
NPAC Technical Report SCCS-662

To appear in: Concurrency:Practice and Experience

Benchmarking the Computation and Communication
Performance of the CM-5 1

Kivanc Dincer Zeki Bozkus Sanjay Ranka Geo�rey Fox

Northeast Parallel Architectures Center
111 College Place, Room 3-217

Syracuse University

Syracuse, NY 13244-4100
fdincer, zbozkus, ranka, gcfg@npac.syr.edu

First Draft:September 1992

Revised: January 10, 1995

Abstract

Thinking Machines' CM-5 machine is a distributed-memory, message-passing computer.

In this paper we devise a performance benchmark for the base and vector units and the data

communication networks of the CM-5 machine. We model the communication characteristics

such as communication latency and bandwidths of point-to-point and global communication

primitives. We show, on a simple Gaussian elimination code, that an accurate static perfor-

mance estimation of parallel algorithms is possible by using those basic machine properties

connected with computation, vectorization, communication, and synchronization. Further-

more, we describe the embedding of meshes or hypercubes on the CM-5 fat-tree topology

and illustrate the performance results of their basic communication primitives.

1This work was supported in part by NSF under CCR-9110812 and by DARPA under contract

DABT63-91-C-0028. This work was also supported in part by a grant of HPC time from the DoD

HPC Shared Resource Center, Army High-Performance Computer Center at University of Minnesota CM-5

machine. The contents do not necessarily re
ect the position or the policy of the U.S.Government, and no

o�cial endorsement should be inferred.

1 Introduction

The CM-5 is a parallel distributed-memory machine that can scale up to 16,384 processing

nodes. Each node contains a SPARC microprocessor, a custom network interface, a local

memory up to 128 MBytes, and either a memory controller or vector controller units. The

processing nodes are connected by three networks: the diagnostics network which identi�es

and isolates errors throughout the system; the high speed data network, which communicates

bulk data; and the control network, which is mainly responsible for the operations requiring

the participation of all nodes simultaneously, such as broadcasting and synchronization. As

data communication between two nodes can be performed by using either the data network

or the control network, we restrict our analysis to these two.

In making this study we have two objectives. The �rst includes evaluating the computation

and communication performance of the CM-5 and modeling the system parameters such

as computational processing rate, communication start-up time, and the latency and data

transfer bandwidth. The fundamental measurement made in our benchmark programs is the

elapsed time for completing some speci�c tasks or for completing a communication operation.

All other performance �gures are derived from this basic timing measurement.

Second, we want to investigate the feasibility and e�ciency of embedding other kinds of

network topologies into the CM-5 fat-tree topology and to devise a benchmark for the basic

communication primitives of those topologies on the CM-5. There is an enormous number

of parallel algorithms for di�erent types of network topologies in the literature [8, 17]. We

address the problem of e�ciently embedding meshes and hypercubes into the fat-tree topol-

ogy, and we present timings for basic mesh and hypercube primitives. Our benchmarking

study shows that these embeddings give e�cient results and that many algorithms can be

transported to the CM-5 with little or no change.

The results of our study make it possible to predict the performance of parallel algorithms

without actually running them on the CM-5. We present a Gaussian elimination code and

give the corresponding real and estimated execution times in order to show the accuracy of

the estimated performance �gures.

Related Work

There are numerous articles in the literature about benchmarking di�erent aspects of recent

parallel architectures or supercomputers [3, 4, 11, 12, 13, 14, 16]. There are also several

benchmark suits specially developed to provide a common ground to test the performance of

di�erent high-performance computers [1, 2, 10, 15]. Some of them investigate the use of real

application programs, while others employ short kernel codes to evaluate the performance,

just as we do here.

2

Overview

The rest of this paper is organized as follows. Section 2 gives a brief description of the CM-5

architecture. Section 3 introduces the test con�gurations and the message-passing library

that were used to perform our experiments. Section 4 gives the computational performance

of the SPARC processor and the vector units. Section 5 presents the benchmarks to measure

communication performance from one node to another. Section 6 addresses the global opera-

tions provided by the CM-5. Sections 7 shows how meshes and hypercubes can be simulated

on the fat-tree network topology. Section 8 presents the estimation of the performance for a

Gaussian elimination kernel code on the CM-5.

2 CM-5 System Overview

The CM-5 is a scalable distributed-memory computer system which can e�ciently support up

to 16,384 computation nodes. Each node contains a SPARC microprocessor and a portion of

the global memory connected to the rest of the system through a network interface. Every

node in the CM-5 is connected to two inter-processor communication networks, the data
network and the control network. This section gives a brief overview of the CM-5 processing

nodes, data, and control networks, which have a remarkable importance in our study.

2.1 Processing Nodes

Each CM-5 computation node consists of a SPARCmicroprocessor, a custom network interface

that connects the node to the rest of the system through data and control networks, a local

memory up to 128 Mbytes, and an associated memory controller unit (Figure 1-a.)

SPARC has a clock rate of 33 MHz. It has 64 KB cache that is used for both instructions

and data. The SPARC is also responsible for managing the communication with other system

components via the network interface.

Node memory is allocated as 8 MB chunks and controlled by a special memory controller.

Optionally, this memory controller can be replaced by up to four vector units (Figure 1-b.)

In this con�guration, size of each memory unit may be either 8 or 32 MB. The scalar multi-

processor is able to issue vector instructions to any subset of vector units. Each vector unit

has a vector instruction decoder, a pipelined ALU, and 64 64-bit registers like a conventional

vector processor (Figure 2). The 16 MHz vector unit allows one memory operation and one

arithmetic operation per clock cycle which gives 16 M
ops peak performance for single arith-

metic operations like add or multiply. On the other hand, it can perform a multiply-and-add

operation in only one cycle which increases the peak performance to 32 M
ops for this oper-

ation. To summarize, a node with four vector units has 256 _64-bit data registers, 32 to 128

MB of DRAM memory, and 64 to 128 M
ops peak performance for
oating-point arithmetic

operations.

All the components inside a node are connected via a 64-bit bus. The bandwidth of the

local memory can go up to 512 MBytes per second when vector units are attached.

3

Memory
(8 MB) (8 MB) (8 MB) (8 MB)

Memory Memory Memory

Memory Controller

SPARC Network

Data NW Control NW

(a) (b)

Vector

Microprocessor Interface
SPARC Network

Data NW Control NW

InterfaceMicroprocessor

Vector Vector Vector
Unit Unit UnitUnit

Memory Memory Memory Memory
(8/32 MB) (8/32 MB) (8/32 MB) (8/32 MB)

Figure 1: CM-5 processing node (a) without and (b) with vector units. (The dashed lines
indicate optional hardware.)

Mbus

Memory
Controller

MBus Interface

Decoder
Instruction
Vector

Pipelined
ALU

Register File
64x64 bits

Memory

Figure 2: Vector unit functional architecture.

4

Processing

Nodes

Level 1

Level 2

1 2 3 4 5 9 10 11 12 14 15 166 7 8 13

0, 0 0, 1 0, 2 0, 3

0, 0 0, 1 1, 0 1, 1 2, 0 3, 0 3, 12, 1

Figure 3: CM-5 Data network's fat-tree topology with 16 nodes (including network switches.)

2.2 The Control Network

The CM-5 control network provides high bandwidth and low latency for global operations,

such as broadcast, reduction, parallel pre�x and barrier synchronizations, where all the nodes

are involved.

CM-5 control network has three subnetworks responsible for handling the global oper-

ations; a broadcast subnetwork which is responsible for broadcast operations, a combining
subnetwork which supports global operations like reduction or parallel pre�x, and a global
subnetwork which takes care of the synchronization.

2.3 The Data Network

The data network is a high bandwidth network optimized for bulk transfers where each

message has one source and one destination. It is a message-passing-based point-to-point

routing network that guarantees delivery. In addition, it is deadlock free and has fair con
ict

arbitration.

The network architecture is based on fat-tree (quad-tree) topology with a network interface

at all the leaf nodes. Each internal node of the fat-tree is implemented by a set of switches.

The number of switches per node doubles for each higher layer until level 3, and from there

on it quadruples. Figure 3 illustrates a data network having 16 nodes. The communication

switches are labeled as (i,j), where i shows the number of the child switch and j the

number of the parent switch.

The CM-5 is designed to provide a point-to-point peak transfer bandwidth of 5 MBytes/sec

between any two nodes in the system. However, if the destination node is within the same

4-node cluster or 16-node cluster, it can reach to a peak bandwidth of 20 MBytes/sec and

10 MBytes/sec, respectively.

5

3 Test System

Our experiments were performed on a 32-node CM-5 at the Northeast Parallel Architecture

Center at Syracuse University and on a 864-node CM-5 (recently upgraded to 896 nodes) at

the Army High Performance Research Center at the University of Minnesota. Both machines

are timeshared and run under CMOST version 7.2. There were no one else using the systems

while we were running our benchmarking programs.

The CM-5 processing nodes can be grouped into one or more logical partitions, each of

which is controlled by a partition manager. Each partition uses separate processors and

network resources and has equal access to the shared system resources. For example, Min-

nesota's 864-node CM-5 machine is divided into 32-, 64-, 256- and 512-node partitions.

Most of the values reported in this paper were measured by using a set of short benchmark

codes written in C with calls to the CM message-passing library (CMMD Version 3.0 Final).

The codes were compiled by using the Gnu C compiler with all the optimizations turned

on in order to bene�t the full potential of the hardware. The precision of the CM-5 clock

is one microsecond. The timings were estimated by recording the CM node busy-time for

an average of 100 repetitions of the experiment and dividing the total time by the number

of repetitions. CM node busy-time is the duration in which the user code is executed on a

certain node within its own operating system time-sharing slice. We used the CM Fortran

language [5] (Version 2.1.1.2), which partitions and stores the vectors directly into the vector

unit memories, to measure the vector unit performance.

As might be expected, testing the hardware system by using high-level software (e.g., CM

Fortran or C compilers and CMMD message-passing software) in
uences the performance

negatively. Performance is bounded by the software's ability to exploit the capabilities of

the hardware.

3.1 CM-5 Message-Passing Library: CMMD

CMMD [6] provides facilities for cooperative message passing between processing nodes. We

used the nodeless model of programming, where all the processing nodes execute the same

SPMD (Single-Program Multiple-Data) program and the partition manager acts simply as

an I/O server.

At the lowest layer, CMMD implements active messages [19], which provide fast packet-

based communication and simple low-latency array transfer. When a message is to be sent

across the data network, the data message is divided into a group of packets of size 20 bytes;

16 bytes of this packet is used for the user data, and the remaining 4 bytes contain control

information such as the destination and the message size [7].

6

Operation Operator short int long int single-precision double-precision

add 0.23 0.24 0.24 0.24

subtract 0.23 0.24 0.24 0.24

a[i] & s1 & s2 multiply 0.24 0.24 0.23 0.23

a[i][l] & s1 & s2 divide 0.24 0.24 0.24 0.24

add & multiply 0.23 0.24 0.24 0.24

add 0.36 0.37 0.43 0.52

subtract 0.37 0.37 0.43 0.52

a[i] & b[j] & c[k] multiply 0.91 0.92 0.43 0.55

a[i][l] & b[j] & c[k] divide 1.76 1.77 0.94 1.37

add & multiply 0.44 0.45 0.79 0.58

add 0.31 0.31 0.36 0.41

subtract 0.31 0.31 0.36 0.41

a[i] & b[i] & s multiply 0.70 0.71 0.36 0.44

a[i][l] & b[j] & s divide 1.56 1.56 0.90 1.03

add & multiply 0.36 0.36 0.74 0.64

Table 1: Execution times of various arithmetic operations on SPARC microprocessor. (Time

is given in microseconds.)

4 Computation Benchmarks

4.1 SPARC Performance

We run a set of benchmark programs to measure the computational speed of the SPARC

microprocessor for basic integer and
oating-point operations. Execution times for any of

the basic arithmetic operations were the same when all the operands were stored in the

registers. We obtained a peak performance of 22 Mips for integer add-multiply and 11 Mips

for other integer operations. Floating-point performance was 22 M
ops for add-multiply and

11 M
ops for other operations.

When the operands are not in registers but available in the on-board cache, computation

performance drops sharply because of the overhead of accessing the cache. The execution

times for various arithmetic operations when the operands are initially stored in the cache are

given in Table 1. In the \operation" column an entity like x&y&z indicates any combination

of these three operands in an arithmetic statement, e.g., x = y � z, y = x � z, and so on,

where � indicates an arithmetic operator.

7

0

5

10

15

20

25

30

8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K

M
f
l
o
p
s

R
a
t
e

Message Length (Bytes)

A = s*B + C
A = B*C+D*E
A = B + s
A = B * s
A = B + C
A = B * C

Figure 4: Performance of vector units in one node for double-precision data.

One Node Performance Peak Rate (GFLOPS)

Operation R1 N1=2 Nv 64-node 256-node 512-node

1 A(I) = B(I) + s 19.51 327 22 1.26 4.77 9.25

2 A(I) = B(I) + C(I) 13.53 202 18 0.88 3.42 6.84

3 A(I) = B(I) � s 19.51 324 22 1.26 4.77 9.25

4 A(I) = B(I) � C(I) 13.49 200 16 0.88 3.42 6.84

5 A(I) = s � B(I) + C(I) 27.31 318 18 1.76 6.84 13.59

6 A(I) = B(I) � C(I) + D(I) � E(I) 25.23 190 16 1.64 6.55 12.84

Table 2: Length-related measures of vector performance for double-precision data.

4.2 Vector Performance

The performance of vector processing performance on the CM-5 can be characterized by three

length-related parameters;R1, N1=2, and Nv [9]. R1 is the asymptotic performance obtained

as the vector length tends to in�nity, N1=2 corresponds to the vector length needed to reach

one-half of the R1, and Nv is the vector length needed to make the vector mode faster than

the scalar mode. The values of these three parameters will depend on the operations being

performed.

To evaluate the performance of the CM-5 vector units, we �rst measured the execution

times of some vector operations which are frequently used in scienti�c application codes.

The execution rates for each operation is shown in Figure 4 for vector lengths of up to 32

KB. Then we derived the length-related performance parameters for each vector operation.

The results for double-precision and single-precision data are illustrated in Tables 2 and 3,

8

One Node Performance Peak Rate (G
ops)

Operation R1 N1=2 Nv 64-node 256-node 512-node

1 A(I) = B(I) + s 11.17 214 20 0.71 2.86 5.52

2 A(I) = B(I) + C(I) 9.10 171 18 0.57 2.28 4.56

3 A(I) = B(I) � s 11.15 212 22 0.71 2.86 5.52

4 A(I) = B(I) � C(I) 9.05 170 20 0.58 2.28 4.77

5 A(I) = s � B(I) + C(I) 18.20 168 28 1.15 4.56 9.53

6 A(I) = B(I) � C(I) + D(I) � E(I) 19.82 160 20 1.25 4.92 9.83

Table 3: Length-related measures of vector performance for single-precision data.

respectively.

R1 is important for estimating the peak performance. Double-precision operations are

always faster than the single-precision ones, since vector unit registers are con�gured as

64-bit registers, and all the internal buses are of 64-bit. Manipulating a scalar operand

(operations 1 and 3) is faster compared to manipulating a vector operand (operations 2 and

4). This is because the scalar operand comes free, while the vector operands in operations

2 and 4 require a memory or cache access to load the corresponding vector into the vector

registers.

Additions and multiplications give us about the same timings. Although addition is ex-

pected to be faster, cycle time is stretched to handle one addition, one multiplication, or one

add-multiply operation in a clock cycle. Therefore, a multiply-add operation gives twice the

M
ops rate of a single add or multiply operation.

N1=2 is a good measure of the impact of overhead. For �nite vector lengths, a start-up

time is associated with each vector operation. N1=2 parameterizes this start-up time. The

use of vector units for processing of vectors shorter than the N1=2 will result in signi�cant

loss in performance. We obtained large values for N1=2 which indicate that e�cient use of

vector units begins at large vector lengths on the CM-5. N1=2 is longer for single-precision

data than for double-precision data. This is, in fact, related to the higher M
ops rating of

the double-precision data, as explained above.

Nv measures both the overhead and the speed of scalars relative to vectors. The node

processor can manipulate vectors of up to about 20 data items faster than the vector units

can.

Table 2 and 3 also show the achievable peak rate in Giga
ops when the vectors are dis-

tributed across all the vector units. Peak performance �gures indicate that, even for 512

nodes, the peak performance is close to the multiplication of the number of processors with

the peak speed of a single node. This is a good indication of the scalability of vector process-

ing capability. For these kinds of simple loops there is an insigni�cant amount of overhead,

but it should not be forgotten that the overhead penalties encountered in real case problems

may be much larger.

9

5 Point-to-Point Communication Benchmarks

In distributed-memory machines like the CM-5, data items are physically distributed among

the node memories. Thus the performance of the communication primitives used to access

non-local data is crucial. Point-to-point communication benchmarks measure basic commu-

nication properties of the CM-5 data network by performing the ping-pong test between a

pair of nodes. The transmission time is recorded as half of the time of a round-trip message

in the ping-pong test.

We used blocking sends and receives that transfer varying sizes of data blocks between two

nodes. Both the source and the destination nodes take active parts in this exchange process,

and the receiving node waits until it receives the last data byte from the data network.

Regression analysis of the transmission time allows the calculation of the start-up time and

the asymptotic bandwidth between a pair of nodes. The total transmission time T between

two nodes can be formulated as

T (l) = tstart�up + l� tsend;

where l is the message length in bytes, tstart�up is the time to set up the communication

requirements, and tsend is the transfer time for one unit (byte) of data.

The asymptotic data transfer rate can be found approximately by taking the reciprocal of

the transmission time (i.e., 1=tsend.)

5.1 Nearest-Neighbor Communication

In this experimentwe studied the communication time for sending a single message to another

node in the same cluster of four nodes for di�erent message sizes. This represents the shortest

possible distance a message can travel. Figure 5 shows the communication time for messages

of size 0-10 KB between two neighboring nodes on a 32-node CM-5. The communication

time increases linearly with the increasing message size. To establish a communication link

between two nodes, a preliminary handshake is required. This start-up time is observed to

be 84.65 microseconds. Using a linear chi-square �t, we can model the communication time

for aligned messages within a cluster of four processors as a function of message size:

T (l) = 84:65 + 0:117 � l microseconds: (1)

The thick appearance of the curve in Figure 5 is because of the sawtooth e�ect caused

by data alignment patterns. Figure 6 shows a smaller section (for message sizes of 320{

576 bytes) of the previous graph to magnify this sawtooth e�ect. As indicated by dips

in the curve, when the message length is a multiple of the byte size, the communication

time goes down to a local minimum. On the CM-5, the unaligned message transfer is more

costly than aligned message transfers, but the communication time di�erences between byte-

aligned, word-aligned, and double-word-aligned data are negligible. As stated earlier, each

data packet contains 16 bytes of user data. Misalignment causes hardware complications

since the memory is typically aligned on a word boundary. A misaligned memory access will

10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

512 1K 2K 4K 8K 10K

T
i
m
e

(
m
i
l
l
i
s
e
c
o
n
d
s
)

Message Length (Bytes)

Figure 5: Communication time between two nearest-neighbor nodes as a function of message
size.

be performed, therefore, by using several aligned memory accesses. In addition, since the

network interface accepts only word and double-word writes, odd-sized bu�ers can not be

e�ciently moved into the data registers.

We studied the maximum bandwidth that can be sustained for a single message traveling

to the shortest possible distance for message sizes up to 32 Kbytes. Figure 7 illustrates that

the transfer rate (approximately 1=tsend) for an aligned bu�er is around 8.5 MB/sec. This

bandwidth is signi�cantly lower than the theoretical peak bandwidth of 20 MB/sec. In the

current CMMD implementation, a node's ability to inject data into the network is much less

than the network's capacity to accept the data [14]. Assembler codes can achieve close to 18

MB/sec moving data from one node's registers to another's [18]. However C codes with calls

to the CMMD library tend to run slower, partly because the C compiler's output is never as

e�cient as a hand-crafted assembler code.

5.2 E�ect of Distance on Communication

In this section we examine how the communication between any two nodes compares with

the communication between two nearest neighbors. We measured the communication time

from node 0 to every other node using the same strategy as in the previous section. Figures 8

and 9 show the e�ect of distance on the communication time on a 512-node CM-5 for message

sizes of 16 bytes and 1 Kilobyte, respectively. If we ignore the spikes related to noise in the

network, it can be observed that the communication time is not signi�cantly a�ected by the

inter-node distance. Each time another level of the fat-tree topology is traversed, there is a

slight increase in time (about 1 microsecond.) This is due to the cost of traversing an extra

switch in the data network, i.e., the cost of extra hop needed

11

115

120

125

130

135

140

145

150

155

160

320 336 352 368 384 400 416 432 448 464 480 496 512 528 544 560 576

T
i
m
e

(
m
i
c
r
o
s
e
c
o
n
d
s
)

Message Length (Bytes)

Figure 6: Communication time between two nearest-neighbor nodes for message sizes of 320{
576B.

0

1

2

3

4

5

6

7

8

9

1K 4K 8K 16K 32K

B
a
n
d
w
i
d
t
h

(
M
B
/
s
e
c
)

Message Length (Bytes)

Figure 7: Transfer rate between two nearest neighbors for word-aligned messages.

12

86

87

88

89

90

91

92

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

T
i
m
e

(
m
i
c
r
o
s
e
c
o
n
d
s
)

Processor Id. Number

16 B message

Figure 8: Communication time between node 0 and other nodes on a 512-node CM-5 for a
message of 16 bytes.

202

203

204

205

206

207

208

209

210

211

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512

T
i
m
e

(
m
i
c
r
o
s
e
c
o
n
d
s
)

Processor Id. Number

1 KB message

Figure 9: Communication time between node 0 and other nodes on a 512-node CM-5 for a
message of 1 Kilobyte.

13

The transmission time di�erence between the nearest neighbor and the neighbor at the

maximum distance is less than 5 microseconds on a 512-node CM-5. The results are consis-

tent for both short (16 bytes) and long messages (1 Kilobyte.)

6 Global Communication Benchmarks

The CM-5 hardware supports a rich set of global (cooperative) operations. Global oper-

ations involve any data transfer among processors, possibly with an arithmetic or logical

computation on the data while it is being transferred. Collective communication patterns,

such as reduction, broadcast, concatenation or synchronization, are very important in the

implementation of high-level language constructs for distributed-memory machines.

We measured the performance of the communication networks by using a set of benchmark

programs employing the global operations provided by the CM-5 hardware.

6.1 Scans

A scan (parallel pre�x) operation creates a running tally of results in each processor in the

order of the processor identi�er. Assuming that the A[j] represents the element A in the

jth processor and R[j] represents the result R in the jth processor, an inclusive scan with

a summation operator performs the following operation:

R[i] =
iX

j=0

A[j]; 0 � i < Number of Processors � 1:

Table 4 summarizes the performance of scan operations using di�erent data types on a

32-node CM-5. Integer scan operations take about 6 microseconds. On the other hand, the

double-precision minimum/maximumscans and add scans are about 3 to 5 times slower than

the integer scans.

In a segmented scan, independent scans are computed simultaneously on di�erent sub-

groups (or segments) of the nodes. The beginning of segments are determined at run-time

by an argument called the segment-bit. Table 4 shows the performance of the segmented

scan operations on a 32-node CM-5, assuming the segment-bit of a processor is turned on

with a probability of 10%. Computation of integer-segmented scans takes slightly longer

than regular scans, primarily because of testing the extra condition at run-time. Timings for

the double-precision maximum or minimum segmented scans are almost equal to those for

regular scans, but the time for a double-precision segmented add scan operation is almost

twice that of a corresponding regular scan operation.

The CM-5 control network has integer arithmetic hardware that can compute various

forms of scan operations. Integer minimum, maximum, and logical segmented scans are also

supported by the hardware. On the other hand, single- and double-precison
oating-point

scan operations are handled partially by software, which results in a much longer time. While

the
oating-point minimum and maximum scans take advantage of the hardware partially,

14

Operation type add max min ior xor and

scan integer 6.33 6.41 5.47 6.08 6.06 5.17

scan unsigned int. 6.30 5.54 5.50 6.06 6.06 5.16

scan double-precision 33.70 21.28 20.37 - - -

segmented scan integer 6.95 6.80 6.13 6.77 6.77 5.89

segmented scan unsigned int. 6.96 6.24 6.15 6.76 6.73 5.85

segmented scan double-precision 57.35 19.93 20.31 - - -

reduction integer 4.62 4.36 4.03 4.35 4.38 3.71

reduction unsigned int. 4.61 3.98 4.00 4.33 4.34 3.70

reduction double-precision 28.38 14.24 17.32 - - -

Table 4: Execution times of global operations on a 32-node CM-5. Time is in microseconds.

(`-' represents an unde�ned operation.)

oating-point add scan is performed almost completely by the software. This is the reason

add scans and segmented scans are so costly.

6.2 Reductions

A reduction operation takes an input value from each node, applies a global operation such

as summation, minimum or bitwise xor on all the values, and returns the result to all other

nodes.

We measured the speed of combining subnetworks for various types of reduction operations

(Table 4). Double-precision reduction operations take 4 to 6 times longer than integer

reductions. Again, this can be explained by the same reasons described above.

6.3 Concatenation

Some computations on distributed data structures require that each processor receive data

from all the other processors. For example, in the classical N -body algorithm, every particle

interacts with every other particle. Concatenation is a cumulative operation that appends a

value from each processor to the values of all the preceding processors in processor identi�er

order.

Assume that there are P processors, and B = N=P data elements of a large vector are dis-

tributed among these processors so that processor p contains a vector Vp[p.B� � �(p+1)B-1].
The global concatenate operation stores the resultant vector V[0 � � � N-1] in every node.

We tested the e�ects of message size and number of processors on the concatenation

operation execution time. Figure 10 shows the time required for the concatenation operation

using 32-, 64-, 256-, and 512-node partitions. We can derive the following equation for the

15

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 512 1K 2K 4K 8K

T
i
m
e

(
m
i
l
l
i
s
e
c
o
n
d
s
)

Message Length (Bytes)

512 nodes
256 nodes
64 nodes
32 nodes

Figure 10: Execution time for concatenation operation using 32, 64, 256 and 512 nodes.

concatenation operation.

T (l; P) = 23:44 + 0:975 � (P � l) microseconds;

where p is the number of processors in that partition and l is the size of the local portion

of the data to be concatenated. Note that time for concatenation depends only on P for its

contribution to the message size, and the the operation is itself independent of P.

From Figure 10 it is clear that the time for concatenation on 512 nodes is about 16 times

larger than the time on 32 nodes, which may be surprising when compared to scan operations.

The amount of data sent by each node is about N data items which leads to N � P data

items in the network and may cause congestion in the network, especially for large messages.

Therefore, as the message length and number of processes increase, the horizontal distance

between the lines increases.

6.4 One-to-All Broadcast

When we use SPMD style programming, one of the basic types of communication is to

broadcast a value from one node to all the other nodes. For example, spreading a row to

all other rows is a common operation in LU Decomposition and many other linear algebra

computations. On the CM-5 any node can broadcast a bu�er of a speci�ed length to all

other nodes within the partition.

We measured the performance of the broadcast subnetwork using CMMD broadcast in-

trinsics. The results for 32-, 64-, 256- and 512-node partitions are shown in Figure 11.

We can derive Equations 3 and 4 for a 32- and a 512-node CM-5, respectively.

T (l) = 6:96 + 1:15 � l microseconds: (2)

16

0

5

10

15

20

25

30

35

40

45

1 2K 4K 8K 16K 32K

T
i
m
e

(
m
i
l
l
i
s
e
c
o
n
d
s
)

Message Length (Bytes)

512 nodes
256 nodes
64 nodes
32 nodes

Figure 11: One-to-all broadcast timings on 32-, 64-, 256- and 512-node partitions.

T (l) = 7:40 + 1:24 � l microseconds: (3)

The broadcast time is almost the same for 32- and 64-node partitions, and for 256- and

512-node partitions. Since the broadcast is implemented in the network in a spanning tree

fashion, the number of hops (or switches traversed) slightly a�ects the timings. Since values

can be reduced in 3 hops in 32- and 64-node partitions (which can communicate via the

third level of the fat-tree), it is faster than using 256- and 512-node partitions, which require

4 and 5 hops, respectively. Moreover, the initial setup times for di�erent sized partitions

slightly di�er, as seen in the above equations.

6.5 Synchronization

Synchronization is very important in MIMD machines since they are fundamentally asyn-

chronous and must be synchronized prior to most communication steps. Many machines,

also use the common communication network also for synchronization, causing signi�cant

performance degradation. The CM-5 uses a separate barrier synchronization network (the

control network) to carry out synchronization e�ciently. We measured the delay to do a

global synchronization on CM-5and found that it takes 5 microseconds, independent of the

number of nodes in the partition.

17

000 001 010 011 100 101 110 111

9 10 11 12 13 14 15

16 17 20 21 22 23

25

18 19

24 26 27 28 29 30 31

8

0 1 2 3 4 5 6 700

01

10

11

shuffle (row, column)

Logical Numbering Physical Numbering

0 1

2 3

5

8

76

4

9

10 11

12 13

14 15

16 17

18 19

20 21

22 23

24 25

26 27

28 29

3130

column

row

Figure 12: A 2 � 2 locality-preserving mapping of a 4� 8 mesh to a 32-node CM-5.

Logical_ProcNum_TO_Coordinate(L_PNum, row, col)

 * row = L_PNum / NUM_COL;

}

{

 * col = L_PNum % NUM_COL;

for (pos = intlog2(NUM_COL)-1; pos >= 0; pos--) {
result = (result << 1) | getbit(row, pos);

result = (result << 1) | getbit(col, pos);
}

*PNum = result;

result = 0;
{

Coordinate_TO_Physical_ProcNum(row, col, PNum)

}

Figure 13: Two main functions used for address calculation for the mapping of a mesh onto
the CM-5 fat-tree topology.

7 Embedding of other topologies into CM-5 fat-tree

7.1 Embedding of a mesh into fat-tree

A wrap-around mesh (torus) can be embedded into the CM-5 fat-tree-based architecture by

using the shu�e row-major mapping [17]. The physical node number corresponding to a

logical mesh point is found by shu�ing the row and column binary numbers of that point in

the mesh topology. If a processor's location is row=abcd and col=efgh, then bitwise shu�ing

of row and col gives the bit string aebfcgdh. This kind of mapping preserves the locality of

2� 2, 4 � 4, etc. submeshes. A representative example for this is illustrated in Figure 12.

Logical ProcNum TO Coordinate() and Coordinate TO Physical ProcNum() are two ba-

sic routines used for mapping a point on an m�n mesh to a node of the fat-tree. The former

is used to calculate the coordinate location of a point on the mesh. It is also useful for deter-

mining the neighbors of a point on the mesh. The latter is used to transform a given location

on the mesh to a physical node number on the fat-tree. getbit() returns the corresponding

bit of the string at the speci�ed position. These routines are listed in Figure 13 for reference.

Table 5 displays the timings for shift operations in a given direction which are very common

in mesh topologies. We simulated 16 � 32, 8 � 64, 4 � 128, and 2 � 256 meshes mapped to

the fat-tree topology on a 512-node CM-5.

18

Mesh Message NORTH EAST WEST SOUTH

Size Length max min max min max min max min

16x32 16 KB 3.83 3.58 4.21 4.01 3.86 3.62 3.84 3.56

16x32 32 KB 8.29 7.96 7.34 7.12 7.34 7.10 7.55 7.03

16x32 64 KB 16.55 15.99 16.16 15.56 17.47 16.78 16.24 15.56

8x64 16 KB 5.05 4.69 3.86 3.60 3.91 3.59 3.85 3.55

8x64 32 KB 7.87 7.53 7.24 7.00 7.26 6.98 7.31 6.92

8x64 64 KB 14.92 14.48 15.65 15.25 16.26 15.86 16.80 16.27

4x128 16 KB 3.92 3.73 4.74 4.50 4.54 3.58 3.92 3.71

4x128 32 KB 7.51 7.13 7.43 6.96 7.81 6.94 7.51 7.11

4x128 64 KB 15.69 13.60 14.18 13.63 15.74 15.17 16.48 16.01

2x256 16 KB 3.93 3.41 4.79 4.52 3.89 3.60 3.93 3.39

2x256 32 KB 8.53 7.63 7.45 6.97 9.26 6.92 7.60 7.38

2x256 64 KB 16.24 15.70 16.18 15.67 15.68 15.21 15.07 14.45

Table 5: The timings for 16�32, 8�64, 4�128 and 2�256 mesh simulations on a 512-node

CM-5 (time is in milliseconds).

We can deduce from Table 5 that mesh bandwidths are at about 4 Mbytes per second,

which is less than the expected 5 Mbytes/sec bandwidth between any arbitrary nodes. The

main reason for that is the contention happening in the data network when all the nodes

send long data messages at the same time.

7.2 Embedding of a hypercube into fat-tree

For many computations, the required communication pattern is similar to the connections

of a hypercube architecture. These include bitonic sort, the Fast Fourier Transform, and

many divide-and-conquer strategies [17]. This section discusses the time requirements for

such types of communication patterns.

A d-dimensional hypercube network connects 2d processing elements (PEs). Each PE has

a unique index in the range of [0,2d-1]. Let (bd�1bd�2 : : : b0) be the binary representation of

the PE index p and bk be the complement of bit bk. A hypercube network directly connects

pairs of processors whose indices di�er in exactly one bit; i.e., processor (bd�1bd�2 : : : b0)

is connected to processors (bd�1 : : : bk : : :b0), 0 � k � d-1. We use the notation p
(k) to

represent the number that di�ers from p in exactly bit k.

Node p of a logical hypercube is mapped onto node p of the CM-5 (Figure 14). We consider

communication patterns in which data may be transmitted from one processor to another if

it is logically connected along one dimension. At a given time, data is transferred from PE

p to PE p
(k) and from PE p

(k) to PE p.

The communication patterns performed for a logical hypercube on the CM-5 using this

19

12 13 14 15

0000 0001 1000 1001

0100 0101 1100 1101

0010 0011

0110 0111 1100 1111

1010 1011

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1100 1111

0 1 2 3 4 5 6 7 8 9 10 11

Figure 14: Embedding of a 4-cube into a 16-node fat-tree.

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8

T
i
m
e

(
m
i
l
l
i
s
e
c
o
n
d
s
)

Dimensions of the Cube

64 KB message
32 KB message
16 KB message
8 KB message
4 KB message
2 KB message

Figure 15: Communication times for each level of the quad-tree (leaves are at level 0, root is

at level 8.)

20

mapping are shown in Figure 15. The �rst two dimensions of the cube require the �rst

level of the fat-tree to be traced, and the 8th dimension needs �ve levels to be traced on a

512-node CM-5. We observe that all six plots are almost horizontal, from which we conclude

that the time required for swapping data along di�erent dimensions is approximately the

same for all dimensions and that it scales linearly with the size of the message.

Having more switches at higher levels is one reason for being able to achieve this perfor-

mance. More bandwidth can therefore be handled as we go up in the network connection

tree. The rate of transfer is between 3.3 Mbytes/sec and 3.6 Mbytes/sec, respectively. This

is close to the peak bandwidth for long-range communication on the CM-5.

8 Performance Estimation for Gaussian Elimination

Modeling of basic computation and communication primitives is often used in estimating

the performance of a given program [20]. We illustrate how to estimate the performance of

a program by using the results stated in the previous sections. A Gaussian elimination code

that uses the row-oriented algorithm with partial pivoting algorithm [8] is given in Figure 16.

Assuming that there are P nodes, the rows of the matrix A[N][N] are distributed using a

block-mapping strategy, such that the �rst N/P rows are assigned to node 0, the second N/P

rows are assigned to node 2, and so on. The code gives just the enough detail about the

elimination phase, back-substitution phase is not shown here.

The elimination phase is performed column by column. The outer loop which iterates over

pivots is executed in parallel by all processors. Within the loop body there are computational

phases, separated by communication phases. Computational phases include �nding the

maximum value of the current column among the rows owned, computing the multipliers,

updating the permutation vector in which the pivoting sequence is saved, and reducing the

part of nonpivot rows. Communication phases include a reduction operation to determine

the pivot value in a column, another reduction operation to �nd the maximum row number

(pivot) in the case of a tie among the processors, and a broadcast operation to announce

the pivot row to all nodes. This code uses collective communication primitives but does not

attempt to overlap computation and communication.

The costs of the communication operations (as modeled by our benchmarking programs)

required for the Gaussian elimination are given in Tables 6 and 7. We counted the number

of arithmetic operations performed in the inner loop bodies to determine the computational

time in one iteration. The execution time of each iteration is multiplied by the number of

iterations to obtain the estimated time. There are N iterations for a matrix of size N�N.
We counted the conditional expressions as one arithmetic operation (according to the type

of test) as in the GENESIS benchmark suite [10]. The percentage of the time the conditional

test evaluates to true depends on the speci�c values assigned to a speci�c processor at a given

time. We assumed the condition yields a true value 50% of the time which is a very close

approximation in average.

This code was executed on a 32-node CM-5. The measured results are compared to the

estimated results in Table 7 and are found to be within 10% of the estimated results for

21

for

done [0:BS] = FALSE;v = 0;

locPivotVal = MIN_VAL;

locPivot = 0;

for (i=0; i<BS; i++)

if

locPivotVal = A[i][j];

locPivot = mypid*BS+i;

(A[i][j] > locPivotVal) {

if

pivotval =

(pivotval != locPivotVal)

locPivot = -1;

pivot = Reduce_int

Reduce_double(locPivotVal, MAX);

(locPivot, MAX);

}

perm[v++] = pivot;

done[pivot] = TRUE;

for (i=0; i<BS; i++)

if (pivot == locPivot)

Broadcast_src(A[pivot][0:N], (N+1)*sizeof(double));

else

Broadcast_dest(pivotRow, (N+1)*sizeof(double));

}

fac[i] = A[i][j] / pivotVal;

1.

3.

4.

5.

6.

7.

8.

9.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

10.

for

if (!done[mypid*BS+i])

(i=0; i<BS; i++)

A[i][k] -= fac[i] * pivotrow[k];

for (k=j; k<N+1; k++)

(j=0; j<N; j++) {2.

Figure 16: The Gaussian elimination SPMD node program for static execution time estima-
tion.

Mesh Sizes

Operation Reference 64� 65 128� 129 256� 257 512� 513

Double reduction using maximum Table 4 14.24 14.24 14.24 14.24

Integer reduction using maximum Table 4 4.36 4.36 4.36 4.36

Broadcast double array from a node Equation 2 604.96 1193.76 2371.36 4726.56

Computation Table 1 31.39 117.18 451.96 1774.32

Time per iteration(microsec) 654.95 1329.54 2841.92 6519.48

Table 6: Cost of required operations for Gaussian elimination on a 32-node CM-5 (time is

in microseconds).

22

Matrix Size 64� 65 128� 129 256� 257 512� 513

Estimated Time(msec) 41.92 170.18 727.53 3337.97

Measured Time(msec) 45.62 185.52 787.29 4598.69

Table 7: Comparison of the estimated and measured times for Gaussian elimination code on

a 32-node CM-5.

matrices of size smaller than 512� 512. For a 512� 512 coe�cient matrix, there is a bigger

discrepancy since the matrix is too big to �t into cache, therefore extra memory overhead is

incurred to fetch and bring the data into cache.

As seen, such modeling can be very useful in performance prediction for di�erent algo-

rithms on the CM-5. This information can be used to choose optimal algorithms and to

optimize program codes and automate performance estimation at compile-time by using the

cost function of each basic primitive.

9 Conclusions

In this paper we presented a benchmarking study of the computation and communication

performance of the CM-5 multicomputer. We formulated the communication overhead in

terms of message size and latency.

Using vector units become more e�cient than using only the SPARC microprocessor, when

the vector lengths go over twenty. We can get half the peak performance for vector lengths of

100{200 for single-precision numbers, and of 200{300 for double-precision numbers. Vector

units give us up to 30 M
ops rate which results in about a 15 G
ops processing rate for a

512-node CM-5.

Communication benchmarks show that the data network has a start-up latency of 84

microseconds and a bandwidth of 8.5 MB/sec for unidirectional transfer between two nearest-

neighbor nodes. Communication latencies for misaligned messages are longer than latencies

for aligned-messages. Message transmission latencies and bandwidths are independent of

partition size and vary only slightly with the number of network levels crossed.

There are several global operations that use the control network for communication. Con-

catenation operation requires time linearly proportional to the size of the resultant array.

The reduction operators take about 5 microseconds for integers and 15{20 microseconds for

oating-point numbers. Scans and segmented scans are quite fast and can be completed in

6{7 microseconds for integers.

We simulated basic communication primitives of mesh and hypercube topologies on the

CM-5. The bandwidth for hypercube-type of communications was less than 4 MB/sec.

This was also true in cases when all communication passed through the root of the CM-

5 interconnection network. For mesh-type of communication patterns, the bandwidth was

again about 4 MB/sec.

23

The CM-5 data and control networks were found to be highly scalable. The performance

�gures remained constant for most operations when we evaluated similar primitives from 32

to 512 nodes.

We used the timing results of the computation and communication primitives in estimating

the execution time of a small program. We implemented the Gaussian elimination algorithm

with partial pivoting on the CM-5. The real execution time of the algorithm was found to

be close to the estimated time which shows that we can use the results of our study to do

static performance estimation at compile-time before running a program.

Acknowledgments

We would like to thank Steve Swartz of the Thinking Machines Corporation for his many

clari�cations regarding the architecture of the CM-5. We would like to thank the Army High

Performance Computing Center at the University of Minnesota for providing access to their

CM-5. We would also like to thank Kubilay Cardakli, Betul Dincer, and Elaine Weinman for

proofreading this manuscript and Nancy McCracken for her administrative support during

the preparation of this manuscript.

References

[1] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter, L. Dagum, R.A.

Fatoohi, P.O. Frederickson, T.A. Lasinski, R.S. Schreiber, D.H. Simon, V. Venkatakr-

ishnan, and W. Weeratunga. The NAS Parallel Benchmarks. Int. J. of Supercomputer
Applications, 5 (3):63{73 (1991).

[2] M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang, L. Pointer, R. Rolo�, A. Sameh,

E. Clementi, S. Chin, D. Schneider, G. Fox, P. Messina, D. Walker, C. Hsiung,

J. Schwarzmeier, K. Lue, S. Orszag, F. Seidl, O. Johnson, R. Goodrum, and J. Martin.

The PERFECT Club Benchmarks: E�ective Performance Evaluation of Supercomput-

ers. Int. J. of Supercomputer Applications, 3 (3):5{40 (1989).

[3] L. Bomans and D. Roose. Benchmarking the IPSC/2 Hypercube Multiprocessor. Con-
currency: Practice and Experience, 1 (1):3{18 (1989).

[4] Z. Bozkus, S. Ranka, and G.C. Fox. Benchmarking the CM-5 Multicomputer. In Proc.

of 4th Sym. on the Frontiers of Massively Parallel Computation, 100{107 (1992).

[5] Thinking Machines Corporation. CM Fortran Programming Guide (1993).

[6] Thinking Machines Corporation. CMMD Reference Manual, Version 3.0 (1993).

[7] Thinking Machines Corporation. Connection Machine CM-5 Technical Summary
(1993).

24

[8] G.C. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems

on Concurrent Processors. Prentice Hall (1988).

[9] J. L. Hennesy and D. Patterson. Computer Architecture: A Quantitative Approach.

Morgan Kaufmann (1990).

[10] A.J.G. Hey. The GENESIS Distributed-Memory Benchmarks. Parallel Computing, 17

(10-11):1275{1283 (1991).

[11] R.W. Hockney. Performance parameters and benchmarking of supercomputers. Parallel

Computing, 17 (10-11):1111{1130 (1991).

[12] T.T. Kwan, B.K. Totty, and D.A. Reed. Communication and Computation Performance

of the CM-5. In Proc. of Supercomputing 1993, pages 192{201 (1993).

[13] C.E. Leiserson and et al. The Network Architecture of the Connection Machine CM-5.

In Proc. of Parallel Algorithms and Architectures Symposium, 272{285 (1992).

[14] M. Lin, R. Tsang, D.H.C. Du, A. E. Klietz, and S. Saro�. Performance Evaluation of

the CM-5 Interconnection Network. In Proc. of Spring COMPCON 93 (1993).

[15] P. Messina, C. Baillie, E. Felten, P. Hipes, R. Williams, A. Alagar, A. Kamrath,

R. Leary, W. Pfei�er, J. Rogers, and D. Walker. Benchmarking Advanced Architec-

ture Computers. Concurrency: Practice and Experience, 2 (3):195{256 (1990).

[16] R. Ponnusamy, R. Thakur, A. Choudhary, K. Velamakanni, Z. Bozkus, and G.C. Fox.

Experimental Performance Evaluation of the CM-5. J. of Parallel and Distributed Com-

puting, 19 (3):192{202 (1993).

[17] S. Ranka and S. Sahni. Hypercube Algorithms with Applications to Image Processing
and Pattern Recognition (Bilkent University Lecture Series). Springer-Verlag (1990).

[18] S. Swartz. Thinking machines corporation. Personal communications (1992).

[19] T. Von Eicken, D. Culler, S. Goldstein, and K. Schauser. ActiveMessages: A Mechanism

for Integrated Communication and Computation. In Proc. of the 19th International
Symposium on Computer Architecture, 256{266 (1992).

[20] W. Wu, M.-Y.and Shu. Performance Estimation of Gaussian-Elimination on the Con-

nection Machine. 1989 Int. Conf. on Parallel Processing, 181{184 (1989).

25

