
NPAC Technical Report SCCS 661

Exploiting High Performance Fortran for

Computational Fluid Dynamics

K. A. Hawick and G. C. Fox

Northeast Parallel Architectures Center

Syracuse University, 111 College Place,
Syracuse, NY 13244-4100, USA.

Tel. 315-443-3933, Fax. 315-443-1973,

Email: hawick@npac.syr.edu
30 November 1994??

Abstract. We discuss the High Performance Fortran data parallel pro-

gramming language as an aid to software engineering and as a tool for

exploiting High Performance Computing systems for computational uid
dynamics applications. We discuss the use of intrinsic functions, data dis-

tribution directives and explicitly parallel constructs to optimize perfor-

mance by minimizing communications requirements in a portable man-
ner. In particular we use an implicit method such as the ADI algorithm

to illustrate the major issues. We focus on regular mesh problems, since

these can be e�ciently represented by the existing HPF de�nition, but
also discuss issues arising from the use of irregular meshes that are in-

uencing a revised de�nition for HPF-2. Some of the codes discussed are

available on the World Wide Web at http://www.npac.syr.edu/hpfa/
alongwith other educational and discussion material related to applica-

tions in HPF.

1 Introduction

Successful implementations of future computational uid dynamics (CFD) codes

for large-scale aerospace systems require High Performance Computing and Net-

working (HPCN) 3 technology to provide faster computation speeds and larger

memory. Although parallel and distributed machines have shown the promise of

ful�lling this objective, the potential of these machines for running large-scale

production-oriented CFD codes has not been fully exploited yet. It is expected

that such computations will be carried out over a broad range of hardware plat-

forms thus necessitating the use of a programming language that provides porta-

bility, ease of maintainance for codes as well as computational e�ciency. Until

recently, the unavailability of such a language has hindered any comprehensive

?? Submitted to HPCN 1995
3 Known as High Performance Computing and Communications (HPCC) in the USA.

move toward porting codes from mainframes and traditional vector computers

to parallel and distributed computing systems.

High Performance Fortran (HPF)[7] is a language de�nition agreed upon in

1993, and being widely adopted by systems suppliers as a mechanism for users to

exploit parallel computation through the data-parallel programmingmodel. HPF

evolved from the experimental Fortran-D system [2] as a collection of extensions

to the Fortran 90 language standard [10]. Many ideas were also absorbed from the

Vienna Fortran System [3]. We do not discuss the details of the HPF language

here as they are well documented elsewhere[8]. HPF language constructs and

embedded compiler directives allow the programmer to express to the compiler

additional information about how to produce code that maps well to the available

parallel or distributed architecture and thus runs fast and can make full use of the

larger (distributed) memory. We have already conducted a study of the general

suitability of the HPF language for CFD[1] using experimental HPF compilation

systems developed at Syracuse and Rice, and with the growing availability of

HPF compilers on platforms such as Digital's Alphafarm and IBM's SP2 we are

now able to describe speci�c coding issues.

We employ an ADI algorithm applied to a steady ow problem for illustrative

purposes. There are some conicts between the optimal data decomposition and

the computational structure of the algorithm.We show how the data DISTRIBUTE

and data ALIGN directives of HPF can be used to resolve this conict. Full

matrix algorithms can also be implemented in HPF, although at the time of

writing, the optimal algorithms for full matrix solution by LU factorisation, for

example, are only available as message-passing based library software such as

ScaLAPACK[4]. We are currently investigating how scalable algorithms such as

these can either be expressed as HPF code directly, or as HPF-invocable run-

time libraries. Sparse matrix methods such as the conjugate gradient method

are not trivial to implement e�ciently in HPF at present. The di�culty is an

algorithmic one rather than a weakness of the HPF language itself, however[6].

For CFD simulations, it is generally of prime importance to achieve a given

level of numerical accuracy for a given size of system in the shortest possible

time. Consequently, there is a tradeo� between rapidly converging numerical al-

gorithms that are ine�cient to implement on parallel and distributed systems,

and more slowly converging and perhaps less numerically \interesting" algo-

rithms that can be implemented very e�ciently [5].

2 CFD using HPF

There are many formulations for uid dynamics equations that give rise to a

computationally manageable form. The example system we use here involves the

Poisson and vorticity transport equations that arise from the unsteady Navier

Stokes equations for incompressible ows, where the velocity has components

(u; v), is the stream-function and � the vorticity [11]. These equations can

be expressed as Poisson equations in spatial terms with the time dependence

separated:

@�

@t
=

1

Re
r
2
�

�
+
@()

@y

@(�)

@x
�
@()

@x

@(�)

@y

�
(1)

A common approach to this problem is to use a split operator technique

such as the Alternating Direction Implicit (ADI) method [9]. This technique

assumes that the �ve star stencil operator L for the �nite di�erence scheme can

be split into two line operators:

Lx = � i+1;j + 2 i;j � i�1;j (2)

Ly = � i;j+1 + 2 i;j � i;j�1 (3)

for two dimensions (or three operators in 3d). The computation for the ADI

scheme requires the solution of two (in 2d) or three (in 3d) matrix equations

for one (two) intermediate �nite di�erence step(s). Labeling the iterations by n,

this can be expressed as:

n+1

�
n

4t=2
= �

Lx
n+1+Ly

n

h2
�� (4)

n+2

�
n+1

4t=2
= �

Lx
n+1+Ly

n+2

h2
�� (5)

where, h and 4t are the �nite di�erences in space and time respectively.

Note that we have introduced an arti�cial time variable to construct an iterative

algorithm using 4

4t
= r

2 + � = 0. In this formulation, we expect 4 to tend

to zero (within some convergence criterion) after a certain number of iterations.

This is a somewhat arti�cial construct, but we are only using this formulation to

illustrate the computational structure and issues of implementation. Expressing

this in matrix notation:

(Lx +
2h2

4t
I) � n+1 = (2h

2

4t
I� Ly) �

n
� h

2
� (6)

(Ly +
2h2

4t
I) � n+2 = (2h

2

4t
I� Lx) �

n+1
� h

2
� (7)

where I is the identity matrix. We solve equation 6 for n+1, given
n and

equation 7 for n+2. This cycle of solving both matrix equations constitutes

a complete iteration of the ADI algorithm. For this scheme, the matrices on

the left hand sides of equations 6 and 7 are tridiagonal and we can represent

these by three vectors A;B;C. Note that although we visualize as a scalar

�eld in 2d, for a 2d problem, and thus we imagine indexing its �nite di�erence

representation by (i; j) for the (x; y) co-ordinates, from the point of view of

matrix equations 6 and 7, is just a long vector that happens to be partioned

by a nested pair of indices (i; j). We can therefore write a Fortran 77 code to

illustrate the tridiagonal solver for matrix equation 6 as shown in �gure 1.

REAL PSI(M1,M2), RHS(M1,M2), TMP(M1,M2)

BETA = B

PSI(1,1) = RHS(1,1) / BETA

DO 30 J = 1,M2

DO 10 I = 1,M1

TMP(I,J) = C / BETA

BETA = B - A * TMP(I,J)

PSI(I,J) = (RHS(I,J) - A * PSI(I-1,J)) / BETA

10 CONTINUE

DO 30 I = M1 -1, 1, -1

PSI(I,J) = PSI(I,J) - TMP(I+1,J) * PSI(I+1,J)

20 CONTINUE

30 CONTINUE

Fig. 1. Tridiagonal solver for ADI Poisson equation in Fortran 77.

This has two loops in I, one for decomposition and forward substitution,

and one for backsubstitution. These loops contain a dependency on the previous

values of I, but are independent of J . An identical code fragment can be used

for equation 7 but with I and J DO loop variables interchanged. Note that the

three vectors a; b; c of the tridiagonal matrix can be written here as constants

for the simple linear case shown. They have the following values for the ADI

solution to the Poisson equation: A = C = �1, B = 2 + 2h2

4t
. Now consider how

this may be decomposed under the data parallel programming model, so that

the data array can be distributed across the memory of a number of processors

in a parallel or distributed computing system.

PSI

I

J1

1

M2

M1

P1 P2 P3 P4

P1

P2

P3

P4

DECOMPOSITION 1

D
E

C
O

M
PO

SI
T

IO
N

 2

Fig. 2. Optimal Data Decompositions for Matrix equations in ADI Solver.

In �gure 2 the two data decompositions are shown for equations 6 and 7

where for simplicity, M1 = M2 = 16 is the number of �nite di�erence points

in the mesh for and P = 4 is the number of processors in the parallel or

distributed architecture. These would normally be set by Fortran PARAMETER

statements. The optimal decomposition for one of the equations is to give each

processor a \strip" of the data. This can be accomplished using the fragment of

HPF code in �gure 3.

!HPF$ PROCESSORS PROC(P)

!HPF$ TEMPLATE(M1,M2)

!HPF$ DISTRIBUTE TEMPLATE(*,BLOCK) ONTO PROC

REAL PSI(M1,M2), RHS(M1,M2), TMP(M1,M2)

!HPF$ ALIGN WITH TEMPLATE :: PSI, RHS, TMP

BETA = B

PSI(1,1) = RHS(1,1) / BETA

FORALL J=1:M2

DO I = 1,M1

TMP(I,J) = C / BETA

BETA = B - A * TMP(I,J)

PSI(I,J) = (RHS(I,J) - A * PSI(I-1,J)) / BETA

END DO

DO I = M1 -1, 1, -1

PSI(I,J) = PSI(I,J) - TMP(I+1,J) * PSI(I+1,J)

END DO

END FORALL

Fig. 3. Tridiagonal solver for ADI Poisson equation in HPF.

This illustrates how the programmer may impart extra information about

his target system to the compiler, to obtain an e�cient executable code for that

system. These directives are implemented using the Fortran 90 comment symbol

(an exclamation mark) so that a non-HPF compiler would ignore the directives

as comments. The PROCESSORS directive is used here to hint to the compiler that

the processors in the system should be treated as connected in a one dimensional

vector. Furthermore, a TEMPLATEmapping directive sets up the data distribution

onto the memory of those processors. In this case an asterisk denotes ordinary

Fortran serial order for dimension one, and a BLOCK distribution in dimension 2

as indicated in decomposition 1 of �gure 2. Aside from using END DO statements

instead of labeled CONTINUE statements, the DO loops over I are unchanged from

the Fortran 77 case. The J loop is now a FORALL statement, which is an indication

to the compiler that the code for each J value may be done in any order as far

as the computation is concerned, and that the compiler should decide to use the

owning processors to carry out the calculations associated with their own range

of J values. Speci�cally, as shown, processor 1 will carry out calculations for

J = 1; 2; ::4, processor 2 will compute for J = 5; 6; ::8, etc.

An alternative implementation is to leave the Fortran 77 code unchanged

entirely, but use the INDEPENDENT directive of HPF applied to the outermost

loop as an assertion to the compiler that \iterations" over that loop may be

executed in parallel. See [7, 8].

Our example unfortunately illustrates that a di�erent decomposition is op-

timal for the two matrix equations. One solution to this problem is to apply a

data TRANSPOSE after each equation is solved. This will leave the data in the

optimal decomposition for the next equation. The TRANSPOSE function for a 2d

array is provided as an INTRINSIC function in Fortran 90 and HPF. This at least

abstracti�es the problem to one for the system suppliers - namely to provide an

optimized TRANSPOSE function which can make use of decomposition informa-

tion known at compile time. An alternative to the TRANSPOSE intrinsic, is to

invoke a data REDISTRIBUTE directive after solution of each matrix equation has

been solved. This also allows the code to be trivially extended to three dimen-

sions, despite the fact that the TRANSPOSE intrinsic is for 2d matrices only. The

REDISTRIBUTE invocation for our 2d code is shown in �gure 4.

!HPF$ PROCESSORS PROC(P)

!HPF$ TEMPLATE(M1,M2)

!HPF$ DYNAMIC, DISTRIBUTE(*,BLOCK) ONTO PROC :: TEMPLATE

REAL PSI(M1,M2), RHS(M1,M2), TMP(M1,M2)

!HPF$ DYNAMIC, ALIGN WITH TEMPLATE :: PSI, RHS, TMP

DO ITER,1,NITER

! ... solve 1st Matrix eqn. using code above ...

! ...

!HPF$ REDISTRIBUTE TEMPLATE(BLOCK,*) ONTO PROC

! ... solve 2nd Matrix eqn. with I and J loops inverted.

! ...

!HPF$ REDISTRIBUTE TEMPLATE(*,BLOCK) ONTO PROC

IF(convergence test) EXIT

END DO

Fig. 4. HPF code structure for full ADI Poisson solver in 2d.

This code also illustrates the Fortran 90 EXIT statement, which may be used

to exit the DO loop once some convergence criterion has been met. Note that the

DYNAMIC attribute is necessary for the data items which may be redistributed.

A disadvantage of a parallel code is that additional data storage is required.

Although we have written the Fortran 77 code in a similar manner to our HPF

code using full matrices to store RHS and TMP, these could be reduced to scalars

for a serial code. It is one of the tradeo�s in programmingparallel and distributed

computing systems, that individual processors need their own private workspace

to allow separate parts of the computation to proceed in parallel. Fortunately,

such systems generally have access to much larger amounts of memory than do

serial systems. Furthermore, it is possible to reuse storage space between parts of

a full application code using the dynamics memory ALLOCATE and DEALLOCATE

statements in Fortran 90 and HPF. Dynamically allocatable data can also be

DISTRIBUTEd and REDISTRIBUTEd.

In this description we have shown how HPF allows the programmer to con-

trol the data distribution amongst processors and the parallel constructs that

are thus enabled. It should be noted that the TRANSPOSE and REDISTRIBUTE con-

structs are somewhat expensive in communications requirements and therefore

make considerable demands on the underlying message-passing system of the

HPF run-time library. Nevertheless we feel this abstraction of the algorithm's

communications into the systems-code makes a substantial contribution to ap-

plication code maintainability.

Conclusions

We have illustrated some of the issues arising from the use of HPF for expressing

algorithms in CFD applications. The advantages are the potential for faster com-

putation on parallel and distributed computers, and additional code portability

and ease of maintainance by comparison with message-passing implementations.

Disadvantages (in common with any parallel implementation) over serial im-

plementations are additional temporary data-storage requirements of parallel

algorithms.

References

1. Bogucz, E.A., Fox, G.C., Haupt, T., Hawick, K.A., Ranka, S., \Preliminary Evalu-

ation of High-Performance Fortran as a Language for Computational Fluid Dynam-

ics," Paper AIAA-94-2262 presented at 25th AIAA Fluid Dynamics Conference,
Colorado Springs, CO, 20-23 June 1994,

2. Bozkus, Z., Choudhary, A., Fox, G., Haupt, T., and Ranka, S., \Fortran 90D/HPF

compiler for distributed-memory MIMD computers: design, implementation, and
performance results," Proceedings of Supercomputing '93, Portland, OR, 1993, p.351.

3. Chapman, B., Mehrotra, P., Mortisch, H., and Zima, H., \Dynamic data distribu-

tions in Vienna Fortran," Proceedings of Supercomputing '93, Portland, OR, 1993,

p.284.

4. Choi,J., Dongarra, J.J., Pozo, R., and Walker, D.W., \ScaLAPACK: A Scalable

Linear Algebra Library for Distributed Memory Concurrent Computers", In Proc.

of the Fourth Symposium on the Frontiers of Massively Parallel Computation, PP

120-127. IEEE Computer Society Press, 1992.

5. Hawick, K.A., and Wallace, D.J., \High Performance Computing for Numerical

Applications", Keynote address, Proceedings of Workshop on Computational Me-

chanics in UK, Association for Computational Mechanics in Engineering, Swansea,

January 1993.

6. Hawick, K.A., Dincer, K., Choudary, A., Fox, G.C., \Conjugate Gradient Algo-
rithms Implemented in High Performance Fortran", NPAC Technical Report, SCCS

639, October 1994.

7. High Performance Fortran Forum (HPFF), \High Performance Fortran Language

Speci�cation," Scienti�c Programming, vol.2 no.1, July 1993. Also available by
anonymous ftp from ftp.npac.syr.edu (cd /HPFF).

8. Koelbel, C.H., Loveman, D.B., Schreiber, R.S., Steele, G.L., Zosel, M.E., \The High

Performance Fortran Handbook", MIT Press 1994.

9. Leca, P., Mane, L., \A 3-D Algorithm on Distributed Memory Multiprocessors", in
\Parallel Computational Fluid Dynamics", Simon, Horst D. (Editor), MIT Press

1992, PP149-165.

10. Metcalf, M., Reid, J., \Fortran 90 Explained", Oxford, 1990.
11. Tritton, D.,J., \Physical Fluid Dynamics", Oxford Science Publications, 1987.

