
In the Proceedings of the Scalable Parallel Libraries

Conference, pp 36{44 Mississippi State University, MS,

1993.

An Alternative to Data Mapping for Parallel PDE Solvers :

Parallel Grid Generation

Nikos P. Chrisochoides

Northeast Parallel Architectures Center and

Computer Science Department

Syracuse University

111 College Place, Syracuse, NY, 13244-4100

Abstract

In this paper we identi�ed and outlined the disad-

vantages of the traditional data mapping methods for

the numerical solution of PDEs on distributed memory

MIMD machines and we proposed a new approach that

eliminates some of the disadvantages. Speci�cally, we

presented a data-mapping approach based on parallel

structured grid generation. The new approach is based

on composite block structures to contract the size of

the data-mapping problem. It is ten times faster than

the fastest traditional data-mapping method, for rela-

tively small problems, and approximately O(P) times

faster, for very large problems (i.e., millions of grid

points) that are processed on coarse-grain distributed

memory MIMD machines with P processors.

1 Introduction

The mapping of sequentially generated regular and

irregular grids into distributed memory MIMD ma-

chines is a di�cult combinatorial optimization prob-

lem. Its optimal solution is essential for the e�-

cient parallel processing of PDE computations. De-

termining data mappings that optimize a number of

criteria, like workload balance, synchronization and

local communication, often involves the solution of

an NP-Complete problem. Thus, several algorithms

have been proposed for �nding good suboptimal map-

ping solutions. These algorithms can be classi�ed

into three classes. The �rst class, clustering algo-

rithms, includes greedy schemes, divide-and-conquer

algorithms, and block partitioning methods [2]; The

second class, deterministic optimization algorithms,

includes local search techniques based on pro�t func-

tions [22]. Finally, the third class, physical optimiza-

tion, includes mapping algorithms that employ tech-

niques from natural sciences [17]. Most of the above

methods have a major drawback : they process se-

quentially unnecessary data.

An attempt to improve the performance of physical

optimization algorithms was presented by Nashat et.

al in [26]. This attempt is based on reducing the size

of the grid or the mesh by applying a computation-

ally cheap clustering algorithm on the original grid,

and then on farther partitioning the resulted graph

(or super-grid) by giving it as an input to a physical

optimization algorithm. This approach reduces the

problem size and thus the preprocessing time but at

the same time it reduces the searching space (i.e., the

freedom of the algorithm) and many times it returns

solutions that are fragmented. This results to data

mappings that require extensive communication [3].

Another attempt for irregular grids has been made by

Lohner [25]. This attempt was based on the use of a

coarse background mesh which was proved unsuccess-

ful for problems with complex geometries because in

those problems one had to start with very �ne meshes

in order to resolve the geometric and topologic incon-

sistencies.

In this paper we propose a method for the data

mapping of structured grids for general 2 and 3-

dimensional domains. The method is based on the

idea of composite block structures that is used on

numerical grid generation. For a given domain

we decompose the domain,
, into a small num-

ber of contiguous hexahedron subregions,
i, that

can be mapped into rectangular computational blocks

Bi which form an initial composite block structure

Co(
) = fBig
N
i=1. This decomposition can be done

either interactively [38] or using a Medial Axis Trans-

formation method [36]. Then, we generate sequen-

tially an algebraic grid that provides an explicit con-

trol of the physical grid shape and requires a min-

imal number of grid points. This grid is used for

the generation of a �ner composite block structure,

Cf (
) = fBf
i g

N
f

i=1 . Cf (
) decomposes the do-

main
 into blocks of uniform sizes. Finally, we apply

the boundary-conforming curvilinear P�Q partition-

ing method [2] for each block Bi 2 Co(
). Since the

computational space of each block Bi is rectangular

P�Q needs no sorting and thus it is even faster.

This approach is ten times faster than the fastest

and one of the most e�ective traditional data-mapping

methods (i.e., P�Q) [3], for relatively small problems,

and can be approximately O(P) times faster, for very

large problems (i.e., millions of grid points), processed

on coarse grain distributed memory MIMD machines

with P processors. Also, it is suitable for developing

fast block Euler solvers, and preconditioned solvers for

elliptic boundary value problems [30].

2 Data Parallel PDE Solvers

The parallelism of PDE computations can be ex-

plored on three levels, namely the continuous PDE op-

erator, the discrete PDE operator and thirdly the PDE

solver's arithmetic. In the �rst level, locality and thus

parallelism can be explored on the continuous PDE

operator. The PDE Lu = f in
 & Bu = g 2 #

is reduced to a set of \smaller" PDEs : Lui j

i
=

f j
i & Bui j#
i= g j#
i ; i = 1; :::;P, where auxil-

iary conditions have been arti�cially extended at the

interfaces of the non-overlapping subdomains f
ig
P
i=1

(see [19], [35], [34] and [23]). The P coarse grain tasks

solve P loosely synchronous PDE problems and ex-

change some information to force continuity at the

interfaces of the subdomains (see Figure 1).

i

i

Lu | = f | i i

ii

Bu | = g | i i
ii

for i = 1..P

Figure 1: The components of the decomposed PDE

problem based on the splitting of the domain
 into a

substructure of domains
i.

At the second level, the locality can be explored

on the discrete PDE operator (i.e., the system of al-

gebraic linear equations generated by a �nite di�er-

ence or �nite element module). The linear system

[L]x = f and [B]x = g is decomposed into subsys-

tems : [Ai]x
i = f

i

& [Bi]x#
i = g
#
i

; i = 1; :::;P

where x
i is the vector of the unknowns that corre-

spond in the interior of the subdomain
i and x#
i is

the vector of the unknowns that correspond on the

interface #
i of the subdomain
i (see Figure 2).

In this case the computational model is loosely syn-

chronous with medium size subcomputations that are

based on a global distributed data structure (see Fig-

ure 3). Each processor independently solves part of

the distributed linear system and synchronizes with

other processors due to coupling of the linear equa-

tions. Parallel compilers in the near future should be

able to �nd optimal uncouplings of the equations in or-

der to reduce the communication and synchronization

overheads.

Interface nodes

h

1

2

[A] x = f
i

i

[B] x = g
i

ii

i

for i = 1.. P

i
i

Figure 2: The components of the decomposed discrete

PDE problem based on the splitting of the mesh Dh

used numerically. This discrete mesh is partitioned by

interfaces nodes (shown as circles) into discrete sub-

grids Dh
i

DOMAIN
 # 1

DOMAIN
 # 2

DOMAIN
 # 3

DOMAIN
 #4

INTERFACES

LINK

LINK

LINK

LINK

L
I
N
K

L
I
N
K

L
I
N
K

L
I
N
K

Figure 3: Distributed data structure (coe�cient ma-

trix of the linear system of equations) assembled in

parallel on the processors of the parallel machine.

Finally, in the third level, locality can be explored

in the arithmetic performed by a stream of instruc-

tions resulted from the compilation of a PDE solver.

Parallel compilers based on Trace Scheduling [11] are

capable of exploiting �ne-grain parallelism in instruc-

tions even hundreds of blocks apart - basic block is

de�ned as a set of instructions having no jumps into

them except at the beginning and no jumbs out except

at the end of the block. Such compilers can achieve

speedups of about 90 [9].

In the rest of the paper we will focus on PDE solvers

that explore locality only on the continuous and dis-

crete PDE operators. The overall e�ciency of such

data parallel iterative PDE solvers depends upon the

rate of convergence and the speedup per iteration of

the method. The convergence rate depends on the

condition number of the preconditioned system while

the speed per iteration depends on the number of non-

local unknowns to be exchanged among the processors

and on the number of coupled subsystems. Speci�-

cally, for elliptic boundary value problems the condi-

tion number of a preconditioned system is of the order

O(1 + ln2(d
h
)) where d is roughly the diameter of the

subdomain and h is the grid size. Furthermore, the

number of non-local unknowns depends on the number

of interface grid points, I, and the coupling of the sub-

systems depends on the degree, C, of the dual graph of

the subgrids. (see Figure 2). The search for optimum

values for d; I; C and load balance of the computation

is a di�cult combinatorial optimization problem since

many times the optimum values for d; I; C and load

balance are con
icting with each other.

3 Data Mapping

The e�ciency of data parallel PDE solvers on dis-

tributed memory systems depends highly upon the

partition of the distributed data structures (i.e., grids,

coe�cient matrix, and unknown vector) and their

placement onto the processors of the parallel ma-

chine. The data partition and placement (or data

mapping) problem, so that the processors' workload is

balanced and inter-communication and synchroniza-

tion are minimum, is a di�cult combinatorial opti-

mization problem. The mathematical formulation of

the data mapping problem is given by equation (1).

min
m

max
1�i�P

f W (m(Di)) +
X

Dj2CDi

C(m(Di);m(Dj)) g

(1)

where Di is the set of grid points (subgrid) that are

placed (assigned) to the same processor, CDi
is the

set of the subgrids that are adjacent to the subgrid

Di, m : fDig
P
i=1 ! fPig

P
i=1 is an assignment func-

tion that places the subgrids to processors, W (m(Di))

is the computational load of the processor m(Di)

per iteration, which is related to the number of grid

points in Di, C(m(Di);m(Dj)) is the communica-

tion required (per iteration) between the processors

m(Di) and m(Dj), and P is the number of available

processors of the target parallel machine. In the case

of data parallel PDE iterative solvers, without the

overlapping between the computation and the commu-

nication phases, the synchronization term in equation

(1) is included in W (m(Di)).

This formulation of the data mapping problem as-

sumes that computation and communication do not

overlap. Clearly, such conditions are also necessary

for the e�cient execution of the data parallel PDE

solvers on distributed memoryMIMDmachines. How-

ever, there is no explicit term for the synchronization

in equation (1) because the synchronization cost is a

nonlinear correlation of computational and communi-

cation work-load, computational and communication

overlapping and network contention. Thus, it is dif-

�cult to be quanti�ed. Nevertheless, equation (1) is

considered a reasonable measure for the quality of data

mapping solutions and two approaches can be identi-

�ed in the mapping literature for its solution. The �rst

approach is based on a smoother approximation of the

equation (1) and the second approach is based on the

splitting of the mapping problem into two simpler but

still NP-Complete problems.

The evaluation of equation (1) is computational ex-

pensive. An approximation can be used instead :

min
m

�2
PX
i=1

jDh
i j
2 + �

PX
i=1

X
Dh
j
2C

Dh
i

C(m(Dh
i);m(Dh

j))

(2)

where � is a scaling factor expressing the relative im-

portance of the communication term with respect to

the computation term, and � depends on the solver

and is equal to the number of computation operations

per grid node per iteration. The �rst term is quadratic

in the deviation of computation loads from the average

computation load and is minimal when all deviations

are zero. A minimum of the second term occurs when

the sum of all interprocessor communication costs is

minimized. The reevaluation of equation (2) due to

replacement of a gird point gi is determined by infor-

mation about gi, Pi and Pj only. The minimization

of equation (2) allows a tradeo� between the compu-

tation workload and the communication cost for the

purpose of minimizing their total sum.

Unfortunately, the cost of interprocessor communi-

cation, Ccst = C(m(Dh
i);m(Dh

j)), is di�cult to quan-

tify at compile time since it depends on phenomena

that occur at run-time like node and link contention.

Throughout the literature there are two expressions

that have been proposed for the compile time approx-

imation of the communication cost

Ccst =

8<
:

� + �I(Dh
i ; D

h
j) + �H(m(Dh

i);m(Dh
j)) (3a)

�'I(Dh
i ; D

h
j)H(m(Dh

i);m(Dh
j)) (3b)

where � is the message start-up time (latency); � is

the machine time for communicating one byte; � is the

communication time per link; I(Dh
i ; D

h
j) is the number

of interface nodes of the subgrids Dh
i and Dh

j that

determine the message size; H(Dh
i ; D

h
j) is the physical

(e.g. Hamming) distance between m(Dh
i) and m(Dh

j).

Note that the inclusion of � in equation (3a) accounts

for the cost of the connectivity of the subgrids.

The second mapping approach uses criteria that are

qualitatively derived from the mapping requirements

and addresses them in stages. It is based on splitting

the optimization problem into two distinct phases that

accomplish the partitioning and the placement of the

grid [4] and [33]. In the partitioning phase we decom-

pose the grid into P subgrids such that the following

criteria are approximately satis�ed:

(i) the maximum di�erence in the number of nodes

of the subgrids is minimum,

(ii) the ratio of the number of interface nodes to the

number of interior nodes for each subgrid is min-

imum,

(iii) the number of subgrids that are adjacent to a

given subgrid is minimum,

(iv) each subgrid is a connected grid.

In the placement phase these subgrids are placed to the

processors such that the following criterion is satis�ed:

(v) the communication requirements of the underly-

ing computation between the processors of a given

architecture are minimum.

For a given grid Dh with N nodes, the merit of

a partition into P non-overlapping subgrids fDh
i g
P
i=1

is characterized in terms of the set of subgrids CDh
i

that are geometrically adjacent to the subgrid Dh
i

and in terms of the number of interface grid nodes,

I(Dh
i ; D

h
j), shared by the subgridsD

h
i and Dh

j . Then,

the optimal partitioning, as de�ned by criteria (i) to

(iv), can be viewed as the one which simultaneously

minimizes :

max
1�i;j�P

j jDh
i j � jDh

j j j (4)

max
1�i�P

f

(
P

Dh
j
2C

Dh
i

I(Dh
i ; D

h
j))

jDh
i j

g (5)

max
1�i�P

jCDh
i
j (6)

The approximation of the data mapping problem

by the above approaches is still an intractable prob-

lem. Thus, several algorithms have been proposed

for �nding good suboptimal mapping solutions. Some

algorithms are based on greedy schemes, divide-and-

conquer , or block partitioning methods. Examples

are the nearest neighbor mapping, the P�Q partition-

ing, the recursive coordinate bisection, the recursive

graph bisection, the recursive spectral bisection, the

CM Clustering, and the scattered decomposition tech-

niques [1], [2], [8], [10], [24] [31], [32], [12], [15], [16],

[29], [33], [39].

Other algorithms are based on deterministic opti-

mization, where local search techniques are used to

minimize cost functions related to execution time of

the PDE solver; examples are the Kernighan-Lin al-

gorithm and the geometry graph partitioning (see in

[22] and [7]). Finally, another class of mapping algo-

rithms are based on physical optimization that em-

ploys techniques from natural sciences [17]; examples

are neural networks, simulated annealing, and genetic

algorithms [13], [27], [40]. Figure 4 presents a possible

classi�cation of these methods.

The two approaches and the methods (traditional

methods) for the solution of the data mapping prob-

lemwe described in this section have a number of weak

points. For example, the data distribution is based on

the actual grid or mesh data that are required by the

PDE solver to achieve certain accuracy. For real prob-

lems the number of grids can be of the order of O(106).

Table 1 presents some timings (in seconds) for the se-

quential preprocessing required for two relatively small

problems. The mesh for the �rst problem, Problem A,

consists of 57,756 elements, 29,223 nodes and gener-

ates 28,535 equations, while the mesh for the second

problem, Problem B, consists of 18,890 elements and

9,880 nodes and generates 8,981 equations.

Even if we use parallel algorithms to speedup the

algorithms for the data mapping problem we should

load all the data structures required for the parallel

processing of these algorithms. In this case the I/O re-

quired is very large relative to the time needed for the

Static

Geometry

Discrete

Clustering Optimization

Deterministic

Ker_Lin GGP

Local Search

Data Mapping Algorithms

Dynamic

Stochastic

Genetic

Algorithms

Neural

Networks

Simulated

Annealing

Continuous

Medial Axis

Transformation

Hybrid

MultiList/MultiThread

Run time system

PxQRooted Level

Strucures

Spectral

Techniques

Figure 4: Data Mapping Algorithms

Table 1: The execution time of the di�erent phases

required for the sequential preprocessing for the nu-

merical solution of Problems A and B using the P�Q
partition algorithm. The time is in seconds on the

SPARC workstation.

SPARC Workstation phases A B

Mesh generation 24.01 10.56

Initialize decomposer 7.73 2.56

Partition of domain. 8.35 2.70

Save data 51.88 20.78

Table 2: The execution time of the di�erent phases re-

quired for the data loading, synchronization and paral-

lel numerical solution of Problems A and B. The time

is in seconds on the nCUBE 2.

nCUBE 2 phases A B

Load data 57.45 11.37

Synchronize/initialize processors 11.93 17.91

Discretize PDE 2.06 0.75

100 iterations of solver 2.93 1.40

parallel solution of the PDE. Table 2 presents perfor-

mance timings (in seconds) from nCUBE 2 for the four

phases required to solve numerically a PDE problem

using the traditional data mapping methods. From

the data of the Table 2 we can see that the time to

discretize a PDE operator and perform 100 iterations

on nCUBE 2 using Jacobi semi-iterative together with

Chebyshev polynomials for the acceleration of the con-

vergence (see [6]) is 2.9 % and 3.4 % of the total exe-

cution time for problems A and B respectively.

Another major weakness of the traditional data

mapping methods is the di�culty to quantify, at com-

pile time, phenomena that occur at run time. Thus

they are not capable to maintain e�ciently the data

distribution for applications that require the use of

di�erent PDE operators in di�erent subregions (eg.

Navier-Stokes in a boundary layer around and near

an airfoil and Euler in the far �eld) that change at

run time. We have already mentioned the weakness

to quantify phenomena that occur at run time due to

network contention. Equally important is the weak-

ness to e�ciently distribute the data for distributed

systems with time sharing heterogeneous work sta-

tions and high speed networks. Finally, these methods

assume that the data structures are static through-

out the computation and thus they can not be used

for PDE problems that require solution methods with

mesh movement or some form of re�nement (i.e., h-

re�nement, p-re�nement or hp-re�nement).

4 Parallel Grid Generation

In the previous section we presented data indicating

that even the least expensive data mapping methods

introduce a lot of overhead in the process of solving nu-

merically PDEs on parallel machines. In this section

we present a new e�cient approach for the solution

of the data mapping problem. This approach is based

on parallel grid generation. Grids or meshes can be

classi�ed into two basic types, namely, the structured

grids, formed by intersecting grid lines, and the un-

structured meshes, formed by �rst creating node points

and then connecting the nodes to form the \best" pos-

sible triangles. In the rest of the paper we describe a

method for the parallel generation of structured grids

that is used to reduce the pre-processing overhead due

to data mapping. As a result the new approach is ten

times faster than the fastest traditional data mapping

method for small problems (i.e., tens of thousands of

grid points) and O(P) times faster for larger problems

(i.e., millions of points).

The parallel generation of structured grids for gen-

eral 2 and 3-dimensional domains is based on com-

posite block structures (see [37] for a comprehensive

survey of the method for sequential machines). The

basic idea of the composite block structure is based on

the decomposition of the physical domain
 into con-

tiguous four-sided (or hexahedrons for 3-dimensional

domains) subregions
i (Figure 5a) which are mapped

to rectangular computational blocks (Figure 5b), Bi.

In each of the computational blocks an independent

curvilinear coordinate system (�1; �2; �3) is generated.

The grid of the full domain is generated by compos-

ing \properly" the separate coordinate systems of the

computational blocks (Figure 5c). This composition

requires an interaction between adjacent rectangular

blocks. Note that (i) the size (i.e., the number of grid

points) of the computational blocks Bi may vary and

(ii) the number of the subregions and thus of the com-

putational blocks usually is smaller than the number

of the available processors for large and massively scale

parallel machines.

Bi

i

j

i

i

j

a)

b)

c)

Figure 5: Three steps of grid generation process.

For each block Bi an independent curvilinear coor-

dinate system can be generated in parallel. The de-

gree of continuity of grid lines across the interfaces of

adjacent curvilinear systems requires either the spec-

i�cation of grid points at the same �xed locations on

both of the adjacent coordinate systems (case of dis-

continuous grid line slope) or the treatment of grid

lines as a branch cut on which the generation system

is solved just as it is in the interior of the blocks (case

of continuous grid line slope). In this case the interface

locations are determined by the grid generation sys-

tem. The continuity of grid line slope is handled by

providing an extra layer of points (outer-layer) sur-

rounding each block. The interface and outer-layer

grid points of a block are forced to coincide with the

interface and interior grid points of an other adjacent

block. This coincidence of the points is maintained

during the course of an iterative solution of an ellip-

tic system over all blocks. This suggest that a local

synchronization among the processors that process ad-

jacent blocks is required at the end of each iteration.

B

BB

BBBB

B

BBBBB 8

1

2

3

4

5

6

7

9

10

11

12

13

Outer Layer of the block B 7

B7

Figure 6: Computational domain.

The initial grid for the iterative elliptic system is

generated using methods based on trans�nite inter-

polation. The grids that are generated using inter-

polation are referred as algebraic grids and the grids

that require the solution of elliptic partial di�erential

equations (PDEs) are referred as elliptic grids. The

e�cient parallel generation of elliptic grids requires

that the processor work load is balanced and commu-

nication and synchronization is minimum. The com-

putational domains of elliptic grids are rectilinear (see

Figure 6) and thus the mapping of the computations

associated to parallel grid generation is not as di�cult

as the mapping for general PDE problems.

In order to apply the fastests and one of the most

e�ective data mapping algorithms [2], [3] on the block

structures Co(
) we �rst generate sequentially an al-

gebraic grid that provides an explicit control of the

physical grid shape and requires a minimal number of

grid points. This algebraic grid is the basis for the

Cf (
) = fBf
i g

Nf

i=1 which satis�es the following three

properties :

1. j Co(
) j < j Cf (
) j

2. 8Bi 2 Co(
) 9Ii � @ 3: Bi = [j2IiB
f
j ; B

f
j 2

Cf (
)

3. jBf
i j = jBf

j j 8B
f
i ; B

f
j 2 Cf (
).

Then we apply boundary-conforming curvilinear P�Q
partitioning method [2] on each block (see Figure 7)

Bi 2 Co(
) and place all blocks B
f
i with the same

color to the same processor. This approach is similar

to the scattered decomposition for irregular domains

presented in [13]. The di�erence is that the templates

de�ned by the Co(
) are not �xed, the subdomains re-

ect the boundary shape and thus there are no discon-

nected subdomains. Another advantage of the method

is that eliminates link contention in the network [5]

and thus minimizes communication time.

ji

Figure 7: Block-by-Block P�Q partitioning of the

Co(
).

By applying the Block-by-Block P�Q method on

Co(
) we use a natural way to contract the size of

the problem and thus reduce the pre-processing time.

Table 3 depicts the time required to generate (Grid-

Gen.) structured grids on a SPARC workstation, the

time to map (P�Q) and load the subgrids onto the

memory of the 64 processors of the nCUBE 2 and

the sum (Total) of the grid generation, mapping and

loading times. Table 4, for the same grids, depicts

the time to generate Cf (
), map and load the data

on the memory of the 64 processors of the nCUBE

2. For the mapping the Block-by-Block P�Q method

was used on the same SPARC workstation. This table

also depicts the time to generate on a 64 node nCUBE

2 an algebraic grid. As it is indicated from the third

columns of the Tables 3 and 4 the new approach is ten

times faster than the fastest traditional data-mapping

method. For applications with millions of grid points

the method can be approximately O(P) times faster.

Also, it is easy to see that this approach returns a

data mapping with the same number of interface grid

points and degree of connectivity of the subgrids as

the traditional P�Q data mapping method.

5 Summary and Conclusions

A number of weak points for the traditional data

mapping methods have been identi�ed. We addressed

the pre-processing overhead due to processing of large

Table 3: Preprocessing time (in sec) required for gen-

erating and mapping sequentially an algebraic grid on

the 64 nodes of the nCUBE 2.

Grid Points Grid-Gen. Pre-Proc. Total

2.5 � 103 0.38 17.81 18.19

10 � 103 1.61 46.45 48.06

22.5 � 103 3.61 100.15 103.76

40 � 103 6.45 195.13 201.58

Table 4: Preprocessing time (in sec) required for pre-

processing and parallel generation of an algebraic grid

on the 64 nodes of the nCUBE 2.

Grid Points Pre-Proc. (//) Grid-Gen. Total

2.5 � 103 3.44 0.08 3.52

10 � 103 4.38 0.35 4.73

22.5 � 103 8.48 0.71 9.19

40 � 103 16.06 1.25 17.31

amounts of unnecessary data. A new approach that

reduces the size of the data to be processed to a min-

imum has been proposed. The new approach is based

on parallel grid generation and for small problems is

ten times faster than the fastest traditional method

(i.e., P�Q see in [3]), and for large problems is O(P)

times faster without compromising the quality of the

solution.

Acknowledgements

The author gratefully acknowledges the Alex G.

Nason Foundation for the Nason Prize Award that

supports him at NPAC.

References

[1] M. Berger, S. Bokhari. A partitioning strategy for

nonuniform problems on multiprocessors. IEEE

Trans. Computers, C-36, 5 (May), pp. 570{580,

1987.

[2] N. P. Chrisochoides, Elias Houstis and John Rice.

Mapping Algorithms and Software Environment

for Data Parallel PDE Iterative Solvers To ap-

pear in the special issue of the Journal of Parallel

and Distributed Computing on Data-Parallel Al-

gorithms and Programming.

[3] N. P. Chrisochoides, Nashat Mansour and Geof-

frey Fox. Performance evaluation of data mapping

algorithms for parallel single-phase iterative PDE

solvers Submitted in the special issue of the Jour-

nal of Concurrency Practice and Experience on

Load Balancing and Graph partitioning for par-

allel machines.

[4] N. P. Chrisochoides. On the Mapping of PDE

Computations to Distributed Memory MIMD Ma-

chines. CSD-TR-92-101, Computer Science De-

partment, Purdue University, W. Lafayette IN,

1992.

[5] N. P. Chrisochoides, J. R. Rice. Partitioning

heuristics for PDE computations based on paral-

lel hardware and geometry characteristics. In Ad-

vances in Computer Methods for Partial Di�eren-

tial Equations VII, (R. Vichnevetsky. D. Knight

and G. Richter, eds) IMACS, New Brunswick, NJ,

pages 127-133, 1992.

[6] N. P. Chrisochoides, E.N. Houstis, S.B. Kim, M.K.

Samartzis, and J.R. Rice. Parallel iterative meth-

ods. In Advances in Computer Methods for Par-

tial Di�erential Equations VII, (R. Vichnevetsky.

D. Knight and G. Richter, eds) IMACS, New

Brunswick, NJ, pages 134-141, 1992.

[7] N. P. Chrisochoides, C. E. Houstis, S. K. Korte-

sis E. N. Houstis, and J. R. Rice. Automatic load

balanced partitioning strategies for PDE compu-

tations. In E. N. Houstis and D. Gannon, editors,

Proceedings of International Conference on Super-

computing, pages 99{107. ACM Press, 1989.

[8] De Keyser, J., D. Roose. A software tool for load

balanced adaptive multiple grids on distributed

memory computers. Sixth Distributed Memory

Computing Conference, April 1991, pp. 22{128.

[9] DeCegama, L. A. Parallel Processing Architec-

tures and VLSI Hardware, Volume 1. Englewood

Cli�s, NJ: Prentice Hall, 1989.

[10] Dragon, K, J. Gustafson. A low cost hypercube

load-balance algorithm. 4th Conf. Hypercube Con-

current Computers, and Applications, 583{590,

1989.

[11] Ellis, R. J. BULLDOG : A compiler for VLIW

Architectures. Cambridge, MA: The MIT Press,

1986.

[12] Farhat, C. A simple and e�cient automatic fem

domain decomposer. Computers and Structures,

28:579{602, 1988.

[13] Flower, J., S. Otto, and M. Salana. Optimal

mapping of irregular �nite element domains to par-

allel processors. Parallel Computers and Their Im-

pact on Mechanics, 86:239{250, 1988.

[14] G. C. Fox, M. Johnson, G. Lyzenga, S. Otto,

J. Salmon and D. Walker Solving problems on

concurrent processors. Prentice Hall, New Jersey,

1988.

[15] G. C. Fox. A graphical approach to load bal-

ancing and sparse matrix vector multiplication on

the hypercube. In Proceedings of IMA Institute

(M. Schultz, editor), pages 37{51. Springer{Verlag,

1986.

[16] G. C. Fox. A review of automatic load balancing

and decomposition methods for the hypercube. In

Proceedings of the IMA Institute (M. Schultz, edi-

tor), pages 63{76. Springer{Verlag, 1986.

[17] G. C. Fox. Physical computation. Concurrency

Practice and Experience, Dec., 627{654. 1991.

[18] Michael R. Gary and David S. Johnson. Comput-

ers and Intractability, A Guide to the Theory of

NP-Completeness. W. H. Freeman and Company,

San Francisco, 1979.

[19] R. Glowinski, G. Golub, G. Meurant, and J. Pe-

riaux. First International Symposium on Do-

main Decomposition Methods for Partial Di�eren-

tial Equations. SIAM, Philadelphia, 1988.

[20] W. S. Hammond Mapping Unstructured Grid

Computations to Massively Parallel Computers.

PhD thesis, Computer Science Department, Rens-

selaer Polytechnic Institute, Troy, NY, 1992.

[21] E. N. Houstis, J. R. Rice, N. P. Chrisochoides,

H. C. Karathanasis, P. N. Papachiou, M. K.

Samartzis, E. A. Vavalis, Ko-Yang Wang, and

S. Weerawarana. //ELLPACK: A numerical

simulation programming environment for parallel

MIMD machines. In Proceedings of Supercomput-

ing '90 (J. Sopka, editor), pages 97{107. ACM

Press, 1990.

[22] B. W. Kernighan and S. Lin. An e�cient heuristic

procedure for partitioning graphs. The Bell System

Technical Journal, Feb., 291 { 307, 1970.

[23] David E. Keyes and William D. Gropp. A com-

parison of domain decomposition techniques for el-

liptic partial di�erential equations and their par-

allel implementation. In Selected Papers from

the Second Conference on Parallel Processing for

Scienti�c Computing (C. W. Gear and R. G.

Voigt, editors), pages s166{s202, Philadelphia,

1987. SIAM.

[24] S-Y Lee, J. K. Aggarwal. A mapping strategy for

parallel processing. IEEE Trans. on Computers,

Vol. C-36, No.4, April, 433{442. 1987.

[25] Lohner, R., J. Camberos andM. Merriam Parallel

Unstructured Grid Generation Unstructured Sci-

enti�c Computation on Scalable Multiprocessors,

(eds. P. Mehrotra, J. Saltz and R. Voight), The

MIT Press, 31{64, 1992

[26] N. Mansour, R. Ponnusamy, A. Choudhary, and

G. Fox. Graph Contraction for Physical Opti-

mization Methods: A Quality-Cost Tradeo� for

Mapping Data on Parallel Computers. Interna-

tional Supercomputing Conference, Japan, July

1993, ACM Press.

[27] Nashat Mansour and Geo�rey Fox. A Hybrid Ge-

netic Algorithm for Task Allocation in Multicom-

puters. International Conference on Genetic Algo-

rithms, pp 466-473, July 1991, Morgan Kaufmann

Publishers.

[28] Nashat Mansour and Geo�rey Fox. Allocating

Data to Multicomputer Nodes by Physical Op-

timization Algorithms for Loosely Synchronous

Computations. Concurrency: Practice and Experi-

ence, Vol. 4, Number 7, pp 557-574, October 1992.

[29] R. Morrison and S. Otto. The scattered decom-

position for �nite elements. Journal of Scienti�c

Computing, 2:59{76, 1987.

[30] Pasciak, J. Domain Decomposition precondition-

ers for Elliptic in Two and Three Dimensions :

First Approach First International Symposium on

Domain Decomposition Methods for Partial Dif-

ferential Equations. SIAM, Philadelphia, 62{72,

1988.

[31] P. Sadayappan and F. Ercal. Cluster-partitioning

approaches to mapping parallel programs onto a

hypercube. In Proceedings of Supercomputing '87

(E. N. Houstis, T. S. Papatheodorou, and C. Poly-

chronopoulos, editors), pages 476{497. Springer{

Verlag, 1987.

[32] P. Sadayappan, F. Ercal. Nearest-neighbor

mapping of �nite element graphs onto processor

meshes. IEEE Trans. on Computers, vol. C-36,

no. 12, Dec., 1408-1424. 1987.

[33] D. Horst Simon. Partitioning of unstructured

problems for parallel processing. Technical Report

RNR-91-008, NASA Ames Research Center, Mof-

fet Field, CA, 94035, 1990.

[34] Tony F. Chan and Diana C. Resasco. A domain-

decomposed fast Poisson solver on a rectangle.

In Selected Papers from the Second Conference

on Parallel Processing for Scienti�c Computing

(C. W. Gear and R. G. Voigt, editors), pages 14{

26. SIAM, Philadelphia, 1987.

[35] Tony F. Chan, Youcef Saad, and Martin H.

Schultz. Solving elliptic partial di�erential equa-

tions on hypercubes. In Hypercube Multiprocessors

1986 (Michael T. Heath, editor), pages 196{210.

SIAM, Philadelphia, PA, 1986.

[36] Tan, T.K. H., M. A. Price, C. G. Amstrong and

R. M. McKeag Computing the critical points on

the medial acis of a planar object using a Delaunay

point triangulation algorithm Submitted to IEEE

PAMI.

[37] Thompson, F. Joe, Z. U. A. Warsi and C. Wayne

Mastin. Numerical Grid generation. North-

Holland, New York, 1985.

[38] Thompson, J., The National Grid Project NSF

Engineering Research Center for Computational

Field Simulation, 1991.

[39] D. Walker. Characterizing the parallel perfor-

mance of a large-scale, particle-in-cell plasma sim-

ulation code. Concurrency Practice and Experi-

ence, Dec., 257-288. 1990.

[40] R. D. Williams. Performance of dynamic load

balancing algorithms for unstructured mesh cal-

culations. Concurrency Practice and Experience,

3(5), 457-481. 1991.

