
Parallel Remapping Algorithms for Adaptive

Problems1

Chao-Wei Ou and Sanjay Ranka

School of Computer and Information Science

Syracuse University

Syracuse, NY 13244

Email: cwou@top.syr.edu, ranka@top.cis.syr.edu

Phone: (315) 443-4890, (315) 443-4457

FAX: (315) 443-1122

1This work was supported in part by NSF under CCR-9110812 and in part by DARPA under

contract #DABT63-91-C-0028. The contents do not necessarily reect the position or the policy

of the United States government and no o�cial endorsement should be inferred.

Abstract

In this paper we present fast parallel algorithms for remapping a class of irregular and adap-

tive problems on coarse-grained distributed memory machines. We show that the remapping

of these applications, using simple index-based mapping algorithm, can be reduced to sort-

ing a nearly sorted list of integers or merging an unsorted list of integers with a sorted list

of integers. By using the algorithms we have developed, the remapping of these problems

can be achieved at a fraction of the cost of mapping from scratch. Experimental results are

presented on the CM-5.

1 Introduction

The key problem in e�ciently executing data parallel applications is that of partitioning

the data among the processors such that the computation load on each node is balanced,

while communication is minimized. Partitioning such applications can be posed as a graph-

partitioning problem. The nodes of a graph constitute a set of computations that can be

executed concurrently, and the edges comprise the interaction between the various computa-

tions. Graph-partitioning problems belong to the class of NP-complete problems [9]; hence

exact solutions are computationally intractable for large problems. However, good subop-

timal solutions are su�cient for e�ective parallelization of most applications. There are a

number of partitioning algorithms available in the literature [1, 10, 14, 18, 19, 28]. This list

is by no means complete.

In a large number of such problems the computational structure (or dependencies) can

be constructed only during execution [5]. For such cases these graphs must be constructed

at runtime; thus it is important that the partitioning of data be done at runtime. Achieving

this in parallel is clearly necessary, else partitioning itself would become a bottleneck.

This paper is focused on a subclass of applications in which the computational graph is

such that the vertices correspond to two- or three-dimensional coordinates, and the interac-

tion between computations is limited to vertices that are physically proximate. Examples

of such applications include �nite element calculations [16], molecular dynamics [4], particle

dynamics [23], particle-in-a-cell [13, 27], region growing [7], and statistical physics [6]. A list

of other such applications is given in [5]. For these applications, partitioning can be achieved

by exploiting the above property. Essentially, proximate points are clustered together and

form a partition such that the number of points attached to each partition are approximately

equal. Most of the interactions are local and the amount of interprocessor communication is

low if proximate points are clustered together. Many such algorithms have been described

in the literature, including recursive co-ordinate bisection [28], and inertial bisection [11].

We have discussed an index-based indexing scheme in [25] and shown that it produces good

mappings for computational structures satisfying the above property.

The index-based transformation (to be described later) converts a two-dimensional (or

three-dimensional) coordinate corresponding to a particular node of the computational graph

to a one-dimensional index (an integer). The index has the property that proximity in two

(or three) dimensions is generally maintained. This reduces the problem of mapping to one

of sorting a list of integers. Sorting in parallel is a well-studied problem in the literature.

Several algorithms are available for sorting a list of integers [2, 26]. We have shown that a

sample-based sorting scheme can be e�ciently used for performing the mapping by using an

index-based method [18].

For a large class of irregular and adaptive data parallel applications [5], the computa-

1

tional structure changes from one phase to another in an incremental fashion. Thus, the

partitioning information of the previous phase can be e�ectively utilized to give the parti-

tioning for a new phase. The changes are typically gradual, reecting adiabatic changes in

the physical domain, or large-scale, reecting additions to a data structure. Molecular dy-

namics applications often exhibit the former behavior because interactions between particles

are implemented by neighboring lists that change as the atoms move [4]. Adaptive PDE

solvers are examples of the second behavior. Other examples with which we are familiar

include some vision algorithms, including region-growing and labeling [7], statistical physics

simulations near critical points and the particle-sorting phase of a direct Monte Carlo simu-

lation [8]. The key problem in e�cient parallelization of these applications is reacting quickly

to minor modi�cations in the data structure. The physical and numerical properties of these

algorithms typically guarantee that large-scale restructuring of data is needed infrequently.

Thus, for e�ective parallelization, the partitioning of the graph needs to be updated as the

graph changes over time. The following scenarios may arise (Figure 1):

� Perturbation: All the coordinates may perturb (within some small distance), e.g.,

particle-dynamics problems [24].

� Node Additions: New points may be added and/or old points deleted. This happens

in the case of adaptive grids [5].

One option is to repartition the new graph without using previous information. In this

paper, we show that this can be done in an incremental fashion with a much lower cost.

Using the index-based mapping scheme, the remapping for perturbation can be reduced to

sorting a nearly sorted list. For the case of additions, the remapping algorithms can be

reduced to merging a list of unsorted integers in a sorted list. In this paper we study the

parallelization of these two problems. We have developed several parallel algorithms for the

above problems; each of these algorithms has the best \worst case" performance for di�erent

ranges of parameters (the size of the list of integers m, the size of sorted list n, and the

number of processors p, etc.). Experimental results of these algorithms, provided on a 32-

node CM-5, show that they can be e�ectively used for incremental remapping at a fraction

of the cost of mapping.

The rest of the paper is organized as follows. Section 2 gives a brief outline of the graph-

partitioning problem and the index-based approach for performing the partitioning. Section

3 gives the important features of the CM-5. Section 4 describes the important parallel

primitives required for the remapping algorithms in Section 5. These primitives provide a

level of architectural independence for our algorithms. Section 6 describes the results for a

number of data sets on the CM-5 for the di�erent algorithms. We present our conclusions

in Section 7.

2

* * *
*

*
*

*
*

*

* *

*

*

* * *

*

**

*
*

*

*

*

*

*

*
*

**

Incremental sorting
into a sorted list

Merging an unordered list

Perturbation Adding new points

Figure 1: Incremental Aspects

2 Graph Partitioning

Consider a graph G = (V;E), where V represents a set of vertices, E represents a set of

undirected edges, the number of vertices is given by n = jV j, and the number of edges is

given by e = jEj. The graph-partitioning problem can be de�ned as an assignment scheme

M : V �! P that maps vertices to partitions. We denote by B(q) the set of vertices

assigned to a partition q, i.e., B(q) = fv 2 V : M(v) = qg. For graphs representing the

computational structure of a physical domain, each vertex vi 2 V , 1 � i � n corresponds to

a physical coordinate in a d-dimensional space (xi1; xi2; : : : ; xid), and each edge is an ordered

pair (vi1; vi2). For such graphs, these edges connect physically proximate vertices.

The weight wi corresponds to the computation cost (or weight) of the vertex vi. The cost

of an edge we(v1; v2) is given by the amount of interaction between vertices v1 and v2. Thus

the weight of every partition can be de�ned as

W (q) =
P

vi2B(q)
wi.

The cost of all the outgoing edges from a partition represent the total amount of com-

munication cost and is given by

C(q) =
P

vi2B(q);vj 62B(q)
we(vi; vj) .

We would like to make an assignment such that the time spent by every node is minimized,

i.e., minq (W (q) + �C(q)), where � represents the cost of unit computation/cost of unit

communication on a machine. However, for most cases the value
X

q

C(q) is minimized. This

3

is because most programs perform local computation followed by collective communication

of non-local data. This requires the computation loads to be as close to balanced as possible,

i.e., w(0) � w(1) � w(2) : : : � w(p� 1). This removes the �rst terms from the minimization

function. Further, minimization is replaced by summation because that makes it a continuous

function. Since many of the methods proposed in the literature have been gradient descent

(or require quadratic minimization function), this approximation makes graph-partitioning

problems more amenable to these methods.

2.1 Index-Based Partitioning

The computational graphs which we consider in this paper assume that most interactions

occur between points that are physically proximate in two or more dimensions. Row-major

indexing and shu�ed row-major indexing are two of the several ways of indexing pixels in a

two-dimensional grid. These two indexing schemes are shown in Figure 2 (a) and Figure 2

(b) for a graph in which the set of vertices are arranged in a grid of size 8 � 8. Row-major

indexing orders vertices such that if two points are along the same row, then their indices are

close to each other. However, the same property is not maintained along the other dimension.

On the other hand, shu�ed row-major indexing maintains the above property along both

dimensions. This indexing scheme can be generalized to n-dimensions and used to convert an

n-dimensional index into one-dimensional index such that proximity in the n-dimensions is

generally maintained. Index-based algorithms for partitioning graphs have been described in

[18]. An IBP algorithm includes three phases|indexing, sorting, and coloring. The indexing

scheme is based on converting an N -dimensional coordinate into a one-dimensional index

such that proximity in the multi-dimensional space is maintained.

The shu�ed row-major index can be easily derived by interleaving the indices. A simple

example of interleaving indices is as follows. Suppose index1 = 001, index2 = 010, and

index3 = 110. Then the interleaved index would be 001011100. In the above case the

number of bits in each dimension are equal. This could easily be generalized to cases where

the sizes are di�erent. For example, if index1 = 101, index2 = 01, and index3 = 0, then the

interleaved index would be 100110. This is done by choosing bits (right to left) of each of the

dimensions one by one, starting from dimension 3. When the bits of a particular dimension

are no longer available, that dimension is not considered.

Another indexing scheme which maintains proximity in multiple dimensions is based on

Hilbert space �lling curves (Figure 2 (c)). We have performed experiments with this indexing

and the quality of partition obtained is similar to the shu�ed row-major indexing. However,

most of the algorithms discussed in this paper are in general, independent of the indexing

method used.

After indexing is done, an e�cient sorting algorithm can be applied to sort these vertices

4

00 01 02 03 04 05 06 07 00 01 04 05 16 17 20 21 00 03 04 05 58 59 60 63

08 09 10 11 12 13 14 15 02 03 06 07 18 19 22 23 01 02 07 06 57 56 61 62

16 17 18 19 20 21 22 23 08 09 12 13 24 25 28 29 14 13 08 09 54 55 50 49

24 25 26 27 28 29 30 31 10 11 14 15 26 27 30 31 15 12 11 10 53 52 51 48

32 33 34 35 36 37 38 39 32 33 36 37 48 49 52 53 16 17 30 31 32 33 46 47

40 41 42 43 44 45 46 47 34 35 38 39 50 51 54 55 19 18 29 28 35 34 45 44

48 49 50 51 52 53 54 55 40 41 44 45 56 57 60 61 20 23 24 27 36 39 40 43

56 57 58 59 60 61 62 63 42 43 46 47 58 59 62 63 21 22 25 26 37 38 41 42

(a) (b) (c)

Figure 2: Di�erent Indexing Schemes for an 8 � 8 image: (a) Row-Major, (b) Shu�ed

Row-Major, and (c) Hilbert Space Filling Curve.

according to their indices. Finally, this sorted list is divided into P equal sublists. Figure 2

(c) shows the nodes of a computational graph and corresponding shu�ed row-major indices

(Figure 2 (d)). A partitioning can be achieved by sorting the list of indices and dividing it into

equal parts. We have shown that the quality of the solutions produced using these methods

are comparable to other coordinate-based partitioning schemes for a large number of graphs

derived from actual applications [18]. Since these methods do not directly utilize the edge

information available, the number of cross edges is larger than the spectral methods [10].

However, for large graphs, the total sequential time required is at least two to three orders of

magnitude smaller as compared to spectral methods. Further, these methods can be easily

parallelized.

3 CM-5 System Overview

This section gives a brief overview of the CM-5 system that we used to conduct our exper-

iments. The CM-5 is available in con�gurations of 32 to 1024 processing nodes, each node

being a SPARC microprocessor with 32M bytes of memory and optional vector units. The

node operates at 33 MHz and is rated at 22 Mips and 5 MFlops. When equipped with vector

units, each node of the machine is rated at 128 Mips (peak) and 128 MFlops (peak).

The CM-5 internal networks include two major components, a data network and a control

network. The CM-5 has a separate diagnostics network to detect and isolate errors through-

out the system. The data network provides high-performance data communications among

all system components. The network has a peak bandwidth of 5M bytes/sec for node-to-

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3: CM-5 data network with 16 nodes

node communication. However, if the destination is within the same cluster of 4 or 16, it

can give a peak bandwidth of 20M bytes/sec and 10M bytes/sec, respectively [3]. Figure 3

shows the data network with 16 nodes. The control network handles operations requiring the

cooperation of many or all processors. It accelerates collective operations such as broadcast

and integer reduction, and system management operations such as error reporting.

4 Basic Operations

For the rest of the paper, let Aj represent an element A stored in processor j. Hence Aj[i]

represents the i
th element of an array belonging to the j

th processor. We will drop the

subscript j whenever it is obvious from the context.

1. Sending a Message

Sending a message from one node to another can be modeled as O(� + �B), where �

is the overhead, � is the transfer rate and B is the size of the message. As discussed

in the previous section, the value of � epends on whether the destination belongs to a

speci�c subgroup and whether other nodes are sending messages. For our complexity

analysis we will assume that � and � are constant, independent of the congestion and

distance between two nodes.

2. Global Concatenation

Assume that each processor has n=p elements, where p is the number of processors.

Each processor contains a vector Vi[0 � � �
n

p
� 1]. The global concatenate operation

computes a concatenation of the local list in each of the processors. The resultant

6

For all processors Pi, 0 � i � n� 1, do in parallel

for k = 1 to n-1 do

j = i� k

if COM(i; j) > 0 then pi sends a message to pj

if COM(j; i) > 0 then pi receives a message from pj

Figure 4: All-to-Many Personalized communication

vector R[0 � � � n � 1] is stored in all the processors.

R[j] = Vj div p[j mod p]

This operation can be completed in O(�1n) time on the CM-5, where �1 is a con-

stant [3].

3. Global Combine

Assume that each processor contains a vector Vi[0 � � �n � 1]. Let p be the number of

processors. The global concatenate operation computes an element-wise sum of the

local list in each processor. The resultant vector R[0 � � � n � 1] is stored in all the

processors.

R[j] =
p�1X

i=0

Vi[j]

This operation can be completed in O(�2n) time on the CM-5, where �2 is a con-

stant [3].

4. All-to-Many Personalized Communication [22]

In all-to-many personalized communication, each processor needs to send a di�erent

message (potentially of a di�erent size) to a subset of all the processors. A simple

strategy is to use multiple send-receive operations to perform all-to-many communica-

tion primitives. Each processor Pi sends a message to processor P(i�k) and receives a

message from P(i�k), where 0 < k < p. When COM(i; j) = 0, processor Pi will not

send a message to processor Pj , but will receive a message from Pj if COM(j; i) > 0.

The entire communication uses pairwise exchange (j = i� k, i = j� k). The cost of

this collective communication depends on the structure of the communication matrix

and the sizes of di�erent messages.

Several other algorithms have been developed for scheduling such unstructured collec-

tive communication so as to reduce node contention (a node receiving messages from

two nodes at the same time), as well as like-link contention (two messages with di�er-

ent source and destination passing through the same link) [15, 21]. However, many of

7

these methods require the same communication structure to be utilized several times

and are not appropriate in this case.

5. Order Maintaining Load Balance

Assume that each processor i contains a sorted array Vi[0 � � �Xi � 1]. (0 � i < p),

where p is the number of processors. Further, a concatenation of all these arrays, in

the increasing order of the processor number, is also sorted. We would like to balance

the load on each processor such that the global ordering of the elements does not

change.

The load-balancing algorithm which maintains the sorted order is given in Figure 5.

Steps 2 and 3 calculate the pre�x sum and the average number of elements. We will

assume X to be an integer for ease of presentation. Let

� pre�x sum Yk =
Pk�1

i=0 Xi for k = 1; : : : ; n� 1, and Y0 = 0.

� average number of elements X = 1
n

Pn�1
i=0 Xi. We assume that X is an integer for

ease of presentation.

Let Gk[i] represent Vk[i]
0
s corresponding global index, Gk[i] = Yk + i; 0 � i � Xk � 1.

In Step 4 data elements are sent to appropriate destinations. Let packetki contain data

elements that should be moved from processor Pk to Pi. Let lb
k
i = maxfiX; Ykg and

ub
k
i = minf(i + 1)X � 1; Yk + Xk � 1g, then if lb

k
i > ub

k
i ; packet

k
i = �, otherwise

packet
k
i = fVk[j] j G

�1
k [lbki] � j � G

�1
k [ubki]g; where G

�1
k [i] = i � Yk. The boundaries

of these packets can be easily determined by calculating the leftmost processor to which

data must be sent (by using a binary search for Gk[0] on Z[0::p� 1] on processor k).

Since all the data has to be sent to consecutive processors, deriving this for the rest of

the processors can be easily achieved.

The complexity of this algorithm depends on the maximum amount of data to be

sent/received from any processor and the underlying communication network. Assum-

ing that the minimum number of elements any processor has is more than X

K
and the

maximum number of elements any processor has is less than XK, it can be easily

shown that the maximum number of number of messages to be sent by each processor

is less than or equal to K, and the maximum number of messages to be received by

any processor is less than or equal to K + 1. Thus, assuming near load balance, i.e.,

K � 2, each node will send and receive a few messages. Since link contention is not

a major problem on the CM-5, this operation can be completed in O(� + � �X) time

when the loads are nearly balanced.

8

For processor Pi , 0 � i < p, in parallel do

Step 1: Z[0::p� 1] = Concatenate(Xi)

Step 2: Y [k] =
Pk�1

j=0
Z[j] for k = 1; 2; :::; p� 1, Y0 = 0

Step 3: X =

P
k�1

j=0
Z[j]

p

/* Processor Pk owns data from Y [k] to Y [k + 1]� 1 */

/* After load balance it should have (k� 1)X to kX */

Step 4: Divide the local list into packets and send them to processors from left to right.

Step 5: Receive messages and store them in the appropriate positions in the local array.

Figure 5: Order Maintaining Load Balance Algorithm.

6. Order Maintaining Data Movement

Assume that each processor, i (0 � i < p), contains a sorted array Vi[0 � � �Xi � 1].

Further, a concatenation of all these arrays in the increasing order of the processor

numbers is also sorted. In the Order Maintaining Data Movement operation, we would

like to move the elements on each processor such that the global order of the elements

does not change. However, unlike the previous procedure, load balancing is not re-

quired. The movement is decided by another sorted array PART with p elements. All

the local elements between PART [i] and PART [i+ 1] are to be moved to processor i

(0 � i < p). The algorithm is similar to the Order-Maintaining-Load-Balancing algo-

rithm. Unlike the previous algorithm, the leftmost processor to which data has to be

sent by a given processor is decided by a binary search on PART . The complexity of

this algorithm depends on the maximum amount of data to be sent/received by any

processor and the underlying communication network.

7. Sort

Sorting a list of keys reorders them in a non-decreasing (or a non-increasing) order.

There are several algorithms available in the literature for parallel sorting [12]. For

distributed memory machines, a number of sorting schemes have been shown to be

e�ective [2, 26]. We have used a parallel sampling-based sort for our problems. A

detailed description of our method used is discussed in [18]. For the rest of this paper

we will assume that sorting n elements on p processors requires O(n logn
p

) amount of

time. This is true when n is O(P 1+�), � > 0.

9

5 Remapping for Applications Requiring Perturba-

tions

In applications such as molecular dynamics, particle-in-a-cell methods, particle dynamics,

etc., the interaction between several particles is simulated. These particles are dispersed in a

two- or three-dimensional space, and the simulation is performed for a large number of time

steps. At each time step, the numerical approximation techniques used for simulation dictate

that the amount of particle movement be small. Further, most of the important interactions

in the simulation are limited to points that are physically proximate. Assume that index-

based mapping is used for partitioning these points. Corresponding index is expected to

change by a small amount, but this is not always the case (e.g., the index of (3, 3) is 15

while the index for (3, 4) is 26).

Thus the remapping of the particles, after a few time steps, can be reduced to the following

problem. There is a sorted list A of size n. A nearly sorted list B is derived from list A

by perturbing each element by a small amount (on an average) by adding or subtracting a

small random number.

We would like to develop an algorithm for sorting the new list B e�ciently by utilizing

information of the previously sorted list A. The basic principle used by the algorithm is

the fact that A is close to B and sorted, and the partitions of A can be used to distribute

the elements of B into lists of approximately equal size. Each of these lists is such that

all the elements of the list are greater then the previous list. Sorting each of the sublists

implies a globally sorted list. An incremental sorting algorithm, given in Figure 6, assumes

the presence of a sorted list A, of size n, divided equally among all the processors in a

contiguous fashion. The local list A is divided into l buckets to get approximate boundaries

of l buckets of B on each processor. The maximum element of A is used to create an l's size

local bound array in each processor; local boundi[j] := Ai[
jn

pl
], 1 � j � l. For each element

of B an appropriate bucket must be obtained.

Each element of B can be classi�ed into three categories, depending on whether the key

belongs to the same bucket as the corresponding entry of A, or a di�erent bucket on the same

processor, or a bucket of another processor. These categories are termed Type 0, Type 1,

and Type 2, respectively. For small perturbation, it is expected that most of the keys will be

of Type 0, a small fraction of the keys will be of Type 1, and an even smaller fraction of the

keys will be of Type 2. For this reason, using a search algorithm that is biased towards the

current position of the key is worth considering. The algorithm described in Figure 6 reects

this bias. Checks are made for keys of Type 0 before searching for Type 1 followed by Type

2. We opted to choose interpolation search over binary search for the same reasons. Type

0 and Type 1 keys are added to local bu�ers representing the di�erent buckets on the same

10

/* Bound[i] is the largest key of Ai. */

/* local bound[j] is the largest key of Ai in [
(j�1)n

l
,
jn

l
), where l is the number of buckets in a processor */

For each processor i do in parallel

Step 1 : Bound := Global concatenate(local boundi[l])

Step 2 : For j � 1 to mi do

Case Key of B[j] of

Case 0 : B[j] in [local bound[
j

l
], local bound[

j

l
+ 1]]

Add B[j] to tmp locali[
j

l
]

Case 1 : out of [local bound[
j

l
], local bound[

j

l
+ 1]] but still within

[Bound[i� 1], Bound[i]]

dest := Interpolation search(B[j], local bound)

Add B[j] to tmp mergei[dest]

Case 2 : out of processor

proc := Interpolation search(B[j], Bound)

Add B[j] to send list[proc]

Step 3 : Apply All-to-Many communication using send list and receive elements in receivedi

Step 4 : For those elements received in Step 3

dest := Interpolation search(receivedi[j], local bound)

Add receivedi [j] to tmp mergei[dest]

Step 5 : Sort each bucket Bi. (Bi has all the elements in tmp locali and tmp mergei.)

Step 6 : Perform a Order Maintaining Load Balance on list B

Figure 6: Bucket Based Incremental Sorting Algorithm

processor. Type 2 keys have to be moved to a di�erent processor and added to appropriate

bu�ers.

Step 3 completes the data transmission for the out-of-processor keys. Step 4 searches for

the buckets for nonlocal keys. Step 5 performs the sorting in each of the buckets. This is

followed by a load-balancing step.

The exact complexity of these algorithms is hard to derive as they are data dependent.

The following provides an approximate analysis. Assuming that n keys are distributed

equally in each of the processors (n

p
in each processor), the time required for Step 1 on

the CM-5 is O(�p). With l buckets (intervals) in each processor (l � n
p
), Step 2 requires

O(� n

p
+

n

p
loga l + �

n

p
loga p),

11

where

� =
no: of keys of type 0

n

p

;

 =
no: of keys of type 1

n
p

;

� =
no: of keys of type 2

n

p

;

� + + � = 1:

This analysis assume that a is the corresponding base, in the sense of binary search, for

interpolation search. For the case when the keys have uniform distribution, the time required

for interpolation searche isO(log log n) on an average. In many practical case this assumption

is true. The cost of Steps 3 and 4 in the worst case is O(p� + �
n

p
�) and O(�

p
loga l)),

respectively, where � = no: of received keys of type 2
n
p

. Step 5 requires O(n
p
) to copy keys back to

list B. Assuming that the amount of perturbation is not large, the values for , �, and �

are small, as compared to �. So the complexity of Steps 2 and 4 can be approximated by

O(n
p
). The complexity of Step 5 will depend on l and the size of each local bucket. The time

required is
Pl�1

i=0O(mi logmi), where mi is the number of keys in local bucket i. Assuming

all buckets are of approximately the same size, this can be approximated by O(n
p
log n

pl
).

From practical perspectives, a simple optimization step can be added to reduce the cost

of sorting in Step 5. Since the list B is almost sorted, all the elements of B in type 0 will

be in a nearly ascending order. A sorted sublist can be obtained by removing the elements

that are less than the largest found so far. This preprocessing step requires O(b) amount of

time where b is the size of the list. Assuming that � is the fraction of such keys, the sorting

time can be reduced to O((1 � �)b log(1 � �) + b) in Step 5.

There is a clear tradeo� between the time spent in Step 5 and the searching cost in Steps

2 and 4. The complexity of above algorithm depends on the size of each bucket, (l). If l

is small, the cost of Step 2 and Step 4 are low. However, the cost of Step 5 is large. For

large l, the values of �, , and � can no longer be assumed to be small. Thus an appropriate

value of l must be determined experimentally. Even assuming that the cost of search and

data movement is negligible in the remapping algorithm, the maximum speedup that can be

achieved over sorting from scratch is limited to

O(n
p
log n)

O(n
p
log n

pl
)
� C

log n

p

log n
pl

;

where C is expected to be greater than 1.

12

5.1 Experimental Results

The above algorithms were executed on a 32-node CM-5. To study the behavior of these

algorithms for varying values of n, arti�cial elements were generated in a three-dimensional

space using a uniform random number generator. Each of the coordinate values were between

0 and 20, and the number of bits attached to each dimension was 10. This corresponds to

1024 bins along each dimension with the size of the index key being 30 bits. Thus each bin

represented a value of approximately :02� :02� :02 units. The perturbation was limited to

a sphere of radius r and was accomplished as follows. For each data point we generated 3

random numbers �, �, and � where �r is the length of radius and � and � are within [0, 2

�). Using these three random numbers, the values of the three coordinates were calculated

in the following fashion.

xi;j = xi;j +4xi;j where

4xi;0 = �ir sin(�i),

4xi;1 = �ir cos(�i) sin(�i), and

4xi;2 = �ir cos(�i) cos(�i).

Figure 7 shows the experimental results for the perturbation sorting on a 32-node CM-5

for di�erent radii of perturbations. A comparison is made with sorting from scratch. These

results show that for 64K data elements, the speedup achieved over sorting from scratch is

about a factor of 4 when the perturbation radius is 0:01 and the optimization mentioned in

the earlier section is performed. This improvement reduces as the amount of perturbation

increases. Further, the overhead of optimization is more than the gains when perturbation

is large.

The experimental results in Figure 8 include the indexing time for graph remapping.

Indexing represents a major fraction of time spent on mapping. Since all the coordinates

are assumed to have been perturbed, a new value of index has to be recalculated. Thus, the

relative performance gain of mapping versus remapping is smaller (as compared to sorting

vs. perturbation sorting) although the absolute performance gains are the same. In practical

cases, it is necessary only to recalculate the indices for vertices that have moved su�ciently

(such that their indices might have changed) to reduce the cost. The cost of the indexing

can also be substantially reduced by using table look-up methods.

Figure 9 shows the tradeo�s for di�erent bucket sizes. If the bucket size is small, the

cost of searching is higher. When the bucket sizes are large, the cost of sorting goes up. The

optimal bucket size for this particular case was equal to 10.

13

0

0.05

0.1

0.15

0.2

0.25

0 10000 20000 30000 40000 50000 60000 70000

(a)

Time
(sec)

Number of elements

Sorting 3

3 3

3 3

3

3

Perturbation Sorting +

+ + + + +

+ Perturbation Sorting (O) 2

2 2 2 2
2

2

0

0.05

0.1

0.15

0.2

0.25

0 10000 20000 30000 40000 50000 60000 70000

(b)

Time
(sec)

Number of elements

Sorting 3

3 3

3 3

3

3

Perturbation Sorting +

+ + + + +

+
Perturbation Sorting (O) 2

2 2 2 2
2

2

0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2
0.22
0.24

0 10000 20000 30000 40000 50000 60000 70000

(c)

Time
(sec)

Number of elements

Sorting 3

3 3

3 3

3

3

Perturbation Sorting +

+ +
+

+ +

+

Perturbation Sorting (O) 2

2
2

2
2

2

2

Figure 7: The performance of di�erent sorting algorithms for a nearly sorted list compared

with sorting an unsorted list. (a) radius of perturbation = 0.01, (b) radius of perturbation

= 0.1, and (c) radius of perturbation = 1.

14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10000 20000 30000 40000 50000 60000 70000

(a)

Time
(sec)

Number of elements

Mapping 3

3
3

3
3

3

3

Remapping (without optimization) +

+
+

+ +
+

+

Remapping (with optimization) 2

2
2

2 2
2

2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10000 20000 30000 40000 50000 60000 70000

(b)

Time
(sec)

Number of elements

Mapping 3

3
3

3
3

3

3

Remapping (without optimization) +

+
+

+
+ +

+

Remapping (with optimization) 2

2
2

2
2 2

2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10000 20000 30000 40000 50000 60000 70000

(c)

Time
(sec)

Number of elements

Mapping 3

3
3

3
3

3

3

Remapping (without optimization) +

+
+

+
+

+

+

Remapping (with optimization) 2

2
2

2
2

2

2

Figure 8: The performance of di�erent remapping algorithms compared with mapping using

index-based scheme (including indexing time). (a) radius of perturbation = 0.01, (b) radius

of perturbation = 0.1, and (c) radius of perturbation = 1.

15

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 10 20 30 40 50 60 70 80 90 100

Time
(sec)

number of elements per bucket

Searching 3

333333333
3

3

Sorting +
+++++

+++++
+

Perturbation Sorting 2

22222
222

2
2

2

Figure 9: Time for searching phase and sorting phase of the perturbation sorting algorithm

for di�erent bucket sizes. The size of data set is 64; 000 and j r j= 0:1.

6 Remapping for Applications Requiring Addition/Deletion

of Nodes

For many applications, such as adaptive meshes, new nodes are added to the computational

graph. Typically, this is done in a localized area to study the numerical behavior more

precisely. These re�nements are based on the solution of the previous phase and are available

only at runtime. During a typical simulation nodes may be added in a particular portion,

only to be removed after a few phases. An example of an initial mesh and a re�ned mesh

is given in Figure 17. The following discussion is limited to the case when nodes are added

to the computational graph. All of these algorithms can be easily modi�ed when this is not

the case.

Remapping requires calculating the shu�ed row-major indices of the new nodes, which

must be combined with the indices of the previous phase. Since the previous mapping is

available, this corresponds to adding an unsorted list of integers (corresponding to the indices

of the new nodes that are added) to a sorted list (corresponding to the indices of the old

nodes). The case of node deletion is similar.

Let A represent a sorted list of n integers, and let B represent an unsorted list of m

integers. A simple sequential approach for merging list B into list A is to sort B, followed by

merging the two sorted lists. The complexity of this approach is O(m logm+ (m+ n)). For

m < O(n

logn
), the complexity is O(n). In the following subsection we describe three di�erent

parallel algorithms for solving this problem under the assumption m� n.

16

/* Sorted array A is distributed using block distribution */

/* Unsorted array B is distributed using block distribution */

/* Bound[i] is the largest key of A stored in processor i */

For each processor i do in parallel

Step 1 : For k � 0 to p� 1 do

send list[k] := nil

Step 2 : For k � 1 to mi do

proc := Binary search(Bi[k];Bound)

Add Bi[k] to send list[proc]

Step 3 : All-to-Many communication using send list

Step 4 : Sort all Ai the elements received in Step 4 and call it Ci

Step 5 : Merge list Ai and Ci

Step 6 : PerformOrder Maintaining Load Balance on A

Figure 10: Simple Merging Algorithm

We assume that the list A is already sorted and divided equally among all the processors.

This corresponds to the partitioning of the previous phase. The new points added/deleted in

the new phase are assumed to be equally divided among all the processors for the following

algorithms. However, this is not going to be the case in general. In fact, for most practical

cases the incremental nodes are added in localized portions. This would typically correspond

to all the new elements belonging to a few processors. In such cases a simple load-balancing

scheme can be e�ectively applied [20]. The cost of this load-balancing scheme is nominal

compared to the cost of merging for most cases.

Most of the analysis provided in the following section corresponds to near worst-case

scenarios for each of the algorithms. An average case is hard to de�ne and depends on the

application to be solved and the particular algorithm used for merging. The performance

of these algorithms would be much better on typical cases than the results described in the

following sections. Our emphasis is to show that the worst-case cost of remapping is a small

fraction of the total cost of remapping from scratch.

6.1 Simple Merging Algorithm

A simple merging algorithm is given in Figure 10. The worst-case scenario for this algorithm

corresponds to one processor receiving all the merging elements from all the processors. Step

2 takes n

p
log p amount of time. The time taken for Step 3 depends on the number of packets

17

For each processor i do in parallel

/* Stage 1 : Preprocessing phase */

Step 1 : Create q buckets for list Ai and record the boundary values in bucketi [1::q]

Step 2 : BUCKET [1::pq] := Global Concatenate(bucketi[1::q])

Step 3 : For k � 1 to mi do

p :=Binary search(Bi[k];BUCKET)

counti[p] := counti [p]+1

Step 4 : SUM [1::pq] := Global Combine(count[1::pq])

Step 5 : For k � 0 to p� 1 do

Coarse Bound[k] := min
pq

j=1 abs(SUM [j] �
i(n+m)

p
)

Step 6 : PerformOrder Maintaining Data Movement using Coarse Bound

/* Stage 2 : Merging phase */

Step 7 : Apply Simple Merge /* See Figure 10 */

Figure 11: Bucket Merging Algorithm

generated and the size of the packets. All-to-many communication algorithms have been

described in Section 4. Assuming link contention does not a�ect total communication time,

the worst-case total cost of Step 3 is O(p� + �m). Steps 4 and 5 take O(mi logmi+
n

p
+mi)

amount of time where mi is the number of elements to be inserted. For the worst-case

scenario this corresponds to O(m logm+ n
p
). Thus the total cost of Step 1 through Step 5 is

O(m
p
log p+p�+�m+m logm+ n

p
). When n and m are compared to p, and whenm logm <

n

p

(the incremental data is much less than the data on one processor), this corresponds to

O(n
p
)1. For this case the Order Maintaining Load Balance will be reduced to shifting

to either the left or the right neighbors. The total time required for this step under the

above assumptions is O(� +�) where is the maximum amount of data moving out of any

processor.

6.2 Bucket-Merging Algorithm

The worst-case scenario for the previous algorithm is when all the new points to be added

fall into the boundaries of one processor. When all or most of the elements to be added lie

between the minimum and the maximum element of the sublist of one processor, it will have

the e�ect of that processor receiving all the messages as well as sorting the elements received.

1The time required for mapping from scratch would be O(n
p
logn), where n is the number of vertices.

18

This algorithm attempts to improve the worst-case scenario of the previous algorithm (Fig-

ure 10). A high-level description of the bucket-merging algorithm is given in Figure 11. This

algorithm balances the load for the merging step more e�ectively by a preprocessing step

that adjusts the global array A before the merging phase. Each processor divides the local

lists into buckets. Essentially, each bucket represents a virtual processor. Step 4 determines

the number of elements that will be received by each bucket. Step 6 calculates the approx-

imate number of buckets that should belong to the di�erent processors. Assuming m <
n

p
,

the complexity of Phase 1 would be O(pq + m

p
log pq). For phase 2, the complexity analysis

would be di�erent then the one discussed in the previous section. The worst-case cost of this

phase again is O(m logm + (p� + �m) + n

p
). This corresponds to all the data going to one

bucket. However, if all the indices are equally distributed among all the buckets belonging

to a processor at the beginning of phase 1, some of these buckets will move toward the left

or the right.

An appropriate choice of q is required to minimize the sum of the cost of the preprocessing

phase and the merging phase. This will reduce the load on the processor that has received

all the elements in the simple merge algorithm. Larger values of q increase the cost of

preprocessing but lead to potentially better performance in the second stage.

6.3 Sort-Based Merging Algorithm

The algorithm �rst sorts all the keys in the unordered list, thus reducing the problem to

one of merging two sorted lists. Although merging of sorted lists has been a widely studied

problem in the literature, most of the algorithms thus developed have been for cases when

the two lists are equal in size. To the best of our knowledge, we have not seen any algorithms

for coarse-grained machines for such cases.

A high-level overview of the algorithm for merging two lists is given in Figure 12. The

�rst step divides A and B into buckets of equal size (say �). The number of buckets of A and

B on each processor is qa and qb, respectively. For the sake of presentation, we will assume

that the number of local elements of A and B (n=p and m=p, respectively) are divisible by

�; we will describe the required changes if this is not the case. A simple example is used to

explain the details of the algorithm.

The basic principle of our method is to �nd partitions that will divide the merged list

into approximately equal sections. The �rst step is to �nd the boundaries of the buckets.

This can be achieved by storing the maximum element of every bucket. We also keep track

of the size of each bucket, which is useful for making the required modi�cations when the

number of elements are not multiples of the bucket size. Two new lists are formed on each

of the processors by concatenating those boundary elements corresponding to the buckets of

list A and B, respectively. The sizes of these lists are qa p and qb p for A and B, respectively.

19

A similar operation is performed for the size list (which maintains the size of each bucket).

The time required for this operation on the CM-5 is O(qa p + qb p). These two lists are

merged to give another list, C, of size O((qa + qb)p). The time required for this merging is

O(p(qa + qb)).

Since the sizes of all the buckets are equal, and the total number of buckets is (qa+ qb)p,

the number of buckets belonging to each processor should be approximately qa + qb. This

can be achieved by counting the number of buckets from left to right. Processor i gets all

the data corresponding to C[i � (qa + qb)] to C[(i+ 1)((qa + qb)� 1]. It can easily be shown

that the maximum di�erence of the number of elements between any two partitions is less

than the size of two buckets.

The next step is to apply an Order Maintaining Data Movement operation on A

using the partitions obtained in the processors. This is followed by a Order Maintaining

Data Movement operation on B. The cost of these operations is di�cult to analyze and

depend on the amount of data movement. However, the fact that the partitioning provided

by C is nearly accurate implies that the data of A and B, which has to be moved to processor

i, will be required by any merging algorithm that assumes these lists are distributed. In that

sense, the amount of data movement is close to optimal.

Once the data of A and B is moved to the correct processor in Step 4, it is merged locally

in Step 6. The cost of the operation is the sum of the sizes of the local lists. Because the

result array would be nearly equally divided (within 2 buckets), the time required for this

operation is O((m+n
p
)+2�). The last step would typically result in a shift to the left or right

processor. Thus, the total amount of time required for merging is O((qa+ qb) � p+
m+n
p

+2�)

and the cost of Data Movement in Step 5 and Step 7. Whenm and n� p and � is reasonable,

the algorithm is close to optimal.

For the case when all the buckets are not of the same size, the arrays Length A and

Length B can be used to �nd the partitions in Step 4. Assuming a large number of buckets,

this is practically always possible. A practical optimization can be added to have larger

bucket sizes for A than B, as B is much smaller than A.

Let PRED[i] =
iX

j=0

(length of the bucket ending at C[i].) This requires keeping extra

information about every element of C (which list it belongs to and what bucket it repre-

sents). PRED[i] represents the approximate number of elements (within the maximum size

of any bucket) that is less than C[i]. A simple algorithm can be used to divide PART into

approximately equal parts.

20

/* A is sorted list of size n distributed equally among all the processors */

/* B is sorted list of size m distributed equally among all the processors */

For each processor i do in parallel

Step 1: Divide local list of A and B into buckets of size �. Let the number of buckets be qA and qB, respectively.

Let the maximum of each bucket and the size of the buckets of A be given by maxAi[1 : : : qa] and size Ai[1 : : : qa],

respectively. The corresponding arrays for B are maxBi[1 : : : qb] size Bi[1 : : : qb].

Step 2: BOUND A[1 : : : pqa] � CONCATENATE (maxAi)

BOUND B[1 : : : pqb] � CONCATENATE (maxAi)

LENGTH A[1 : : : pqa] � CONCATENATE (size Ai)

LENGTH B[1 : : : pqa] � CONCATENATE (size Bi)

Step 3: C � MERGE (BOUND A; BOUND B)

Step 4: Divide C into p approximately equal partitions. Let it be PART [0 : : : p� 1]

Step 5: Order Maintaining Data Movement (A;PART)

Order Maintaining Data Movement (B;PART)

Step 6: Di � Merge (Ai; Bi)

Step 7: Order Maintaining Load Balancing (D)

Figure 12: Parallel algorithm for merging two sorted lists

21

6.4 Experimental Results

We generated two types of data sets in order to study the behavior of di�erent algorithms

on the CM-5.

1. Data Set 1: Each processor generated a random number (uniform distribution) of

elements such that the index values were within the boundaries of that processor. This

is expected to be to the near best case for all the merging algorithms.

2. Data Set 2: One processor generated all the elements such that all the elements were

within the smallest and largest elements of that processor. This was followed by a

load-balancing step in which the elements were distributed to all processors equally.

This represents the near worst-case scenario for the merging algorithms.

For Data Set 1 (Figure 13), the simple merge algorithm performs the best. This is

expected as the amount of data movement is minimal and the elements to be merged are

nearly equally distributed. For initial array size of 64,000 and the number of additional

elements equal to 20%, the cost of simple merge, bucket merge and sort-based merge are

0.035, 0.04 and 0.07 seconds respectively. This compares favorably with the corresponding

cost of sorting which is 0:195 seconds.

For Data Set 2 (Figure 14), the situation is totally di�erent. The time required for the

simple merge is much more than the time required for the other two algorithms when the

number of additional elements are larger than a small fraction of the total number of nodes.

Further, the time required for simple merge is much worse as compared to Data Set 1. The

time required for bucket merge is considerably lower than for simple merge. The extra cost

of adding a preprocessing phase is o�set in the next phase when the number of additional

nodes are larger than a small fraction. The time required for the sort-based algorithm does

not deteriorate much, compared to Data Set 1. It is the algorithm of choice if the number

of additional nodes is large.

For Data Set 2, comparison between di�erent algorithms is given in Figure 15. The

merging algorithms perform better than sorting from scratch. By choosing the algorithm

with the best worst case performance, depending on the di�erent quantity of additional

nodes added, a combined merge algorithm can be derived. The comparison of the combined

merge algorithm is given in Figure 15 (c), which shows that performance gains of factors of

2 to 4 can be achieved when the number of additional elements added is less than 10%. We

believe that for most typical cases the performance of the combined merge algorithms will be

an order of magnitude better, a signi�cant improvement since the mapping algorithm based

on sorting is itself very fast as well as parallel.

Figure 16 includes the cost of indexing in the combined merge algorithm to give the

worst-case cost of remapping. It assumes that, for mapping, the index calculation is done

22

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 20000 40000 60000 80000 100000 120000 140000

(a)

Time
(sec)

Initial number of elements

5% 3

3 3 3 3 3

3
3

3

10% +

+ + + + +
+

+
+

20% 2

2 2 2 2 2

2
2

2 50% �

� �
� �

�

�

�

�

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 20000 40000 60000 80000 100000 120000 140000

(b)

Time
(sec)

Initial number of elements

5% 3

3 3 3 3 3
3

3
3

10% +

+ + + + +
+

+
+

20% 2

2 2
2 2 2

2

2
2

50% �

�
�
�
�
�

�

�

�

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20000 40000 60000 80000 100000 120000 140000

(c)

Time
(sec)

Initial number of elements

5% 3

3 3 3 3 3
3 3 3

10% +

+ + + + +
+

+ +

20% 2

2 2
2 2 2

2

2

2

50% �

�
�
� �

�

�

�

�

Figure 13: Performance comparison of di�erent merging algorithms on 32-node CM-5 for

di�erent fraction of additional elements for Data Set 1. (a) simple merging algorithm, (b)

bucket merging algorithm, and (c) sort-based merging algorithm

23

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20000 40000 60000 80000 100000 120000 140000

(a)

Time
(sec)

Initial number of elements

1% 3

3 3 3 3 3 3 3 3

5% +

+ + + + + + + +

10% 2

2 2 2
2 2

2
2

2

20% �

� �
� �

�

�

�

�

30% 4

4
4
4
4
4

4

4

4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 20000 40000 60000 80000 100000 120000 140000

(b)

Time
(sec)

Initial number of elements

1% 3

3 3 3 3 3
3

3 3

5% +

+ + + + +
+

+
+

10% 2

2 2
2 2

2

2

2

2
20% �

� �
�
� �

�

�

�

50% 4

4
4
44

4

4

4

4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 20000 40000 60000 80000 100000 120000 140000

(c)

Time
(sec)

Initial number of elements

1% 3

3 3
3 3 3 3 3

3

5% +

+ + + + + +
+

+

10% 2

2 2 2
2 2

2
2

2
20% �

� �
� � �

�
�

�

50% 4

4
4
4
4
4

4

4

4

Figure 14: Performance comparison of di�erent merging algorithms on 32-node CM-5 for

di�erent fraction of additional elements for Data Set 2. (a) simple merging algorithm, (b)

bucket merging algorithm, and (c) sort-based merging algorithm

24

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10

(a)

Time
(sec)

Number of additional elements (%)

Sorting 3
3 3 3 3 3 3 3 3 3 3

Simple Merge +

+
+

+
+

+
+

+
+

+
+

Bucket Merge 2

2
2 2 2

2 2 2 2 2 2

Sort-based Merge �

� � � � � � � � � �

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

10 15 20 25 30 35 40 45 50

(b)

Time
(sec)

Number of additional elements (%)

Sorting 3

3 3 3 3 3 3 3 3 3

Simple Merge +

+

+

+

Bucket Merge 2

2
2

2 2 2
2

2 2 2 Sort-based Merge �

� � �
� �

� � � �

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0 5 10 15 20 25 30 35 40 45 50

(c)

Time
(sec)

Number of additional elements (%)

Sorting 333
333
333
33

3 3 3 3 3
3 3 3

Combined Merge +

+
+
+++

+++
++

+
+

+
+

+
+

+
+

Figure 15: Performance comparison of di�erent algorithms for Data Set 2 (initial number of

elements = 64; 000) (a) The fraction of additional elements between 1% and 10%. (b) The

fraction of additional elements between 10% and 50%. (c) Comparison of the best merging

algorithm and sorting from scratch.

25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80 90 100

Time
(sec)

Number of vertices

Index-based Mapping 3
33333
3333
3 3 3 3 3

3
3

3

3

Remapping +

++++
++
+++
+ +

+
+

+
+

+

+

+

Figure 16: Comparison for Data set 2 index-based mapping and incremental mapping algo-

rithms on j V j= 64; 000

for the vertices, while for remapping the index calculation is done for additional vertices

only. The results show that for small fractions of additional vertices, the cost of remapping

is an order of magnitude better.

Figure 17 (a) shows a highly irregular graph with 10,166 nodes and 30,417 edges. Ad-

ditional nodes and edges were added in small localized areas. The new graph is given in

Figure 17 (b). It has 10,838 vertices and 32,487 edges.

Figure 18 gives the cost of performing the mapping the initial graph and the cost of

remapping with the additional nodes/edges suing the index based partitioner on a 32 pro-

cessor CM-5. All the timings except the index based repartitioning for the new graph assume

that mapping is performed from scratch. The timings for recursive coordinate bisection and

recursive spectral bisection are sequential times on a SUN4. Even assuming perfect paral-

lelization of these two methods, the time required for indexed based partitioner is better

than coordinate bisection and much better than spectral bisection. Further, the number of

cross edges generated is close to the cross edges generated by coordinate bisetion and slightly

worse than the cross edges generated by spectral bisection.

The cost of remapping is less than 10% of the time required for mapping from scratch.

It should be noted that most of the time (Figure 17) for such a small number of vertices

is spent in communication. This is because our software currently uses a send/receive style

of message passing which have large overheads. Since the size of the messages is small

these timings can be improved considerably by using active message based communication

primitives that have considerably lower set up costs on the CM-5.

26

(a) (b)

Figure 17: (a) Initial Graph (b) New Graph

Graph Initial Graph New Graph

jV j = 10; 166 jEj = 30; 471 jV j = 10; 838 jEj = 32487

Partitioner Time Cross Edges Time Cross Edges

Recursive Coordinate Bisection 3.133 s 2585 3.339 s 2550

Recursive Spectral Bisection 800.05 s 2118 904.81 s 2158

Index-Based Mapping (S) 0.087 p 2687 0.096 p 2973

Index-Based Mapping (H) 0.089 p 2825 0.098 p 2907

Index-Based Remapping (S) | | 0.008 p 2973

Index-Based Remapping (H) | | 0.008 p 2907

Time unit in seconds.

(S) - using Shu�ed Row-Major indexing scheme.

(H) - using Hilbert Space Filling Curve.

p - parallel timing on a 32-node CM-5.

s - sequential timing on SUN4.

Figure 18: Cost of performing mapping and remapping using di�erent partitioners

27

7 Conclusions

In this paper we have presented parallel remapping algorithms for a class of incremental and

adaptive data parallel applications. The index-based mapping scheme has been shown to be

extremely fast and to produce good quality mappings [18]. We have shown that by using

the methods developed in this paper, remapping can be achieved at a fraction of the time

required for mapping. Experimental results for these algorithms on a 32 node CM-5 support

our conclusions.

We believe our methods would be crucial in the parallelization of the class of incremen-

tal and adaptive data parallel applications targeted in this paper. One drawback of these

methods is that they do not take the edge information into account for partitioning. We

are currently developing remapping algorithms that exploit this information in order to re-

duce the number of cross edges [17]. However, the computational cost of these methods are

considerably higher.

References

[1] Rahul Bhargava, Virinder Singh, and Sanjay Ranka. A Modi�ed Mean Field Annealing

Algorithm for Task Graph Partitioning. Technical report, Syracuse University. Under

preparation.

[2] Masood Bolorforoush, Nastaran S. Coleman, Donna Quammen, and Pearl Wang. A

Parallel Randomized Sorting Algorithm. In Proceedings of the International Conference

on Parallel Processing, August 1992.

[3] Zeki Bozkus, Sanjay Ranka, and Geo�rey C. Fox. Benchmarking the CM-5 Multicom-

puter. In Proceedings of the Frontiers of Massively Parallel Computation, 1992.

[4] B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, and

M. Karplus. A Program for Macromolecular Energy, Minimization, and Dynamics

Calculations. Journal of Computational Chemistry, 4:187, 1983.

[5] Alok Choudhary, Geo�rey C. Fox, Seema Hiranandani, Ken Kennedy, Charles Koelbel,

Sanjay Ranka, and Joel Saltz. Software Support for Irregular and Loosely Synchronous

Problems. In Proceedings of the Conference on High Performance Computing for Flight

Vehicles, 1992. To appear.

[6] P.D. Coddington and C.F. Baillie. Cluster Algorithms for Spin Models on MIMD Par-

allel Computers. In Proceedings of the 5th Distributed Memory Computing Conference,

pages 384{388, Charleston, SC, April 1990.

28

[7] N. Copty, S. Ranka, G. Fox, and R. Shankar. SIMD and MIMD region growing algo-

rithms on the CM-5. In International Conference on Parallel Processing. To appear.

[8] Leonardo Dagum. Data Parallel Sorting for Particle Simulation. Concurrency, 4(3):241{

255, May 1992.

[9] M. R. Garey and D. S. Johnson. Computers and Intractability.

[10] Bruce Hendrickson and Robert Leland. An Improved Spectral Graph Partitioning Al-

gorithm for Mapping Parallel Computations. Technical Report SAND92-1460, Sandia

National Laboratories, Albuquerque, NM 87185, 1992.

[11] Bruce Hendrickson and Robert Leland. The Chaco User's Guide, Version 1.0. Technical

Report SAND93-2339, Sandia National Laboratories, October 1993.

[12] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Computing.

Benjamin-Cummings, 1994.

[13] P.C. Liewer and V.K. Decyk. A General Concurrent Algorithm for Plasma Particle-in-

Cell Simulation Codes. Journal of Computational Physics, 2:302{322, 1985.

[14] Nashat Mansour. Parallel Genetic Algorithms with Application to Load Balancing for

Parallel Computing. PhD thesis, Syracuse University, Syracuse, NY 13244, 1992.

[15] Lionel M. Ni and Philip K. McKinley. A Survey of Wormhole Routing Techniques in

Direct Networks. IEEE Computer, 26(2):62{76, February 1993.

[16] S. Nolting. Nonlinear Adaptive Finite Element Systems on Distributed Memory Com-

puters. In Proceedings of European Distributed Memory Computing Conference, April

1991.

[17] Chao-Wei Ou and Sanjay Ranka. Parallel Incremental Graph Partitioning Using Linear

Programming. Technical report, Northeast Parallel Architectures Center at Syracuse

University, April 1994.

[18] Chao-Wei Ou, Sanjay Ranka, and Geo�rey Fox. Fast Mapping And Remapping Algo-

rithm For Irregular and Adaptive Problems. In Proceedings of the 1993 International

Conference on Parallel and Distributed Systems, Taipei, Taiwan, December 1993.

[19] A. Pothen, H. Simon, and K-P Liou. Partitioning Sparse Matrices with Eigenvectors of

Graphs. SIAM Journal of Matrix Analysis and Application, 11(3), July 1990.

[20] S. Ranka, Y. Won, and S. Sahni. Programming a Hypercube Multicomputer. IEEE

Software, pages 69{77, September 1988.

29

[21] Sanjay Ranka and Jhy-Chun Wang. Static and Runtime Scheduling of Unstructured

Communication. In Proceedings of the 2nd Symposium on Parallel Computational Meth-

ods for Large Scale Structure Analysis and Design, Norfolk, VA, February 1993.

[22] Sanjay Ranka, Jhy-Chun Wang, and Manoj Kumar. All-to-Many Personalized Com-

munication on Distributed Memory Machines. In Proceedings of the 1993 International

Conference on Parallel Processing, St. Charles, IL, August 1993.

[23] J. K. Salmon. Parallel Hierarchical N-Body Method. Technical Report CRPC-90-14,

Center for Research in Parallel Computing, Caltech, Pasadena, CA, 1990.

[24] John Salmon and David Warren. personal communication.

[25] R. Shankar and S. Ranka. Hypercube algorithms for quadtree operations. Journal of

Pattern Recognition, September 1992.

[26] Hanmao Shi and Jonathan Schae�er. Parallel Sorting by Regular Sampling. Journal of

Parallel and Distributed Computing, 14:361{372, 1992.

[27] D.W. Walker. Characterizing the Parallel Performance of a Large-Scale, Particle-in-Cell

Plasma Simulation Code. Concurrency: Practice and Experience, 1990.

[28] R.D. Williams. Performance of Dynamic Load-Balancing Algorithm for Unstructured

Mesh Calculations. Concurrency, 3:457{481, 1991.

30

