
Northeast Parallel Architectures Center
at Syracuse University

A Concurrent Multi Target Tracker: Benchmarking
and Portability 1

Salim Hariri, Rajesh Yadav, Balaji Thiagarajan,

Sung-Yong Park, Mahesh Subramanyan, Rajashekar Reddy and G. C. Fox

Northeast Parallel Architectures Center

Department of Electrical and Computer Engineering

Syracuse University

SCCS # 659

1This research is funded by Rome Laboratory (contract number F-30602-92-C-0063), Rome, NY

1 INTRODUCTION 2

Abstract

With the current advances in computing and network technology and software, the gap between
parallel and distributed computing environment is gradually becoming narrower. Consequently,
parallel programs run on parallel as well as distributed systems. However, programming and

porting complex applications to such environment is challenging task and not well understood.
In this paper, we use a concurrent multi target tracker as a running example to analyze

and evaluate performance of two di�erent parallel implementations on parallel and distributed
systems. We have benchmarked both these implementations on di�erent architectures that
vary from a network of workstations(SUN, IBM RS6000) to parallel computers (CM5, iPSC
860) using di�erent parallel/distributed message passing tools(PVM, p4, EXPRESS, HORUS).
We have also compared the performance of these tools to provide important communication
primitives for high performance computing applications such as send/receive, broadcast and
circular communication.

1 Introduction

Current advances in technology is unifying parallel and distributed computing such that the

distinction between the two �elds is becoming more and more blurred. For example, an ap-

plication developed based on message passing programming paradigm can run on parallel and

distributed environments without any major changes. Such a paradigm can capitalize on ex-

isting architectures and on enhanced facilities in computing, networking and communication

technology to provide e�cient, cost-e�ective, scalable, and high-performance solutions. Soft-

ware development for complex application that run on parallel and distributed systems is a

non-trivial process and requires a thorough understanding of the application and architectures;

currently, most of the well studied applications are small and are not complex enough to help

researchers understand the programming, portability and performance issues associated with

software tools for parallel and distributed computing environments. The main objective of this

paper is to investigate these issues by experimenting with a compute intensive application.

We select the multi target tracking application as the �rst application in a benchmarking

suite being developed at NPAC of Syracuse University to evaluate performance of software

tools as well as parallel/distributed platforms. The tracker has been written using di�erent

message passing tools [?] that include PVM [?], p4 [?], EXPRESS [?] , and PICL [?]. The

tracker has been ported on the nCUBE, CM5, Intel iPSC 860, IBM-SP1 architectures and a

cluster of SUN4 and IBM RS6000 workstations.

To simplify the portability issue in a heterogeneous environment we have developed a

uniform structure of the tracker algorithm that can be easily coded using di�erent message

passing tools. By studying the performance of the tools and tracker on di�erent parallel and

distributed systems, we will be able to identify the best computing environment to run that

application.

The remaining sections of the paper are organized as follows: In section 2 we discuss the

sequential implementation of the tracker. Section 3 discusses two di�erent implementations of

the concurrent multi target tracker. Section 4 details the experimental results of the parallel

NPAC/ECE, Syracuse University

2 MULTI TARGET TRACKING SYSTEM 3

and distributed implementations of the tracker. It also compares the performance of mes-

sage passing tools (like PVM, p4, EXPRESS, HORUS) to provide important communication

primitives for high performance computing applications. Section 5 presents a summary and

directions of future research.

2 Multi Target Tracking System

The tracker demonstrates the multi target tracking capabilities that is required by a Battle

Management Command Control and Communication System. It uses an extended 3 stage

Kalman �ltering formalism which is the primary \tool" used to provide and sort realistic

data. This �ltering formalism is general and can be used in problems related to pattern

recognition, signal and image processing. The 3 stage �lter model has helped the development

of a concurrent version of the tracker [?].

The multi target tracker, shown in Figure ??, is designed to provide an estimation of launch

vehicle parameters for individual targets/missiles in multi-target scenarios. The system deals

with a mass raid scenario and is designed to process situations with varying number of targets

and launch sites. The tracker receives input from the Environment Generator and Synthesizer

module (see Figure ??) in terms of sensor scans and target information. The multiple target

tracking system has two geostationary sensors which scan speci�c launch sites for missiles

or targets launched from the surface of earth. The launch sites are speci�ed in terms of

latitudes and longitudes. The data from these two geostationary sensors are fed to two focal

plane tracking (FPT) modules (2 dimensional tracking) at 5 second intervals. The focal plane

tracking modules process this data using kinematic �ltering algorithms and track pruning and

prediction algorithms. The output of this module is an initial prediction of trajectories of

launched missiles. This data is then fed to a 3D(three dimensional) tracking system which

uses the data from the two focal plane tracking modules to prune duplicate tracks (if any),

extend existing tracks, prune bad tracks and initiate new tracks. The output of the system is

a list of target trajectories.

The concurrent multi target tracker (CMTT) is one of the modules that �ts into the

battle management command control and communication system(see Figure ??). This system

consists of a set of components which interact with each other by exchanging information

for data processing. The main components of the overall system include an Environment

Generator and Synthesizer, the Tracker System, Decision Control System and an External

Graphics Communication Module, as shown in Figure ??.

The MTT system gets information from the Environment Generator and Synthesizer. It

processes this data and generates the parameters required by the Decision Control System.

The Decision Control System uses this information along with data from the Environment

Generator and Synthesizer to make decisions on how to manage the existing battle manage-

ment command and control scenario. This information is fed to an External Graphics Com-

munication module. This module acts as an extension or front-end to the Decision Control

Module. For example in a Missile Tracking system the front-end can serves as a visualization

tool or data interpreter which shows the trajectory and position of launched missiles. The

Fire Control Module performs the actions directed by the Decision Control System.

NPAC/ECE, Syracuse University

2 MULTI TARGET TRACKING SYSTEM 4

2 D Mono

Tracking
2D Mono

Tracking

3D Tracking System

Surface of

Earth

Sensor 2Sensor 1

Figure 1: Multi-Target Tracker System

Multi-target

Tracker

Multi-target

Tracker

 Environment Generator

and Synthesizer

Decision

Control

System

Control
FireExternal

Graphics

Communication

Figure 2: Battle Management Command Control Scenario

NPAC/ECE, Syracuse University

2 MULTI TARGET TRACKING SYSTEM 5

In what follows we discuss the issues involved in single target tracking, multi target tracking

and concurrent multi target tracking.

2.1 Single Target Tracking (STT)

Tracking of a single target involves three main steps [?]:

1. Focal-plane kinematic Kalman �ltering

2. Estimation of booster launch parameters from focal-plane state vectors and

3. Combination of individual parameters using a second �lter.

The �lter in the �rst step (also called a focal plane �lter) processes 2D measurements from

the sensor to form estimates of projected kinematic quantities as seen in a sensor focal plane.

Position (x), velocity (v), acceleration (a) and jerk (j = da/dt) are used for the state variables

in the �lter. Stochastic contributions are introduced to the jerk to allow the �lter to respond

to targets travelling along largely unconstrained trajectories. This dynamic uncertainty is the

only free parameter of the focal plane �lter. Since the �lter is linear, all gain and covariance

matrices can be computed and tabulated during initialization of the tracking program. This

improves the performance of actual �ltering. The main output of the focal plane �lter is an

estimate for the reduced state vector consisting of projected positions and velocities at scan

tk.

x = (x; v; a; da=dt) (1)

where x speci�es the position, v the velocity, a the acceleration and da/dt denotes the jerk
introduced in the �lter.

In the second step of the 3 stage �lter model the state vector in Equation 1 is used to provide

an estimate of the launch parameters of the target. An individual trajectory is speci�ed by a

4-component parameter vector as shown below:

p = (�l;�l;	l; tl) (2)

where �l denotes the latitude of the launch site, �l the longitude of the launch site, 	l

denotes the initial launch azimuth, and tl the launch time. The third step simply inverts the

relation using the Newton Raphson iteration method [?]. The Newton Raphson inversion pro-

vides realistic parameter covariance estimates as well as values of the parameters themselves.

For the multi-target tracking described in the next section, the task of �ltering an individual

track is essentially concerning with resolving track-hit ambiguities. The focal plane �lter in

Single Target Tracking is in fact the primary tool used in sorting out the nature of multiple

target threats.

2.2 Multi Target Tracking (MTT)

Given a reasonable �lter for processing sensor data from a single target, the essential problem

of multi-target tracking is that of associating individual sensor reports with distinct under-

lying tracks. This objective is accomplished through three additional modules: Track Split

Processor, Track Initiator, and Report Function.

NPAC/ECE, Syracuse University

2 MULTI TARGET TRACKING SYSTEM 6

TSP Algorithm:

begin

1. Track Extension

� Extend each track to a predicted position according to the focal plane �lter

prior to the arrival of new data.

2. Compute Association Region

� Determine the association region for the predicted position, based on the posi-

tion uncertainty predicted by the �lter.

3. Track Extension

� Extend/Filter each track using each sensor report found in the association re-

gion. If more than one such report is found, the initial track splits into a number

of daughter tracks.

4. Track Elimination

� Eliminate candidate tracks after some number of consecutive scans if no data

points are found in the association regions.

5. Track Merging

� Identify duplicate track entries in the global �le and combine according to some

merging criteria.

end

Figure 3: Algorithm TSP

2.2.1 Track Split Processor (TSP)

The Track-split processor extends tracks already in a global track �le with sensor reports from

new data scans. The main steps in the TSP algorithm include Track Extension, Compute

Association region, Track Elimination and Merging(see Figure ??).

2.2.2 Track Initiator (TI)

The track initiator generates new entries in the global track �le from previously unused data

points. The track initiator is a batch mode processor, meaning that the algorithm uses a num-

ber of scans of sensor reports. In the current tracker implementation three scans of data are

used. The track initiator investigates all three-hit candidate segments to �nd potential tracks

satisfying two classes of constraints(as shown in Figure ??). Three-hit candidate segment is

identi�ed using the present and previous scan data.

The track split formalism used for multi-target tracking means that the number of can-

NPAC/ECE, Syracuse University

2 MULTI TARGET TRACKING SYSTEM 7

TI Algorithm:
For all tracks in the global track �le at the end of the present scan:

begin

1. Identify Unique Tracks

� The 3-hits used in the segment must not coincide with the last three hits of any

track already in the global track �le.

2. Determine the Consistency of the Track.

� The track candidate must satisfy a number of simple kinematic cuts for the

estimated velocities and accelerations of the 3-hit segment.

end

Figure 4: Algorithm TI

didate tracks maintained by the system will often exceed the number of actual targets. For

purposes of integration with the battle management task a third task, \The Report Function"

for the multi-target tracker, is introduced as discussed below.

2.2.3 Report Function

The report function summarizes the perceived threat in a concise manner, resolving track-hit

ambiguities as well as possible. A standard problem with the tracker is track �le \explosion"

due to duplicate and super
uous entries. While processing the input data, the tracker builds

a database which is used by di�erent algorithms implemented in the multi target tracking

system. The report function has various data pruning features to prevent explosion of the

track �le database. Information processing in the tracker is a complex issue. After each scan

of data has been processed, the global report performs the following set of separate tasks:

1. A gross `threat-portrait' is prepared listing locations of active launch complexes and the

number of sensor reports seen for each complex.

2. A single `best' track candidate is chosen for cases in which multiple entries in the global

track �le end on a single sensor report.

3. A global report containing parameter estimates, covariance matrices and uniqueness-

tags, with precisely one entry for each sensor report association with precision tracks.

The �le is then sorted according to estimated launch longitudes of the individual threats.

4. The report �le for the present scan is correlated with that from the previous scan, so

that consistent track identi�ers are given to the battle manager throughout the lifetime

of the threat.

NPAC/ECE, Syracuse University

3 CONCURRENT MULTI TARGET TRACKING (CMTT) 8

This report function has been handled by concurrently decomposing the database which is

distributed for concurrent processing to various nodes. The processed data is then collected

to update the database for further processing. This in e�ect can be viewed as a distributed

database information processing environment.

3 Concurrent Multi Target Tracking (CMTT)

The Multi target tracker was initially developed at California Institute of Technology under

Caltech concurrent Computation Project [?]. It was implemented using the CUBIX program-

ming model for embedded architecture (hypercube) viz. Mark III and CrOS III primitives.

The CUBIX model is a hostless programming model where there is only one program called

a `node' program which executes on every processor in the hypercube.

We modi�ed the implementation of the tracker so it can be easily ported using existing

parallel/distributed computing tools (EXPRESS, PVM, p4, HORUS) on di�erent platforms

namely iPSC 860, CM5, IBM-SP1, cluster of SUN SPARC, IBM RS6000 workstations. To

achieve this objective we developed a uniform structure of the multi target tracker [?]. In

what follows, we discuss two parallel implementations of the CMTT system. In �rst one the

sensors data are processed sequentially while in the second one the sensors data are processed

in parallel.

We implemented the CMTT system [?] using host-node programming model because not

many parallel/distributed computing tools supports CUBIX programming paradigm. The

tasks performed by the host program involves loading and starting the node programs. Because

the host tasks are not signi�cant, the computer executing the host program will execute the

node program once it has completed the execution of the host program.

As discussed in the previous section, each scan of MTT begins with an existing track �le

and new set of sensor report. Existing tracks are extended using sensor reports which satisfy

the gating criterion [?] of track-split processor.

The concurrency in multi target tracking is achieved by using data parallelism. The data of

the global track �le, which has the details of processed data obtained from two geostationary

sensors, is partitioned among the nodes involved in the CMTT. So, each node executes the

same code, but using di�erent data segments of the global track �le. Every node has access

to full sensor reports �le at every scan, and it performs the sequential multi target tracking

algorithm on its subset of the global track �le.

3.1 Concurrent MTT with sequential sensor data processing (CMTT-SSDP)

Figure ?? highlights the main tasks performed by CMTT-SSPD algorithm.

The most time consuming step in CMTT-SSDP is the redistribution of global track �le(step

2.1.3) and it is critical to achieve e�cient concurrent implementation. Redistribution must

be done such that all tracks ending at a given datum must be assigned to the same node

in the next scan. This will reduce the number of duplicate tracks. Because of the irregular

transfer of tracks between nodes during redistribution, the transfer of tracks among nodes is

done using the Crystal Router communication algorithm [?]. It is an algorithm to redistribute

NPAC/ECE, Syracuse University

3 CONCURRENT MULTI TARGET TRACKING (CMTT) 9

Algorithm CMTT-SSDP
1. Initialization

/* initialize the parameters of sensors and targets */

2. For I= 1,NO SCAN Do

begin

(a) For J= 1,NO SENSORS Do

begin

2.1 2D tracking

2.1.1 Compute focal plain data for sensor J.

2.1.2 Extend existing tracks

2.1.3 Track Redistribution

2.1.3.1Compute destination nodes

/* assign tracks to nodes based on the last data/track */

2.1.3.2 Redistribute the tracks to the destination nodes

/* by using Crystal Router algorithm */

2.1.4 Compute Focal Plane report

2.1.5 Initiate new tracks

end

(b) 3D tracking (Combine results from both sensors)

begin

3.1 Compute 3D tracks

3.1.1 Generate 3D tracks based on sensor 1 data

3.1.2 Generate 3D tracks based on sensor 2 data

3.2 Update 3D tracks

3.3 Delete poor tracks

3.3 Associate report to Un-Used data

3.4 Initiate new 3D tracks

3.5 Estimate trajectory parameters

end

end

3. print results

Figure 5: Algorithm CMTT-SSDP

NPAC/ECE, Syracuse University

3 CONCURRENT MULTI TARGET TRACKING (CMTT) 10

Crystal Router Algorithm
/* Standard Crystal Router algorithm used for distribution of track �le /

� For each channel I in cube, I = 1, log2N

/* N = number of nodes in a cube topology */

begin

{ For each track in the local TF Do

/* TF denotes the track �le */

begin

if dI <> pI
/* dI (pI) denotes the I th bit in the address of destination node(current

processor) */

then exchange the tracks between the two nodes connected to channel(I)

end

end

Figure 6: Algorithm Crystal Router

4 50 1 6 23 7

Subcube #2Subcube #1

Figure 7: Ring topology in 2D tracking

the track �le among all nodes involved in the parallel computation in log2N steps (where N is

number of processors).

3.2 Concurrent MTT with parallel sensor data processing (CMTT-PSDP)

In CMTT-SSDP algorithm, the Do loop (for sensor 1 and sensor 2) in step 2.1 is performed

sequentially i.e. �rst we do 2D tracking for sensor 1 and then perform 2D tracking for sensor

2. In this implementation redistribution of track �le (step 2.1.3 in Algorithm CMTT-SSDP)

is done between all the nodes in the cube, for both sensor 1 and sensor 2. The performance

of CMTT can be improved by overlapping communication and execution. In this case the 2D

tracking of the two sensors data is performed concurrently. As a result of processing the sensor

data in parallel, the redistribution is done only between half of the nodes working on same

sensor data as shown in the Figure ??. This reduces the redistribution time considerably.

However the 3D tracking is done on all nodes/processors.

Figure ?? shows the main step of the CMTT-PSDP algorithm.

NPAC/ECE, Syracuse University

3 CONCURRENT MULTI TARGET TRACKING (CMTT) 11

Algorithm CMTT-PSDP

1. Initialization

/* initialize the parameters of sensors and targets */

2. For I= 1,NO SCAN Do

begin

(a) Partition processors into NO SENSORS subcubes

2.2. 2D Tracking

If processor ID modulo NO SENSORS = j

then perform 2D tracking for sensor data J

/* similar to Algorithm CMTT-SSDP step 2.1 */

2.3. Exchange the 2D results between processor working on di�erent sensors

2.4. Initialize the cube of N processors

2.5. Perform 3D tracking as in Algorithm CMTT-SSDP step 2.2

end

3. print results

Figure 8: Algorithm CMTT-PSDP

4 5 6 70 1 2 3

Figure 9: Data exchange after 2D tracking

NPAC/ECE, Syracuse University

4 EXPERIMENTAL RESULTS 12

In Algorithm CMTT-PSDP, after concurrent 2D tracking of both sensors, they must com-

municate the results with each other before 3D tracking can be initiated. After 2D tracking

each node in same subcube has completed track and report �le for the sensor data assigned to

this subcube. Hence, instead of one processor sending results to every node, the communica-

tion occurs only between corresponding nodes in both subcubes (see Figure ??). This allows

to overlap the communication between nodes and thus reduces its overhead. This exchange

of results constitute the extra overhead due to our new approach. But this extra overhead is

insigni�cant when compared to the performance gained from overlapping the communication

during track �le redistribution.

After communicating the results, we reinitialize the cube environment to form one cube.

The 3D tracking proceeds as in Algorithm CMTT-SSDP. We did not attempt to improve the

performance of the 3D tracking because its execution time can be ignored when compared to

the 2D execution time of the CMTT algorithm.

4 Experimental Results

In this section, we benchmark the implementation of the CMTT using di�erent parallel/distributed

tools.

The main objective of this experimentation is to understand the issues related to porting

compute intensive applications (with more then 32,000 lines of code) on parallel and dis-

tributed systems. Furthermore, we do need to determine the ideal problem size and type of

platform (parallel or distributed computing environment). We also need to benchmark the

latency and overhead associated with each tool. We benchmark the tools and the CMTT sys-

tem on two classes of computing environments: Distributed Computing Environment(SUN,

IBM RS6000, IBM-SP12 and Parallel Computing Environment(CM5, iPSC 860).

4.1 Tool Benchmarking

In this subsection, we evaluate the performance of three important communication primitives:

1. Send/Receive : We measure the elapsed time for a round trip delay associated with

sending and receiving a message between two adjacent nodes.

2. Broadcast : We measure the elapsed time between broadcasting a message to all nodes

and until the broadcasting node receives reply from all the nodes.

3. Loop : We measure the elapsed time from the instant of sending a message from one

node until getting back the same message again after passing through all nodes.

Figures ??- ?? show the performance results of running these three communication primitives

of PVM, p4 and HORUS on a cluster of four SUN SPARC workstations. Figures ??- ??

show the performance results of these three communication primitives when they run on

four IBM RS6000 workstations. The performance results were evaluated by changing the

2Current con�guration of IBM-SP1 uses dedicated Ethernet for interprocessor communication. The IBM-SP1 high
speed switch was not available during this benchmarking

NPAC/ECE, Syracuse University

4 EXPERIMENTAL RESULTS 13

message size between 1K to 100K bytes. For short messages (between 1K and 5K), all tools

gave comparable results. However, for larger messages, PVM tool seems to outperform other

tools on both platforms (SUN SPARC and IBM RS6000). Tables ?? and ?? summarize the

results of tool benchmarking. These results are consistent to those resulted from benchmarking

the CMTT applications on parallel and distributed systems. Consequently, tool evaluation

can be used as an indication of how complex applications are going to perform on di�erent

parallel/distributed platforms.

Order Send/Receive Broadcast Loop

1 PVM PVM PVM

2 p4 HORUS p4

3 HORUS p4 HORUS

Table 1: Summary of Primitive Performance of Tools (on 4 nodes of SUN SPARC)

Order Send/Receive Broadcast Loop

1 PVM p4 PVM

2 p4 PVM p4

3 EXPRESS EXPRESS EXPRESS

Table 2: Summary of Primitive Performance of Tools (on 4 nodes of IBM RS6000)

4.2 Benchmarking CMTT on Cluster of Workstations

On a distributed computing environment, the performance of the CMTT has been improved

by increasing the number of processors upto a certain threshold, after that the performance

starts deteriorating. The optimal system con�guration is to use a number of processors that

gives minimum execution time. From Figures ??- ??, the execution time deteriorates after

two nodes and four nodes for CMTT-SSDP and CMTT-PSDP algorithms, respectively. It is

clear from these �gures that CMTT-PSDP performs much better than CMTT-SSDP because

of reducing the communication time associated with redistribution of the track �le.

In terms of platforms, IBM-SP1 out performed other distributed computing environ-

ments (SUN SPARC, IBM RS6000 and heterogeneous environment of SUN SPARC and IBM

RS6000). Furthermore, the performance of IBM-SP1 will even be better when the high speed

interprocessor switch will be in place. For example, CMTT-PSDP implemented using PVM

took 23.16 seconds on IBM-SP1 with four processors, whereas it took 65.56 seconds on four

SUN SPARC workstations, 60.10 seconds on four IBM RS6000 workstations and 63.51 seconds

on heterogeneous environment of two SUN SPARC and two IBM RS6000 workstations. Fur-

thermore, the PVM implementations outperformed other tools. However, for a small number

of processors (say 2), the di�erence between tools is insigni�cant, while it is large for four or

more processors.

NPAC/ECE, Syracuse University

4 EXPERIMENTAL RESULTS 14

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
e
c
)

Message Size (Kbytes)

Send/Receive Timing on SUN SPARC (4 nodes)

HORUS

p4

PVM

Figure 10: Send/Receive Performance of Each Tool on SUN SPARC (4 nodes)

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90 100

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
e
c
)

Message Size (Kbytes)

Broadcast Timing on SUN SPARC (4 nodes)

p4

HORUS

PVM

Figure 11: Broadcast Performance of Each Tool on SUN SPARC (4 nodes)

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
e
c
)

Message Size (Kbytes)

Loop Timing on SUN SPARC (4 nodes)

HORUS

p4

PVM

Figure 12: Loop Performance of Each Tool on SUN SPARC (4 nodes)

NPAC/ECE, Syracuse University

4 EXPERIMENTAL RESULTS 15

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
e
c
)

Message Size (Kbytes)

Send/Receive Timing on IBM RS6000 (4 nodes)

EXPRESS

p4

PVM

Figure 13: Send/Receive Performance of Each Tool on IBM RS6000 (4 nodes)

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
e
c
)

Message Size (Kbytes)

Broadcast Timing on IBM RS6000 (4 nodes)

EXPRESS

PVM

p4

Figure 14: Broadcast Performance of Each Tool on IBM RS6000 (4 nodes)

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
e
c
)

Message Size (Kbytes)

Loop Timing on IBM RS6000 (4 nodes)

EXPRESS

p4

PVM

Figure 15: Loop Performance of Each Tool on IBM RS6000 (4 nodes)

NPAC/ECE, Syracuse University

4 EXPERIMENTAL RESULTS 16

50

100

150

200

250

300

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

SUN SPARC 2 sites, 160 targets

CMTT-SSDP using p4

CMTT-SSDP using PVM

CMTT-PSDP using p4

CMTT-PSDP using PVM

Figure 16: Performance Result of CMTT on SUN SPARC implemented with p4 and PVM

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

IBM RS6000 2 sites, 160 targets

CMTT-SSDP using EXPRESS

CMTT-PSDP using EXPRESS

CMTT-SSDP using p4

CMTT-SSDP using PVM
CMTT-PSDP using p4
CMTT-PSDP using PVM

Figure 17: Performance Result of CMTT on IBM RS6000 implemented with p4, PVM and EXPRESS

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

SUN & IBM RS6000 2 sites, 160 targets

CMTT-SSDP using PVM

CMTT-PSDP using PVM

Figure 18: Performance Result of CMTT on SUN SPARC and IBM RS6000 implemented with PVM

NPAC/ECE, Syracuse University

4 EXPERIMENTAL RESULTS 17

Order 1 Node 2 Node 4 Node 8 Node

1 IBM-SP1 IBM-SP1 IBM-SP1 iPSC 860
(PVM) (PVM) (PVM) (EXPRESS)

2 IBM-SP1 IBM-SP1 IBM-SP1 IBM-SP1
(p4) (p4) (p4) (PVM)

3 iPSC 860 iPSC 860 iPSC 860 IBM-SP1
(EXPRESS) (EXPRESS) (EXPRESS) (p4)

4 IBM RS6K IBM RS6K CM5 CM5
(EXPRESS) (PVM) (PVM) (PVM)

5 IBM RS6K IBM RS6K IBM RS6K SUN SPARC
(p4) (EXPRESS) (PVM) (PVM)

6 IBM RS6K IBM RS6K SUN&RS6K SUN&RS6K
(PVM) (p4) (PVM) (PVM)

7 SUN&RS6K SUN SPARC SUN SPARC IBM RS6K
(PVM) (PVM) (PVM) (PVM)

8 SUN SPARC SUN&RS6K IBM RS6K IBM RS6K
(PVM) (PVM) (p4) (p4)

9 SUN SPARC CM5 SUN SPARC SUN SPARC

(p4) (PVM) (p4) (p4)

10 CM5 SUN SPARC IBM RS6K IBM RS6K
(PVM) (p4) (EXPRESS) (EXPRESS)

Table 3: Summary of Performance Result of CMTT-PSDP Algorithm

4.3 Benchmarking CMTT on Parallel Computers

When we implemented the CMTT system on parallel computers, we obtained consistent results

with those of distributed computing environment; CMTT-PSDP version outperforms CMTT-

SSDP version. Also the execution time reduces up to four nodes in CMTT-SSDP version

and up to eight nodes in CMTT-PSDP version. Thus, parallel computing environment works

�ne for larger number of processors because the communication latency is less than that of

Ethernet. For example, CMTT-PSDP version using EXPRESS took 34.41 seconds on eight

processors of iPSC 860, whereas CMTT-PSDP version using PVM took 37.57 seconds on eight

processors of IBM-SP1. When we compare the performance of the tracker on iPSC 860 and

CM5, we found that iPSC 860 implementation using EXPRESS performs better than CM5

using PVM.

4.4 Discussion

We have shown the benchmarking results of the tracker implementations on distributed com-

puting and parallel computing environments. For a small number of processors, distributed

computing environment works better because of the higher execution rate of each worksta-

tion, but can not outperform parallel computing environment for a large number of processors

because of the network latency associated with distributed computing environment. Table

?? orders the di�erent implementations of the tracker on parallel/distributed systems based

on their performance and for di�erent number of nodes. The Overall performance of CMTT

shows the viability of distributed computing environment to achieve supercomputer perfor-

mance (e.g. IBM-SP1 outperformed both iPSC 860 & CM5 for 2-4 nodes). Even higher

performance can be achieved if faster networks are available. We are currently benchmarking

the implementation of the tracker on a cluster of workstations interconnected by FDDI and

NPAC/ECE, Syracuse University

4 EXPERIMENTAL RESULTS 18

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

IBM-SP1 2 sites, 160 targets

CMTT-SSDP using p4

CMTT-SSDP using PVM

CMTT-PSDP using p4

CMTT-PSDP using PVM

Figure 19: Performance Result of CMTT on IBM-SP1 implemented with p4 and PVM

40

60

80

100

120

140

160

180

200

220

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

CM5 2 sites, 160 targets

CMTT-SSDP using PVM

CMTT-PSDP using PVM

Figure 20: Performance Result of CMTT on CM5 implemented with PVM

30

40

50

60

70

80

90

100

110

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

iPSC 860 2 sites, 160 targets

CMTT-SSDP using EXPRESS

CMTT-PSDP using EXPRESS

Figure 21: Performance Result of CMTT on iPSC 860 implemented with EXPRESS

NPAC/ECE, Syracuse University

5 CONCLUSIONS 19

an ATM network.

5 Conclusions

In this paper we have benchmarked di�erent implementations of the concurrent multi target

tracker on parallel and distributed systems. A uniform structure of tracker was developed to

make it easily portable to di�erent message passing tools like Express, PVM, PICL, EXPRESS

and p4. The tracker was implemented on nCUBE, iPSC 860, CM5, IBM-SP1, cluster of SUN

SPARC workstations and cluster of IBM RS6000 workstations. We also developed a more

e�cient algorithm for concurrent multi target tracker by overlapping the processing and the

communication of sensors data.

In this paper, the distributed computing environment used Ethernet for interprocessor

communication, which is quite slow. We are now studying the performance of the tracker

on a cluster of Alpha workstations connected by an FDDI network and on another cluster

of workstations interconnected by ATM network. These networks were not up running when

the paper was written. Furthermore, the results of our performance analysis, will be used

to quantify the performance metrics of software tools that will be used in the evaluation

methodology currently being developed at Syracuse University.

NPAC/ECE, Syracuse University

REFERENCES 20

References

[1] T. D. Gottschalk., "CALTRAX The Tracking Program for Simulation 87", California

Institute of Technology, Pasadena, California 91125, Caltech Report C3P-478.

[2] Paul Messina., "Performance Study of Missile Tracking Algorithm on Selected Computer

Architectures", California Institute of Technology, Pasadena, California 91125, Clatech

Report C3P-668. 87", California Institute of Technology, pasadena, California 91125, Cal-

tech Report C3P-478. Institute of Technology, Pasadena, CA 91125, July 1989. Caltech

Report.

[3] T. D. Gottschalk., "Concurrent Multi-Target Tracking", California Institute of Technol-

ogy, Pasadena, CA 91125, July 1989. Caltech Report.

[4] T. D. Gottschalk, "Precision Filters For Boost Phase Tracking", Caltech report C3P-

479(1987).

[5] Geo�rey C. Fox., David W. Walker., "A Portable Programming Environment for Mul-

tiprocessors", California Institute of Technology, Pasadena, CA 91125, Caltech Report

C3P-496.

[6] Paul Messina., Arnold Alagar., Clive Ballie., Edward Felten., Paul Hipes., ANke Kam-

rath., Robert Leary., Wayne Pfei�er., Jack Rogers., David Walker., Roy Williams.,

"Benchmarking Advanced Architecture Computers", Caltech Supercomputing Facility,

San Diego Super Computing Center, Department of Mathematics, University of South

Carolina, Caltech Report, C3P712.

[7] G. C. Fox, W. Furmanski, "Communications Algorithms for Regular Convolutions on the

Hypercube", Caltech report C3P-329(1986).

[8] Geo�rey C. Fox., Mark A. Johnson., Gregory A. lyzenga., Steve W. Otto., John K.

Salmon., David W. Walker., "Solving Problems on Concurrent Processors", New Jersey

: Prentice Hall, 1988.

[9] Salim Hariri, Geo�rey C. Fox, Balaji Thiagarajan, Manish Parashar, "Parallel Software

Benchmark for BMC3/IS Systems", Northeast Parallel Architectures Center, 111 College

Place, Syracuse University, Syracuse, NY 13244-4100.

[10] Adam Beguelin., Jack Dongara., Al Geist., Robert Manchek., Vaidy Sunderam., "User

Guide to PVM", Oak Ridge National Laboratory, Oak Ridge TN 37831-6367 and De-

partment of Mathematics and Computer Science, Emory Unive rsity, February 1993.

[11] R.Olson.,"Parallel Processing in a Message Based Opearting System", IEEE Software,

July 1985.

[12] D.Reed and D.Grunwald, "The performance of multicomputer interconnection network",

IEEE Computer, June 1987.

NPAC/ECE, Syracuse University

REFERENCES 21

[13] Adam Beguelin, Jack Dongara, Al Geist, Robert Manchek , and Vaidy Sunderam, \User

Guide to PVM", Oak Ridge National Laboratory, Oak Ridge TN 378 31-6367 and De-

partment of Mathematics and Computer Science, Emory University, February 1993.

[14] Ralph Butler, and Ewing Lusk, \User's Guide to the p4 Programming System", Mathe-

matics and Computer Science Division, Argonne National Laboratory, 9700 South Cass

Avenue, Argonne, IL 60439-4801

[15] Parasoft Corporation, \Express 3.0 Documentation", Parasoft Corporation, 2500,

E.Foothill Blvd. Pasadena, CA 91107.

[16] G. A. Geist, M.T. Heath, B.W. Peyton, and P.H. Worley, \User Guide to PICL", Mathe-

matical Sciences Section, P.O. Box 2009, Bldg. 9207-A, Oak Ridge National Laboratory,

Oak Ridge, TN 37831-8083, August 1990.

NPAC/ECE, Syracuse University

