uses explicit messages for communication. Other

models include Synchronous (processing agents proceed in lock step), Loosely Syn-

chronous (processing agents are constrained to communicate at regular intervals) and

asynchronous.

The PDC tools studied in this paper support either one or both of the following

programming models:

� Host-Node Model: The host-node programming model consists of a single

host process that coordinates the execution of one or more node processes.

The host is typically responsible for input/output and administrative operations

while the node processes concurrently perform computations. Node process can

communicate among themselves or with the host.

� SPMD or Cubix Model: The SPMD (single program multiple data) or Cubix

model is a loosely-synchronous data-parallel programming model wherein the

computing nodes execute the same program stream on di�erent data elements.

Language Interface: The programming languages supported by PDC tools have

a key impact on its usability. Supporting popular languages not only enables the

NPAC/ECE, Syracuse University



2 MULTI-LEVEL TOOL EVALUATION METHODOLOGY 9

developer to work with a familiar environment but also enables the reuse of existing

program components. Tools supporting multiple languages allow di�erent parts of

the application to be implemented using di�erent languages, which may be bene�-

cial for certain applications. The PDC tools evaluated in this paper support C and

FORTRAN.

Development Interface: The development interface criteria evaluates the support

provided during application development. It includes the following four sub-criteria:

Ease of Programming: Ease of programming measures the e�ort required on the

user part to interact with the tool. If the user spends more time thinking about how

to use the tool or making the tool works, the tool is hindering and not helping with

the programming task. Measures of this criterion include the learning curve for new

as well as experienced developers, and the amount of re-engineering of re-development

required.

Debugging Support: Given the complexity of parallel/distributed applications de-

velopment and non-determinism that is typical of such an environment, suitable de-

bugging supports is desirable of the PDC tool used. Possible debugging support

includes:

� The ability to trace the execution of the parallel application on the PDC system.

� The ability to de�ne break points in the application program and to stop exe-

cution at these points.

� The ability to view application data-structures at de�ned break points and dur-

ing execution of the application.

Customization: The ability to customize a PDC tool and its interface to a developer

needs provides a more comfortable development environment. Customization support

includes:

� The ability to de�ne new commands and macros for frequently used command

sequences.

� Re-con�guration of the tool according to desired tradeo�s for such parameters

as response speed and memory utilization.

� Re-de�nition of tool input and output formats.

NPAC/ECE, Syracuse University



3 EXPERIMENTAL RESULTS 10

Error Handling: A PDC tool should be able to gracefully exit when an non-

retrievable error occurs. In other cases, the error message should be a pointer to

the type of error that has occurred. Protection from costly errors should be provided.

For example, when the application requires more memory than what is available, it

is an error condition. In this case, the tool should give an appropriate error message,

delete all allocated memory, and exit the program without causing the terminal to

hang. All the tools that we used in this paper do not have a mature error/exception

handling feature and hence will not be evaluated favorably at this level.

Run-Time Interface: The run-time interface handles (among others) issues such as

parallel I/O, data redistribution, and dynamic load-balancing. The ability to perform

I/O concurrently across processors is becoming increasing important, especially for

I/O bound application where sequential I/O can be a signi�cant bottleneck. Run-time

data redistribution is necessary when the communication patterns of the applications

change from one phase to another. Finally, dynamic load-balancing is critical for

application with widely varying run-time load distributions.

Integration with other Software Systems: Applications often require the services

of other software systems for functionality such as visualization, pro�ling, data in-

put, etc. Hence, the ability to e�ectively interface with other software system is an

important criterion to facilitate the development of parallel/distributed applications

and is used at this level of tool evaluation.

Portability: Given the number and diversity of existing parallel/distributed sys-

tems, it is critical that PDC tools and the applications developed based on them

are portable. Portability also dictates that the tool provide an architecture indepen-

dent programming interface. For example, Express provides the user with a virtual

processor topology which is independent of the actual physical topology.

3 Experimental Results

In this section, we apply our evaluation methodology to three PDC tools (Express,

p4, and PVM) and evaluate them from three di�erent perspectives: tool performance,

application performance, and tool usability. The results of our evaluation can be used

to assist in determining the best platform, network technology, and PDC tool to run

a given class of applications.

NPAC/ECE, Syracuse University



3 EXPERIMENTAL RESULTS 11

3.1 Experimentation Environment

PCs

DEC 
WSs Sun 

WSs

Front 
Ends

FDDI 
switch FDDI 

concentrator

DECmpps

NYNET 
OC3/OC12

FORE 
switch

SGI 
Network 
Server

Allnode 
switch

DECNIS 
Router

SP1

CM-5

nCUBE

FDDI
Ethernet
HiPPI
ATM

Allnode
DS3/ATM

X terminal 
server

Xterminals

IBM R/6000 
cluster

Alpha 
Cluster

File Servers 
(50 GB+)

* This diagram doesn't reflect the details of the actual network topology.

Figure 1: Computing Environment at NPAC

The evaluation presented in this section was performed on a wide set of state-of-the-
art multi-computer systems which are a part of the high performance computing

environment at the Northeast Parallel Architectures Center, Syracuse University (see

Figure 1). The platforms used are briey described below:

IBM SP-1: The SP-1 consists of a cluster 16 RISC/6000 370 nodes interconnected

by a crossbar switch (Allnode) and a dedicated Ethernet. Each node runs at a clock

rate of 62.5 MHz. The evaluation presented in this section is performed on the Allnode

switch and the dedicated Ethernet.

ALPHA/FDDI: The ALPHA/FDDI con�gurations consisted of 8 DEC ALPHA

workstations interconnected by a high performance (100 Mbps) backbone composed

of dedicated, switched FDDI segments. The ALPHA nodes have a clock rate of 150

MHz.

NPAC/ECE, Syracuse University



3 EXPERIMENTAL RESULTS 12

SUN/ATM WAN: This con�guration consists of SUN SPARCstation IPXs com-

municating over the NYNET. NYNET is an ATM wide area network (WAN) that

covers all New York State and Part of Massachusetts State. Most of the wide area

portion of the NYNET operates at speed OC 48 (2.4 Giga bits per second) while each

site is connected with two OC 3 links (155 Million bits per second). In this paper, we

evaluate the performance of PDC tools on the NYNET connection between Syracuse

University and Rome Laboratories, Rome, NY.

SUN/ATM LAN: This con�guration consists of SUN SPARCstation IPXs inter-

connected by an ATM LAN using an ATM FORE switch. TAXI interface is provided

between the workstations and the ATM switch. The network bandwidth is 140 Mbps.

SUN IPX nodes operate on a 40MHz clock.

SUN/Ethernet: This con�guration consists of SUN SPARCstation ELCs intercon-

nected by an Ethernet LAN. The ELCs operate at a clock rate of 33 MHz.

3.2 Tool Performance Level (TPL)

In what follows, we benchmark the point-to-point and group communication primi-

tives of the three tools on di�erent distributed computing platforms.

3.2.1 Send/Receive primitives

Table 3 shows the execution time of snd/rcv primitives when implemented in Express,

p4, and PVM and for di�erent message sizes up to 64 Kbytes. For example, for

message size of 16 Kbytes, snd/rcv primitive takes approximately 111, 44, and 61

milliseconds when it is implemented using Express, p4, and PVM, respectively over

Ethernet. It is clear from this table that the p4 implementation of point-to-point

communications on SUN Workstations has the best performance when compared to

the other tool implementations.

Table 3 shows the snd/recv time for these tools on SUN SPARCstations over ATM

LAN and ATMWAN (NYNET). Similarly to the Ethernet results, p4 implementation

of the send/receive primitives outperformed the other tool implementations. Express

performs a little better than PVM for small message sizes (upto 1 Kbytes) but PVM

outperforms Express for large messages. This table shows the signi�cant improve-

ment in throughput when ATM networks are used as the underlying communication

network of high performance distributed systems. Furthermore, this table shows that

ATM WAN performance of send/receive primitives is similar.to those of ATM LAN.

NPAC/ECE, Syracuse University



3 EXPERIMENTAL RESULTS 13

Hence, it is feasible to build distributed computing systems across an ATMWAN and

their performance is comparable to those based on LANs.

Mesg Size PVM p4 Express

(Kbytes) Ethernet ATM ATM Ethernet ATM ATM Ethernet ATM

(LAN) (WAN) (LAN) (WAN) (LAN)

0 9.655 7.991 7.764 3.199 2.966 3.636 4.807 4.152

1 11.693 8.678 8.878 3.599 3.393 4.168 10.375 7.240

2 14.306 9.896 10.105 4.399 3.748 4.822 18.362 11.061

4 25.537 13.673 14.665 9.332 4.404 5.069 32.669 16.990

8 44.392 18.574 19.526 24.165 6.482 7.459 59.166 27.047

16 61.096 27.365 28.679 44.164 11.191 13.573 111.411 46.003

32 109.844 48.028 53.320 98.996 19.104 22.254 189.760 82.566

64 189.120 88.176 91.353 173.158 35.899 41.725 311.700 153.970

Table 3: snd/recv timing for SUN SPARCstations (in milliseconds)

3.2.2 Broadcast Primitives

Figure 2 shows the execution time for broadcasting messages of di�erent message

sizes up to 64 Kbytes among 4 Sun Workstations over Ethernet and ATM wide area

network. For this group communication primitive, p4 has the best performance while

Express has the worst performance. It is worth noting that the tool with better

snd/rcv performance does not necessarily imply the better performance for broad-

cast/multicast primitives. This is because of the fact that broadcast/multicast per-

formance greatly depends on the algorithm used for its implementation. We observe

similar results on NYNET network.

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
m
s
e
c
)

Message Size (Kbytes)

Broadcast Timing on ATM using 4 SUNs

PVM         
p4          

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
m
s
e
c
)

Message Size (Kbytes)

Broadcast Timing on Ethernet using 4 SUN

PVM         
p4          
Express     

Figure 2: Broadcast on SUN SPARCstations over Ethernet and ATM WAN

NPAC/ECE, Syracuse University



3 EXPERIMENTAL RESULTS 14

3.2.3 Ring Communication

Results of the ring communication for di�erent message sizes are given in Figure 3.

Ring communication was implemented using snd/recv primitive in all three tools. As

with other communication primitives p4 performs best among all other tools. One

interesting point to note is that even though PVM performs better than Express

in snd/recv primitive, Express outperforms PVM for ring communication and this

indicates that Express is better suited for continuous ow of incoming and outgoing

data when compared to PVM. However, p4 is the best among the three for this type

of applications.

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
m
s
e
c
)

Message Size (Kbytes)

Ring(Loop) Timing on ATM using 4 SUNs

PVM         
p4          

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
m
s
e
c
)

Message Size (Kbytes)

Ring(Loop) Timing on Ethernet using 4 SUNs

PVM         
p4          
express     

Figure 3: Ring communication on SUN SPARCstations over Ethernet and ATM WAN

3.2.4 Global Summation

Global operations are very important in measuring performance of PDC tools. We

selected global summation for our performance measurement as this is the most com-

monly used global operation. PVM does not support any global operation and thus

it is not evaluated for this operation. The performance results of p4 and Express

implementation of this global summation on Ethernet are shown in Figure 4. This

�gure shows the performance on NYNET as well. P4 implementation is also better

than Express for this operation.

Table 4 summarizes the results of our evaluation of these tools with respect to their

communication primitives. From this table we can see that p4 outperforms Express

and PVM in all classes of communication primitives. This can be attributed to the

e�cient implementation of p4 communication primitives which add very small amount

of overhead to the underlying transport layer.

NPAC/ECE, Syracuse University



3 EXPERIMENTAL RESULTS 15

0

2000

4000

6000

8000

10000

12000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
m
s
e
c
)

Vector Size (# of integers)

Vector Sum Timing 4 SUNs

p4        
express   
p4-NYNET  

Figure 4: Global summation on SUN SPARCstations over Ethernet and ATM WAN

SUN/Ethernet SUN/ATM

snd/rcv broadcast ring global sum snd/rcv broadcast ring

p4 p4 p4 p4 p4 p4 p4

PVM PVM Express Express PVM PVM PVM

Express Express PVM Express

Table 4: Summary of Tool Performance on di�erent Platforms

3.3 Application Performance Level (APL)

In this section we evaluate the PDC tools by comparing the execution times of four

applications that are commonly used in distributed systems. A brief description of

these applications and their parallel implementations are highlighted below:

1. JPEG Compression

The main problem with digital imaging applications is that a vast amount of

data required to represent a digital image directly. Thus, the use of digital im-

ages is limited in distributed systems because of the high storage requirement

and the long transmission times to transfer images from one site to another.

Image compression technology can compress images by 1/10-1/50 of their orig-

inal size without a�ecting image quality. JPEG (Joint Photographic Experts

Group) is a standard image compression method which enables interoperability

of equipments from di�erent manufacturers. JPEG standards are based on DCT

(Discrete Cosine Transform). This application involves simulation of JPEG im-

age compression that requires substantial processing and storage. In this appli-

cation, parallelism is achieved by data parallel model and thus the image to be

compressed or decompressed is divided into N equal parts (where N denotes the

number of processors), except for the one portion which can be slightly larger

than the rest. We use host-node programming model in which the master pro-

cess distributes the image among all nodes and then collects the results from all

NPAC/ECE, Syracuse University



3 EXPERIMENTAL RESULTS 16

nodes. It also processes its portion of the image. The parallel implementation

of JPEG application consists of three phases: Distribution, computation, and

collection phases. During distribution and collection phases, the computers ex-

change large volume of data while no communication is performed during the

computation phase.

2. Two-Dimensional Fast Fourier Transform (2D-FFT)

Two-Dimensional FFT is a useful transformation and has many applications in

image enhancement, data compression, and image reconstruction. To compute

the FFT in two dimensions (e.g., a screen of video data), one has to compute

a one dimensional FFT for each of the rows and each of the columns. This

algorithm involves intensive computations. Although the processing in 2D-FFT

can be easily distributed, a distributed 2D-FFT involves transfer of large amount

of data between processors. Thus, it is a good application to benchmark the

performance of communication primitives.

3. Monte Carlo Integration

Monte Carlo integration is an e�cient method for evaluating de�nite integrals.

The idea behind the Monte Carlo integration is to generate random points be-

tween the integration interval and calculate the function values at these points

and the mean of these function values gives the value of the de�nite integral.

Since this involves generating random samples, this is an approximate method

and thus more samples lead to a better approximation. This application is com-

pute intensive and communicate only short messages. Hence this can benchmark

the computing capacity of parallel/distributed platforms and latency impact of

di�erent tool implementations on the performance of this type of applications.

4. Sorting by Regular Sampling

Sorting is one of the most studied problems in Computer Science because of

its theoretical interest and practical importance. If huge amount of data needs

to be sorted, sequential sorting will be quite slow necessitating parallel sorting.

Parallel Sorting by Regular Sampling (PSRS) involves partitioning the data into
smaller subsets such that all the elements in one subset not greater than any

element in a later subset and sorting each subset independently. PSRS parti-

tions the data into ordered subsets of approximately equal size. This algorithm

represents a class of applications in which the computation and communication

requirements are data dependent.

We have benchmarked these applications on all the platforms discussed in Section 3.1

when they are implemented using p4, PVM, and Express tools.

Figure 5 shows the benchmark results of these applications on ALPHA cluster. The

p4 implementation of JPEG compression and 2D-FFT performed the best, whereas

PVM and Express implementations were best for sorting and Monte Carlo integration,

NPAC/ECE, Syracuse University



3 EXPERIMENTAL RESULTS 17

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
s
e
c
o
n
d
s
)

Number of Processors

2D-FFT on FDDI

Express
p4     
PVM    

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
s
e
c
o
n
d
s
)

Number of Processors

JPEG Simulation on FDDI

Express
p4     
PVM    

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
s
e
c
o
n
d
s
)

Number of Processors

Monte Carlo Integration on FDDI

Express
p4     
PVM    

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
s
e
c
o
n
d
s
)

Number of Processors

Sorting by Sampling on FDDI

Express
p4     
PVM    

Figure 5: Application Performances on ALPHA/FDDI

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
s
e
c
o
n
d
s
)

Number of Processors

2D-FFT on IBM-SP1 (Switch)

Express
p4     
PVM    

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
s
e
c
o
n
d
s
)

Number of Processors

JPEG Simulation on IBM-SP1 (Switch)

Express
p4     
PVM    

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
s
e
c
o
n
d
s
)

Number of Processors

Monte Carlo Integration on IBM-SP1 (Switch)

Express
p4     
PVM    

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
s
e
c
o
n
d
s
)

Number of Processors

Sorting by Sampling on IBM-SP1 (Switch)

Express
p4     
PVM    

Figure 6: Application Performances on IBM-SP1 with crossbar switch

NPAC/ECE, Syracuse University



3 EXPERIMENTAL RESULTS 18

respectively. Since JPEG compression involves heavy communication, p4 implemen-

tation of JPEG compression is understandably performs best, since it involves least

communication overhead among all three tools as shown in the previous subsection.

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

1 1.5 2 2.5 3 3.5 4

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
s
e
c
o
n
d
s
)

Number of Processors

2D-FFT on ATM (NYNET)

p4 
PVM

6

8

10

12

14

16

18

20

22

1 1.5 2 2.5 3 3.5 4

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
s
e
c
o
n
d
s
)

Number of Processors

JPEG Simulation on ATM (NYNET)

p4 
PVM

2

3

4

5

6

7

8

1 1.5 2 2.5 3 3.5 4

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
s
e
c
o
n
d
s
)

Number of Processors

Monte Carlo Integration on ATM (NYNET)

p4 
PVM

1

2

3

4

5

6

7

8

9

10

1 1.5 2 2.5 3 3.5 4

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
s
e
c
o
n
d
s
)

Number of Processors

Sorting by Sampling on ATM (NYNET)

p4 
PVM

Figure 7: Application Performances on SUN/ATM-WAN(NYNET)

Figure 6 shows the benchmark results when the four applications run on IBM-SP1.

The results of this �gure are consistent with those obtained on the ALPHA cluster.

However, the execution times are signi�cantly higher on IBM-SP1 compare to ALPHA

cluster because SP1 uses slower processing nodes and interconnect network.

Figure 7 and Figure 8 shows the timings on SUN IPXs connected by Ethernet and

ATM WAN. Comparing the applications performance when they are implemented on

NYNET (ATM WAN) and on Ethernet LAN shows that distributed computing is

feasible across wide area networks and can outperform LANs if higher speed network

technology such as ATM is used.

3.3.1 Application Development (Usability) Perspective

In this section, we evaluate the tools from their programability and their support

to developing e�cient distributed computing applications. For each tool, we show

whether or not a usability criterion is supported and if it does how well it is covered

in such a tool. However, more research is needed to quantify and validate this assess-

ment and we are investigating techniques to address these issues. Table 3.3.1 shows

NPAC/ECE, Syracuse University



4 SUMMARY AND CONCLUSION 19

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
s
e
c
o
n
d
s
)

Number of Processors

2D-FFT on Ethernet

Express
p4     
PVM    

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
s
e
c
o
n
d
s
)

Number of Processors

JPEG Simulation on Ethernet

Express
p4     
PVM    

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
s
e
c
o
n
d
s
)

Number of Processors

Monte Carlo Integration on Ethernet

Express
p4     
PVM    

2

4

6

8

10

12

14

16

18

20

22

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n
 
T
i
m
e
 
(
s
e
c
o
n
d
s
)

Number of Processors

Sorting by Sampling on Ethernet

Express
p4     
PVM    

Figure 8: Application Performances on SUN/Ethernet

our assessment of these tools in terms of their support to the criteria mentioned in

section 2.3

Criterion P4 PVM Express

Programming Models Supported WS WS WS

Language Interface WS WS WS

Development Interface

Ease of Programming PS WS PS

Debugging Support PS PS WS

Customization PS NS PS

Error Handling PS PS PS

Run-Time Interface PS WS WS

Integration with other Software Systems PS WS NS

Portability WS WS WS

4 Summary and Conclusion

Current trends in parallel/distributed computing indicate that the future of parallel

computing lies in the integration of existing computers into a single heterogeneous

high performance computing environment that allows them to cooperate in solving

NPAC/ECE, Syracuse University



4 SUMMARY AND CONCLUSION 20

complex problems. Software development for that environment is a non-trivial process

and requires a through understanding of the application and architecture. Another

important aspect of high performance distributed computing is the availability of

suitable message passing tools. The recent development of parallel/distributed com-

puting software has introduced a variety of message passing tools. In this paper, we

proposed a hierarchical approach for evaluating message passing tools. This scheme

evaluates tools from di�erent perspectives viz. tool performance, application per-

formance, and application development. In evaluating tool performance, we used

four di�erent types of communication primitives (send/receive, broadcast, ring op-

eration, and global summation) to evaluate tools performance. We also presented a

benchmark suite with four classes of algorithms to evaluate PDC tools from appli-

cation performance perspective. We also presented the performance of these tools

on four applications. Furthermore, we presented a set of criteria to evaluate these

tools from programmability perspective and their e�ectiveness to develop distributed

applications. We then used this set to evaluate the PDC tools studied in this paper.

Although the tool criteria presented in this paper cover a broad spectrum of require-

ments, they do not form an exhaustive list of requirements. A criterion can be added

or deleted according to the user requirements. Our objective is to present an outline

for a general multi-level evaluation methodology, which can be used to evaluate any

parallel/distributed tool from di�erent perspectives. Further research is needed to

quantify and validate accurately the tools capability to support the development of

parallel/distributed applications.

NPAC/ECE, Syracuse University



REFERENCES 21

References

[1] Paul Messina., Arnold Alagar., Clive Ballie., Edward Felten., Paul Hipes., ANke

Kamrath., Robert Leary., Wayne Pfei�er., Jack Rogers., David Walker., Roy

Williams., "Benchmarking Advanced Architecture Computers", Caltech Super-

computing Facility, San Diego Super Computing Center, Department of Mathe-

matics, University of South Carolina, Caltech Report, C3P712.

[2] G. C. Fox, W. Furmanski, "Communications Algorithms for Regular Convolu-

tions on the Hypercube", Caltech report C3P-329(1986).

[3] Geo�rey C. Fox., Mark A. Johnson., Gregory A. lyzenga., Steve W. Otto., John

K. Salmon., David W. Walker., "Solving Problems on Concurrent Processors",

New Jersey : Prentice Hall, November 1988.

[4] Doveen Y. Cheng and D. M. Pase, "An Evaluation of Automatic and Interactive

Parallel Programming Tools", Proceedings of Supercomputing, 1991.

[5] Salim Hariri, Geo�rey C. Fox, Balaji Thiagarajan, Manish Parashar, "Parallel

Software Benchmark for BMC3/IS Systems", Northeast Parallel Architectures

Center, 111 College Place, Syracuse University, Syracuse, NY 13244-4100.

[6] R.Olson.,"Parallel Processing in a Message Based Operating System", IEEE Soft-

ware, July 1985.

[7] D.Reed and D.Grunwald, "The performance of multicomputer interconnection

network", IEEE Computer, June 1987.

[8] AdamBeguelin, Jack Dongara, Al Geist, Robert Manchek , and Vaidy Sunderam,

\User Guide to PVM", Oak Ridge National Laboratory, Oak Ridge TN 378 31-

6367 and Department of Mathematics and Computer Science, Emory University,

February 1993.

[9] Ralph Butler, and Ewing Lusk, \User's Guide to the p4 Programming System",

Mathematics and Computer Science Division, Argonne National Laboratory,

9700 South Cass Avenue, Argonne, IL 60439-4801

[10] Parasoft Corporation, \Express 3.0 Documentation", Parasoft Corporation,

2500, E.Foothill Blvd. Pasadena, CA 91107.

NPAC/ECE, Syracuse University


