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Abstract

In this paper we study the primitives for structured communication on the Kendall

Square Research Multiprocessor KSR-1. Many parallel applications require operations

that involve all the participating processors or some subset of the processors. We have

studied the primitives for collective communication and modeled the cost for each on

the ALLCACHE memory . We �nd that some algorithms with a large requirement for

remote data from processors on the same ring perform almost as well as the ones that

require little communication. We observe very little node and link contention by multiple

processors referencing data from the same processor. We also study the use of multiple

threads on a single processor and observe a signi�cant overlap between computation and

communication.

�This research was performed in part using 128-node KSR-1 multiprocessor at the Theory Center at Cornell

University.
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1 Introduction

The parallelization of most data parallel problems on distributed memory machines involve

partitioning of data onto the available memory of processors. In a distributed memory model,

it is intuitive to observe that processors need to communicate with each other to access o�-

processor data and in certain cases perform global operations, either for synchronization or for

accumulating results. Several collective data movement (communication) primitives have been

identi�ed in the literature: broadcast, cyclic shift, reduction, concatenate-one and concatenate-

all (all-to-all broadcast).

Traditional distributed memory machines have little hardware support for shared memory.

Processors exchange data using message passing. Several algorithms have been developed in

the literature for performing the above communication primitives on parallel machines. The

performance of the applications on these parallel machines is determined by how well these

primitives can be implemented on these machines. These algorithms are developed keeping the

following factors in mind:

1. node contention: For most architectures, a node can receive only one (or a limited number)

of messages at a particular time. Thus if two nodes are trying to send a message to the

same node, then one or more of the sending nodes will be delayed.

2. link contention: When multiple messages are being transferred over the communication

network, the paths of the two messages may overlap on a few links. This may increase

the total time spend on communication by one or more of the processors involved in the

communication.

Unlike other commercial machines, KSR1 has a distributed shared memory architecture, in

which the global memory is partitioned among processors which are connected by a hierarchy

of slotted rings (explained in a later section). There exists no concept of a processor owning

data. Data is brought into a processor's memory when it is referenced. Hence, it is not obvious

whether the same primitives are relevant for this architecture.However, e�cient parallelization

of many applications on distributed shared memory machines require similar optimizations as

are required by machines which do not have support for shared memory [7] [8]. This is because

local accesses are still at least order of magnitude faster than nonlocal accesses. Further, the

same issues of link contention/node contention are relevant if data needs to be transferred from

local memory of one processor to another processor.

In this paper, we evaluate the performance of these primitives on the KSR and study the

e�ect of node/link contention on their performance.

The basic mode of parallelism on the KSR-1 is through the use of threads. The overheads of

thread creation, scheduling and synchronization must be taken into account when using multiple

threads on a processor. We study the e�ect of using threads on computation, communication

and then combine the two operations to study overlap of computation with communication.

2



Ring:1

Ring:0 Ring:0

        .....

local cache

subcache

processor

Upto 32 cells

Upto 34 Ring:0

. . . .
. . . .

Cell

Figure 1: Two levels of the KSR-1 architecture.

Section 2 introduces the architecture of Kendall Square Research KSR-1, and the program-

ming model it supports. Section 3 describes the operations which we are interested in study-

ing. Section 4 discusses the node-to-node communication primitives that includes neighbor

and non-neighbor communications. Section 5 presents the structured collective communication

primitives, broadcast, cyclic shift, reduction, concatenate-one and concatenate-all (all-to-all

broadcast). In Section 6 we analyze the performance of using multiple threads for overlapping

computation and communication. Section 7 concludes the paper.

2 Architecture of the KSR-1

The KSR-1 is a 64-bit cache-only memory architecture (COMA) based on an interconnection

of a hierarchy of rings (Figure 1). The lowest level, ring:0, consists of a 34 slot backplane

connecting 32 processing cells and two cells responsible for routing to the next higher layer ring

- ring:1. A fully populated ring:1 is composed of the interconnecting cells from 32 ring:0 rings.

Current implementations of the architecture support two levels of the rings, hence up to 1088

processors can be supported.
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2.1 System Hardware

Each processing node (called a cell in KSR-1 and used interchangeably for a node in the rest of

this paper) contains 32 MBytes of second-level cache, local cache, and 0.5 MBytes (0.25 MBytes

for data and 0.25 MBytes for instructions) of �rst-level cache, sub-cache and consists of four

functional units:

� the Co-Execution Unit (CEU) fetches all instructions, controls data fetch and store, con-

trols instruction ow, and does arithmetic required for address calculations.

� the eXternal I/O Unit (XIU) performs DMA and programmed I/O.

� the Integer Processing Unit (IPU) executes integer arithmetic and logical instructions.

� the Floating Point Unit (FPU) executes oating point instructions.

and two types of control units:

� four Cache Control Units (CCU) are the interface between the 0.5 MBytes sub-cache and

the 32 MBytes local-cache.

� four Cell Interconnect Units (CIU) are the interface between a processing cell and the

ring:0 ring.

Each of the functional units is pipelined. The processing node issues up to two instructions per

clock cycle (one for the CEU or the XIU and one for the FPU or IPU). The CPU clock speed

is 20 MHz and the machine has a peak performance of 40 MFLOPS per processing node.

In addition to the 32 processing cells, each ring:0 also contains 2 ALLCACHE Routing and

Directory (ARD) cells. One of the ARD cells is an uplink from the ring:0 to ring:1. The other

ARD is a downlink from the ring:1 to ring:0. The ARDs participate in the transfer of shared

memory between ring:0s across ring:1.

2.2 Memory Organization

All of the local-caches, together with the interconnecting rings make up the ALLCACHE mem-

ory system. The architecture provides a sequentially consistent and strongly ordered shared

memory model. This shared memory constitutes the System Virtual Address (SVA) space that

is global to the entire multiprocessor system. The programmer sees the shared memory in

terms of a Context Address (CA) space that is unique for each process. Addressing in the KSR

architecture is based on the translation of a CA into a SVA. Context addresses are composed

of a segment and o�set and are translated into SVA via fully associative hardware Segment

Translation Tables (STTs) on each processor. There are two STTs, one for data and one for

instructions.
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The SVA space consists of all of the local caches. The ALLCACHE memory and the organi-

zation and management of SVA space is the major di�erence between the KSR architecture and

other architectures. A distinguishing characteristic of the ALLCACHE memory is that there

is no �xed location for any SVA. When a processor references a SVA, a search engine, which

is the collection of CIUs and the ARD on each ring:0 along with the ring interface, locates the

SVA and moves its contents to the local cache of the referencing processor.

ALLCACHE stores data in units of pages and subpages. Each local cache can hold 2,048

pages, each contains 16K bytes divided into 128 subpages of 128 bytes each. The memory system

allocates storage in the local-caches on the basis of pages and each page of SVA space is either

entirely allocated in the caches or not allocated at all. An invalidation-based cache coherence

protocol is used to maintain sequential consistency. The unit of consistency maintenance and

transfer on the ring is a subpage. Even though the transfer size is 128 bytes (size of subpages),

allocation is done on a 16K page basis in the local-cache. Upon allocation only the accessed

subpage is brought into the local-cache. All other subpages of a page are brought into the local-

cache on demand. The unit of transfer between the local-cache and the sub-cache is in terms of

sub-blocks of 64 bytes. The allocation in the sub-cache is in terms blocks of 2K bytes, and once

the allocation is done the sub-blocks are brought into the sub-cache from the local-cache on

demand. The local-cache is 16-way set-associative and the sub-cache is 2-way set associative

and both use a random replacement policy.

Whenever a page of SVA space is allocated in the system, there may be more than one

copy present. This would be the case when several threads running on di�erent processors are

all referencing shared memory. In the cache directory of each cell, additional information is

maintained that represents the state of each subpage in the local-cache. There are four states

that a sub-page can be in:

� exclusive-owner: this is the only valid copy of the sub-page in all of the local caches (i.e.,

in the entire system). The contents can be read or modi�ed.

� atomic: like exclusive, this is the only valid copy and the subpage can be modi�ed. This

state also provides a ag to allow synchronization by multiple processors. Thus, this state

provides for locks.

� shared (read-only): indicates that there are two or more valid copies of this subpage

among all of the local caches. The contents of this subpage cannot be modi�ed until its

state is changed to exclusive or atomic.

� invalid: the contents of this subpage are not to be accessed (ie., read or modi�ed). Newly

allocated pages set all subpage descriptors to invalid. This state is analogous to the

setting of a "dirty bit."

The instruction sub-cache allows each sub-block to be in either the invalid state or the shared
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Location of Total Latency in

subpage capacity (MB) cycles (5ns)

Local sub-cache 0.5 2

Local cache 32 18

Ring:0 1,024 175

Ring:1 34,816 600

Disk - 400,000

Table 1: Latencies and Peak Performance given by KSR

state. In addition to invalid and shared state, the data sub-cache allows a block to be in the

exclusive-owner state to allow for modi�cation.

When a processor references a SVA it continues execution for two cycles, which is the latency

of the sub-cache. If the address is not contained in the sub-cache, a request is presented to

the CCUs to locate the subpage containing the requested address in the ALLCACHE memory.

If the subpage containing the address is not present in the local-cache, the the CCUs make

a request of the local CIUs to format a request message and place it on ring:0. The ring:0

communication interconnect is a slotted pipelined ring with a total bandwidth of 1GBytes.

There are 13 slots on the ring:0 ring. Each message on the ring consists of a 16 byte header

followed by one subpage of data. As a request message passes each processing cell, the cell's

CIU determines if the request can be satis�ed from its local cache. If it can be satis�ed, the

request message is extracted from the ring and a response message is inserted. Also attached

to each ring:0 is an ALLCACHE ARD cell that contains a directory of the entire ring:0 cache

(i.e., all of the local-caches). If the ARD determines that a request message cannot be satis�ed

on the local ring:0, it extracts the message and inserts a request on the next higher ring in the

hierarchy, ring:1. Once a response message to the original request is inserted on the ring, the

requesting processor copies the message and �lls the original request from the local CCU. If a

request message returns to the requesting processor unanswered, a hard page fault is generated

and the subpage is brought in from the disk. The latency and capacity (from KSR Corporation)

of the ALLCACHE memory system hierarchy is shown in Table 1.

3 Programming Model

3.1 Pthreads

C programming on KSR-1 is basically using the pthread, a low level parallel-control mechanism.

A pthread is a sequential ow of control within a process, that cooperates with other pthreads

to solve a problem. A program begins with one pthread and creates others to perform work in

parallel. Typically, an application creates multiple pthreads that execute simultaneously. The
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programmer determines what data the pthreads share and what data is private to particular

pthreads.

Processor sets are groups of processors setup by the system administrator. Processes are

assigned to a processor set when they start. A process cannot move from one processor set to

another. The threads in a process can only work on those processors assigned to the processor

set.

3.2 private and shared Quali�ers

private and shared are quali�ers used in declarations to specify whether the declared vari-

able is pthread-private or shared. If the declared variable is private, each pthread binds the

variable name to a di�erent storage location, giving the pthread a private copy of the variable.

Otherwise, all pthreads bind the variable's name to the same storage location.

3.3 Data Alignment

To prevent excess data movement, the programmer should align data on subpage boundaries.

This minimizes the possibility of thrashing when writing data. align128 is a quali�er used

in declarations to specify that the declared variable should be subpage aligned, i.e. aligned to

a 128-byte boundary.

3.4 Prefetch and Poststore

To maximize throughput, the programmer needs to consider network bandwidth and memory

latency. If the programmer can anticipate su�ciently far in advance the program's need for data,

memory latency needs not be a limiting factor either. KSR-1 provides prefetch and poststore

which are mechanisms for minimizing memory-latency delay [1] by overlapping communication

with computation.

Prefetch instructions allow a processor to fetch data from another processor's local cache

before it is needed. The goal of prefetch is to maximize the overlap of computation and

asynchronous remote data access. Prefetch is controlled by the processor that needs to read

the data.

Poststore instructions allow a processor to broadcast data needed by another processor(s),

before the other processor(s) requests the data. A program that updates a location can use

poststore to ask the memory system to broadcast the new value to local caches that contain

that address. Poststore is controlled by the processor that writes the data.
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3.5 Test Programs

In order to measure the communication time needed for transferring data from one node to

the other node, we make the required data locally cached in the source node. The destination

node either reads from or writes to the source node. One node can only access global variables

that are locally cached in the other nodes. Atomic variables are invisible to other nodes. We

run a single thread on each processor and explain in the next section each of the operations

and their requirements for communication. To avoid false sharing we take care to access data

across subpage boundaries while projecting costs per 128 byte subpage transfers. The data

we present has been obtained by executing these test programs on the 128 node KSR1 at the

Cornell Theory Center using the C Compiler and KSR's implementation of the OSF-1 Mach

threads.

4 Node-to-Node Communication

The time needed for node-to-node communications is higher than the local access due to the

network search and access. Nodes in a ring:0 are connected with a unidirectional ring. The

data rates are as high as 8 million packets (16 byte header + 128 byte data) per second in

ring:0. Therefore, when one node communicates with another node, the distance between the

two nodes is not signi�cant unless they are in the di�erent ring:0's (Figure 2). Since the units of

cache coherence maintainance and transfer on the ring is subpage (128 bytes), the smallest size

of communications between nodes is a subpage. Upon referencing only the accessed subpage is

brought into the local-cache, all other subpages of a page are brought into the local-cache on

demand. We use the following method to get the timing for remote access.

1. Declare a global integer array aligned on a 128 byte boundary.

2. Have each node write to an element of the global array. This will cause the subpage that

contains the element exclusively cached in the node.

3. A remote access can be achieved by having node i read from (or write to) the element of

the global array which is cached in node j, where i 6= j. Each access makes sure that a

new subpage is fetched. This is done by using the appropriate stride while accessing the

array.

Figure 2 shows us that remote read within ring:0 is independent of the distance between

two processors. Only when we move to processors that involve processors over ring:1, i.e more

than 32 processors we observe a jump in the cost and it remains the same for all the processors.

The increase is attributed to the overhead of routing through the ARD cell when going from

ring:0 to ring:1.
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Figure 2: Remote Read from one node by other processors

5 Structured Collective Communication

For solving a large number of regular and synchronous applications (e.g. matrix multiplication,

Gaussian elimination), the communication required is structured and collective. In this section

we will look at some of the global communication primitives needed for this kind of applications:

synchronization, broadcast, cyclic shift, reduction, and concatenate (all-to-all broadcast).

5.1 Synchronization

Data parallel problems require barrier synchronization prior to most communications steps to

achieve accuracy and e�ciency. Typical synchronization mechanisms used in multiprocessors

include< the use of lock and barriers. We have used global barriers to implement synchronization

of all processors. On KSR-1, synchronization cost for 8-node, 16-node, and 32-node processor

set are all about 270 microseconds because all the nodes are in the same ring:0. Synchronization

for shared variables can be achieved by the get sub page instruction which allows synchronized

exclusive access to a sub-page, and the release sub page instruction releases the exclusive lock

on the sub-page.

5.2 Broadcast

In a broadcast, a message is sent from a single node to all the other nodes. The broadcast

operation is frequently needed for matrix algorithms. On KSR-1, the broadcast communication

from node 0 to all the other nodes can be achieved by two steps:

1. have a global array exclusively cached in node 0,

2. have all the other nodes read this global array at the same time.
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The communication network of KSR-1 supports the simultaneous remote memory accesses

from several nodes. However, when 64 processors are used the broadcast takes a little longer,

now that some communication takes over Ring:1. When using 64 processors communication

generated for the processors on the other ring:0 have to be routed through ring:1 and the ARD

cell becomes a bottleneck.

The following equation can be used to arrive at the broadcast time required for a given

processor set and the number of subpages :

Tbroadcast = C0 + C1 �Nsubpages

Figure 3 shows the cost of the broadcast for di�erent sizes of variables. Our experiments

estimate C0 � 0 and C1 = 0:054 when all the processors are on the same ring Nprocs <= 32.

The broadcast is independent of the number of processors used on ring:0. Using more than 32

processors involve communication over ring:1 and in this case C0 = 0:419 and C1 = 0:069.
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Figure 3: Broadcast

5.3 Node Contention

Each processor can either read the same subpage from processor 0 or di�erent subpages. If

the same subpage is read then a processor Pi which requests data from P0 can get it's request

satis�ed from a processor Pj on the ring, which may have a copy of the page it has read from P0.

and we are not accounting for the node contention that arises if many processors read from the

same node. Keeping the subpages distinct achieves our objective of studying node contention

by making sure all read requests are satis�ed by one processor , in this case P0. Table 2 studies

the results for upto 16 processors. We do not observe much degradation in performance for

more processors. This shows that node contention is not a major problem that we need to

address.
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Processors

2 4 6 8 10 12 14 16

Time 6.07 6.26 6.45 6.50 6.85 6.92 7.04 7.31

Table 2: Broadcast cost per subpage when reading distinct subpages (Total CPU time in

microsecs)
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Processors Distance

1 8 16 24 31

32 3.88 3.64 3.66 3.63 3.88

1 8 16 32 48 56 63

64 3.97 4.41 5.15 7.94 5.20 4.38 3.92

Table 3: Cshift by di�erent distances to study link contention (Total CPU time in milliseconds)

5.4 Cyclic Shift

The ring structure of the nodes on KSR-1 can be used to do cyclic shift operation, in which

each node communicates with its right (or left) neighbor, the last (�rst) node reads from the

�rst (last) node. Figure 4 shows the cost of a cyclic shift for di�erent sizes of variables. The

cost of cyclic shift can be modeled by the following equation with shifts at distance 1 :

Tcshift = C1 �Nprocs + C2 �Nsubpages

where C1 = 0:007 and C2 = 0:029. Because there is no link contention in the ring, the cost

for cyclic shift is close to that of a single node-to-node read. Our experiments also show that

the direction (clockwise or counter-clockwise) does not a�ect the time to perform cyclic shift.

In the counter-clockwise direction the packets need to travel all around the ring to communicate

to the right neighbor.

We have also studied the link contention that is caused by doing circular shifts of greater

distances. Each processor shifts data to another processor at a certain distance on the ring.

With increasing distance more paths overlap and cause link contention. A processor i commu-

nicates with a processor (i + k) mod n, where k is the distance of the destination processor

and n is the number of processors. Table 3 presents our results for such shifts. In case of 32

processors the time is independent of the shift distance. When using 64 processors the time

depends on the shift distance because the number of messages traversing over the ARD cell

decides on the cost. At distance 32 all processors on one ring:0 shift data to a processor on the

other ring:0. Thus maximum communication takes place over ring:1 and again the ARD cell

becomes a bottleneck.

5.5 Concatenate-One

Some applications require that each processor receives data from all other processors. For

instance, in the classical N-body algorithm of arithmetic complexity O(N2), every particle

interacts with every other particle. Concatenation appends the value from each processor to the

values of all preceding processors (in processor identi�er order). Assume that each processor has
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N elements, and there are P processors. Suppose processor i contains a vector Vi[0 � � �N � 1].

The global concatenate operation computes a concatenation of the local list in each of the

processors. The resultant vector R[0 � � �NP � 1] is stored in one node (Concatenate-One) or

every node (Concatenate-All).

R[j] = Vj div N [j mod N ]

Concatenate-one appends the value from every other nodes to the value of a node. The

result is stored in one node. We use two di�erent algorithms to achieve concatenate-one as

follows:

1. Node 0 reads from all other nodes one by one to get all the variables into node 0. This

takes O(Nprocs) steps, but all the steps require the same size (the size of the initial variable)

of data movement.

2. Use tree structure to gather all the values into node 0. The size of data movement in an

iteration is twice as that at the previous iteration. This takes O(log2Nprocs) steps.

The number of processors collecting data is halved at each stage. In the �rst step the �rst

Nprocs=2 processors read Nsubpages=Nprocs from the other processors. At the next stage the data

doubles as half of these processors gather data and �nally after logNprocs steps the data is

�nally concatenated in one processor. The performance of the above algorithms is given in

Figure 5. In algorithm 1 the size of data movement in each step are the same, therefore, we

use the following formula for the timing of concatenate-one:

Tconcatenate = C0 + C1 �Nprocs + C2 �Nsubpages

where C0 is close to 0, C1 and C2 are 0.050 and 0.030 respectively. More processors mean a

deeper binary tree of processors doing operations on lesser amount of data. Figure 6 shows that

performance for 64 processors does not degrade much from that of 32 processors. As compared

to algorithm 1, where the size of data is small and uniform but is fetched more often, N times,

in algorithm 2 the size of data doubles at each stage and is fetched only log2N times. We do

not see the expected performance gain by using algorithm 2. Although the number of startups

are lower in this algorithm, the amount of bandwidth utilized is the same.

The cost of concatenate is given by the following equation :

Tconcatenate = C0 + C1 � log2Nprocs + C2 �Nsubpages

We have estimated C0 � 0; C1 = 0:442 and C2 = 0:029 from our experiments.

5.6 Concatenate-All (All-to-All Broadcast)

Concatenate-all is the concatenate-one followed by a broadcast operation. An alternative al-

gorithm for concatenate-all is to do cyclic shift N � 1 times where N is the number of nodes.

The three algorithms for which we measure performance are :
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Figure 5: Concatenate on one processor, Algorithm 1
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Figure 6: Concatenate on one processor, Algorithm 2
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Figure 7: Concatenate on all processors, Algorithm 1
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Figure 9: Concatenate on all processors, Algorithm 3

1. Concatenate-One (algorithm 1) + Broadcast

2. Concatenate-One (algorithm 2) + Broadcast

3. N � 1 Cyclic Shifts

Algorithm 1 generates the most tra�c on the ring as it involves one processor reading the value

from the other processors and then broadcasting the �nal result to all the processors. Figure

7 shows us that the cost agrees with the �gures for broadcast and the all-to-one concatenation

that are used in this algorithm. The following equation is used to model the performance of

this algorithm.

Tconcatall = C0 + C1 �Nprocs + C2 �Nsubpages

where C0 � 0; C1 = 0:091 and C2 = 0:064. Figure 8 plots the performance of the second

algorithm we use. In this case we observe a little better performance for higher number of

processors as expected. The complexity analysis of this algorithm shown in the following

equation shows us that the high data transfer rates on the ring o�set any advantage that this

algorithm has over the previous one. The time for the gather phase is C1 � log2Nprocs + C2 �

Nsubpages and the broadcast phase is C3 �Nprocs +C4 �Nsubpages for a combined complexity of :

Tconcatall = C0 + C5 � log2Nprocs + C6 �Nprocs + C7 �Nsubpages

C0 � 0, C5 is found to be 0.087 and C6 is 0.060 from our experiments. Algorithm 3 uses

cyclic shift to perform the all to all broadcast. Figure 9 shows that this outperforms the previous

two approaches. Mainly because we are doing away with the bottleneck of having one processor

control the broadcast. All processors shift Nsubpages=Nprocs data Nprocs number of times. Hence
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the complexity of the algorithm is expressed as :

Tconcatall = C0 + C1 �Nprocs + C2 �Nsubpages

We �nd that C0 = 0:074; C1 = 0:058 and C2 = 0:022.

The three algorithms are compared against each other in �gure 10 for 64 processors These

illustrate that Algorithm 3 does marginally better than the other two.
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Figure 10: Concatenate on 64 processors, Algorithm 1,2,3

5.7 Reduce

A reduction operation starts with values in every node and ends with a single value in every

node. Values may be added, so that the sum of all values is returned; or the largest or smallest

value may be chosen. some frequently used reduction operations are: add; multiply; max; andmin.

On KSR-1, we achieved reduction operation in three steps:

1. concatenate-one gathers values from all the other nodes;

2. one node does the arithmetic operation;

3. broadcast the �nal result to all the other nodes.

Figure 11 illustrates the timing for performing the sum operations on di�erent numbers of

processors for the various sizes of arrays.
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Number of Threads

1 2 3 4 5

Time 1.225 2.515 3.791 5.096 6.361

Table 4: Thread Creation time (CPU time in millisecs)

Threads Computation Communication Comp. and Comm.

DS1 DS2 DS3 Comm DS1 + Comm DS2 + Comm DS3 + Comm

1 27.81 96.65 183.20 30.04 34.64 98.91 186.96

2 27.93 96.70 183.30 29.90 34.80 98.87 187.04

3 27.96 96.75 183.31 30.00 34.88 98.79 187.02

4 27.94 96.92 183.48 29.81 34.73 99.48 187.67

5 28.04 96.79 183.42 30.19 34.45 98.94 187.43

Table 5: Total time taken by di�erent number of threads considering only scheduling overhead

(Total CPU time in milliseconds)
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6 Computation and Communication Overlap using mul-

tiple threads

This section studies the e�ects of using multiple threads on computation and the overlap that

can be achieved for communication. The additional overhead of thread creation and scheduling

them must be taken into account when deciding to use more than one thread of control. Any

performance gain might be o�set by this overhead. We observe that on the KSR the thread

creation and synchronization overheads are higher than thread scheduling overheads.

We describe the three experiments that were conducted to look into the above issues. Start-

ing with a single thread of control we repeat the experiments with greater number of threads.

The objective here is to calculate the cost of thread creation (given in Table 4) and study the

communication overlap that can be achieved when multiple threads are used. The idea is that

with multiple threads of control, each of which performs computation on o�-processor data

(generates communication), the communication requests are not sequentialized. Many threads

can generate requests to fetch o�-processor data simultaneously. Our experiments vary the

amount of computation performed per thread which a�ects the ratio of computation to com-

munication. In DS1 ( Table 5 ) the ratio of computation to communication is 1:1. In DS2 it is

1:3 and in DS3 1:6. The total time taken is the sum of the time taken by individual threads.

In the �rst experiment we perform computation on an array by di�erent number of threads.

We start by allocating the entire computation to a single thread. Then two, three, four and

�ve threads share the computation. We do not observe any performance degradation by using

more threads. This involves local computation and we have masked any communication e�ects

by caching the array locally on the processor beforehand.

We observe very little overhead for scheduling of threads as shown in the Table 5. The time

reported for multiple threads is the sum of the time taken by the individual threads. The com-

putation column illustrates three data sets with di�ering amount of computation performed by

di�erent number of threads. The communication column illustrates fetching o�-processor data

by di�erent number of threads. The last column combines both computation and communica-

tion for the three data sets DS1, DS2 and DS3. We observe an overlap between communication

and computation by comparing these timings to the sum of the previous two columns. We are

only factoring in the scheduling overheads in this table.

In the second experiment we compare communication performed by di�erent number of

threads. Each thread reads o�-processor data. First only one thread reads all the o�-processor

data, then two, three, four and �ve threads share fetching of o�-processor data. Each thread now

generates a communication request and gets scheduled out while its request is being serviced and

the processor is waiting for data. Another thread gets scheduled and since this also needs o�-

processor data generating a communication request, it gets scheduled out. With more threads

the need for scheduling threads arises more frequently to maximize processor utilization.

The third experiment combines the above two experiments. We would like to observe the
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overlap between generating a communication request for o�-processor data and performing local

computation. By varying the amount of local computation performed we wanted to study the

e�ects of scheduling, and improved performance achieved by overlap between computation and

communication. We have assumed no data dependencies for computation so that maximum

overlap can be obtained. Since multiple threads now are fetching o�-processor values simulta-

neously, there is a signi�cant overlap between threads waiting for data which are scheduled out

and the one which performs computation.

7 Conclusions

In this paper, we have described and evaluated the important communication primitives for

solving a large fraction of data parallel applications on all-cache memory machines, KSR-1.

We have characterized the latencies for communication and have modeled the global operations

which can be used to design e�cient algorithms for applications that use collective communica-

tion. We have studied the performance of threads for investigating the overlap of computation

and communication.
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