
Communication Strategies for Out-of-core Programs on Distributed

Memory Machines�

Rajesh Bordawekar Alok Choudhary

ECE Dept., and Northeast Parallel Architectures Center

Syracuse University, Syracuse, NY 13244

rajesh, choudhar@npac.syr.edu

Abstract

In this paper, we show that communication in the out-of-core distributed memory problems requires

both inter-processor communication and �le I/O. Given that primary data structures reside in �les,

even communication requires I/O. Thus, it is important to optimize the I/O costs associated with a

communication step.

We present three methods for performing communication in out-of-core distributed memory problems.

The �rst method, termed as the "out-of-core" communication method, follows a loosely synchronous

model. Computation and Communication phases in this case are clearly separated, and communication

requires permutation of data in �les. The second method, termed as "demand-driven-in-core communi-

cation" considers only communication required of each in-core data slab individually. The third method,

termed as "producer-driven-in-core communication" goes even one step further and tries to identify the

potential (future) use of data while it is in memory. We describe these methods in detail and provide

performance results for out-of-core applications; namely, two-dimensional FFT and two-dimensional el-

liptic solver. Finally, we discuss how "out-of-core" and "in-core" communication methods could be used

in virtual memory environments on distributed memory machines.

�This work was supported in part by NSF Young Investigator Award CCR-9357840, grants from Intel SSD and IBM Corp.,

and in part by USRA CESDIS Contract # 5555-26. This work was performed in part using the Intel Touchstone Delta and

Paragon Systems operated by Caltech on behalf of the Concurrent Supercomputing Consortium. Access to this facility was

provided by CRPC.

0

1 Introduction

The use of parallel computers to solve large scale computational problems has increased considerably in

recent times. With these powerful machines at their disposal, scientists are able to solve larger problems

than were possible before. As the size of the applications increase so do their data requirements. For

example, large scienti�c applications like Grand Challenge applications require 100s of GBytes of data per

run [Ini94, dRC94].

Since main memories may not be large enough to hold data of order of Gbytes, data needs to be stored on

disks and fetched during execution of the program. Performance of these programs depends on how fast the

processors can access data from the disks. A poor I/O capability can severely degrade the performance of the

entire program. The need for high performance I/O is so signi�cant that almost all the present generation

parallel computers such as the Paragon, iPSC/860, Touchstone Delta, CM-5, SP-1, nCUBE2 etc. provide

some kind of hardware and software support for parallel I/O [CFPB93, Pie89, DdR92]. del Rosario and

Choudhary [dRC94] give an overview of the various issues in high performance I/O.

Data parallel languages like High Performance Fortran (HPF) [For93b] were designed for developing

complex scienti�c applications on parallel machines. In order that these languages can be used for pro-

gramming large applications, it is essential that these languages (and their compilers) provide support for

applications requiring large data sets. We are developing compilation techniques to handle out-of-core appli-

cations [TBC94a, BCT94]. The compiler takes an HPF program as an input and produces the corresponding

node program with calls to runtime routines for I/O and communication. The compiler stripmines the com-

putation so that only the data which is in memory is operated on. Computation of in-memory data often

requires data which is not present in processor's memory. Since the data is stored on disks, communication

often results in disk accesses. In this paper we propose three strategies to perform communication when data

is stored on disks. These strategies use di�erent techniques to reduce I/O cost during communication. These

techniques are illustrated using two scienti�c applications. Finally we show that these techniques could also

be used in virtual memory environments.

The paper is organized as follows. Section 2 describes the out-of-core computation model. This section

also introduces a data storage model called the Local Placement Model. Section 3 describes the three

proposed strategies for performing communication in out-of-core data parallel problems. A running example

of 2-D elliptic solver using Jacobi relaxation is used to illustrate these strategies. Section 4 presents experi-

mental performance results for two out-of-core applications, namely two-dimensional Jacobi Relaxation and

two-dimensional FFT using these communication strategies. Section 5 describes how these communication

strategies could be used in virtual memory environments. Conclusion are presented in section 6.

2 Computation Model

2.1 Out-of-core Computation Model

A computation is called an out-of-core (OOC) computation if the data which is used in the computation

does not �t in the main memory. Thus, the primary data structures reside on disks and this data is called

OOC data. Processing OOC data, therefore, requires staging data in smaller granules that can �t in the

1

main memory of a system. That is, the computation is carried out in several phases, where in each phase

part of the data is brought into memory, processed, and stored back onto secondary storage (if necessary).

The above phase may be viewed as application level demand paging in which data is explicitly fetched

(or stored) at the application level. In virtual memory environments with demand paging, a page (or a set

of pages) is fetched into the main memory from disk. The set of pages which lies in the main memory is

called the Working Set. Computations are performed on the data which lies in the working set. After the

computation is over, pages from the working set which are no longer required are written back on the disk (if

required). When the computation requires data which is not in the working set, a page fault occurs and the

page which contains the necessary data is fetched from disk. We can consider the out-of-core computation

as a type of demand paging in which one or more pages form one slab. The slabs are fetched from disk when

required and computation is performed on the in-core data slab. When the computation on the in-core slab

is �nished, the slab is written back to the disk.

One may ask a natural question - why not use paging to handle large scale problems instead of explicitly

performing data staging at the application level (using compiler and runtime support)? The following

reasons collectively provide an answer. First, paging is not known to perform well when high-performance

in an application is the issue even in sequential or vector computers. Second, not many parallel computers

provide node level paging, especially those that incorporate a notion of a parallel program or collective

operations. Third, some systems that do provide paging, the performance is shown to be poor [SS93].

Forth, the concept of locality in uniprocessors on which paging is based does not directly extend to parallel

computers because of di�erent interleaving of accesses by processors. Thus it is important to provide explicit

support for data staging using a runtime system which has a notion of collective operation built into it.

2.2 Programming Model

In this work, we focus on out-of-core computations performed on distributed memory machines. In dis-

tributed memory computations, work distribution is often obtained by distribution data over processors.

For example, High Performance Fortran (HPF) provides explicit compiler directives (TEMPLATE, ALIGN and

DISTRIBUTE) which describe how the arrays should be partitioned over processors [For93a, KLS+94]. Arrays

are �rst aligned to a template (provided by the TEMPLATE directive). The DISTRIBUTE directive speci�es how

the template should be distributed among the processors. In HPF, an array can be distributed as either

BLOCK(m) or CYCLIC(m). In a BLOCK(m) distribution, contiguous blocks of size m are distributed among

the processors. In a CYCLIC(m) distribution, blocks of size m are distributed cyclically. The DISTRIBUTE

directive speci�es which elements of the global array should be mapped to each processor. This results in

each processor having a local array associated with it. Our main assumption is that local arrays are stored

in �les from which the data is staged into main memory. When the global array is an out-of-core array, the

corresponding local array will have to be also stored in �les. The out-of-core local array can be stored in

�les using two distinct data placement models. The �rst model, called the Global Placement Model (GPM)

maintains the global view of the array by storing the global array into a common �le [CBH+94, TBC94a].

The second model, called the Local Placement Model (LPM) distributes the global array into one or more

�les according to the distribution pattern. For example, the VESTA �le system provides a way of distribut-

2

ing a �le into several logical �le partitions, each belonging to a distinct processor [CFPB93, CF94]. In this

paper we only consider the local placement model.

2.3 Local Placement Model

To P0

To P3

To P1

To P2

Global Array

P0 P2 P3P1

ICLA

Local Array
Files

Disks
Logical

D0 D1 D2 D3

Figure 1: Local Placement Model

In the Local Placement Model, the local array of each processor is stored in a logical �le called the Local

Array File (LAF) of that processor as shown in Figure 1. The local array �les can be stored as separate �les

or they may be stored as a single �le (but are logically distributed). The node program explicitly reads from

and writes into the �le when required. The simplest way to view this model is to think of each processor

as having another level of memory which is much slower than main memory. If the I/O architecture of the

system is such that each processor has its own disk, the LAF of each processor can be stored on the disk

attached to that processor. If there is a common set of disks for all processors, the LAF may be distributed

across one or more of these disks. In other words, we assume that each processor has its own logical disk with

the LAF stored on that disk. The mapping of the logical disk to the physical disks is system dependent. At

any time, only a portion of the local array is fetched and stored in main memory. The size of this portion

depends on the amount of memory available. The portion of the local array which is in main memory is

called the In-Core Local Array (ICLA). All computations are performed on the data in the ICLA. Thus,

during the course of the program, parts of the LAF are fetched into the ICLA, the new values are computed

and the ICLA is stored back into appropriate locations in the LAF.

3 Communication Strategies in Out-of-core Computations

Given OOC computations, when the primary data sets reside in �les on disks, any communication involving

the OOC data would require disk accesses as well. In in-core computations on distributed memory machines,

a communication step involves movement of data from one or more processor's memory to other processor's

3

memories. For OOC computations, communication therefore would involve movement of data from one or

more processor's �les to other processor's �les. Given that disk accesses are several orders of magnitude

more expensive than memory accesses, and considerably more expensive than communication time itself,

it is important to consider optimizations in the I/O part of a communication step. In this section, we

propose several strategies to perform communication for OOC computations. We mainly focus on data

parallel programs such as those written in HPF. We �rst describe how the communication is done for in-

core programs and then describe three communication strategies for out-of-core programs. We explain both

cases with the help of the HPF program fragment given in Figure 2. In this example, arrays A and B are

distributed in (BLOCK-BLOCK) fashion on 16 processors logically arranged as a 4� 4 two-dimensional grid.

3.1 Communication Strategies in In-core Computations

Consider the HPF program fragment from Figure 2. The HPF program achieves parallelism using (1) Data

Distribution and (2) Work Distribution. The data distribution may be speci�ed by the user using compiler

directives or may be automatically determined by the compiler. Work distribution is performed by the

compiler during the compilation of parallel constructs like FORALL or array assignment statements (line 6,

Figure 2). A commonly used paradigm for work distribution is the owner-computes rule [BCF+93, HKT92].

The owner-computes rule says that the processor that owns a datum will perform the computations which

make an assignment to this datum.

1 REAL A(1024,1024), B(1024,1024)

..........

2 !HPF$ PROCESSORS P(4,4)

3 !HPF$ TEMPLATE T(1024,1024)

4 !HPF$ DISTRIBUTE T(BLOCK,BLOCK)

5 !HPF$ ALIGN with T :: A, B

...........

6 FORALL (I=2:N-1, J=2:N-1)

7 A(I,J) = (A(I,J-1) + A(I,J+1) + A(I+1,J) + A(I-1,J))/4

...........

Figure 2: An HPF Program Fragment for Two-dimensional Jacobi Computations. The array A is distributed

in BLOCK-BLOCK fashion over 16 processors.

In the example, it can be observed that for the array assignment (lines 6-7), each processor requires data

from neighboring processors. Consider processor 5 from Figure 3. It requires the last row of processor 1,

last column of processor 4, �rst row of processor 9 and �rst column of processor 6. This pattern can be

considered as a logical shift of the data across processor boundaries. It should be noted that processor 5

needs to send data to processors 1,4,6 and 9 as well. Data communication can be carried before the local

computation begins. Since computation is performed in a SPMD (loosely synchronous) style, all processors

synchronize before communication. As all processors need o�-processor data for their local computations,

they simultaneously send and/or receive data. This is so called collective communication. After the com-

4

munication is performed, each processor begins computations on the local array. From this analysis, we can

arrive to following conclusions

1. Communication in an in-core HPF program is generated during the computation of (in-core)

local array because the processor requires data which is not present in it's memory. Both data

distribution and work distribution strategies dictate the communication pattern.

2. In an in-core SPMD (e.g. HPF) program, the communication can be performed collectively

and is normally performed either before or(and) after the computation. This ensures that the

computation does not violate loosely synchronous constraint.

OVERLAP

2

3

4

1

OUT-OF-CORE

COMMUNICATION

IN-CORE

COMMUNICATION

(A)

(B)

(C)

(D)

ICLA

SLABS

LAF

1. 2. 3. 4.

P1

P5 P6 P7

P13 P15

P0 P2 P3

P8 P9 P10 P11

P14

P4

P12

ARRAY IN P5

Data to be Communicated

Figure 3: Figure illustrates compilation of out-of-core di�erence equation. The in-core slabs and the corre-

sponding ghost areas are shown using distinct shades.

3.2 Communication Strategies in Out-of-core Computations

In an out-of-core application, computation is carried out in phases. Each phase reads a slab of data (or

ICLA), performs computations using this slab and writes the slab back in the local array �le. In this case

processors may need to communicate because (1) computation of in-core local array requires data which

is not present in memory during the computation involving ICLA and, (2) ICLA contains data which is

required by other processors for computation. The communication can be performed in two ways: (1) in

a collective manner, using Out-of-core Communication and (2) in a demand basis, termed as \In-core

Communication".

We will now illustrate the two communication approaches using the example of the 2-D elliptic solver

(using Jacobi Relaxation) (Figure 2). We now assume that array A is an out-of-core array which is distributed

over 16 processors. Each processor stores it's local array into it's local array �le.

5

3.2.1 Out-of-core Communication

In the out-of-core communicationmethod, the communication is performed collectively considering the entire

OOC local array. All processors compute the elements which are required for the computation of the OCLA

but are not present in the OCLA. These elements are communicated either before or after the computation

on the OCLA. The communication from node i to node j involves following steps

1. Synchronize (if necessary).

2. Node j checks if it needs to send data to other processors. If so, it checks if the required data

is in memory. If not, node j �rst sends a request to read data from disk and then receives the

requested data from disk. If the required data is in memory then the processor does not perform

�le I/O.

3. Node j sends data to node i.

4. Node i either stores the data back in local �le or keeps it in memory (This would depend on

whether the data required can be entirely used by the current slab in the memory, if not, the

received data must be stored in local �les).

To illustrate these steps, consider processors 5 and 6 from Figure 3 (A). Each processor performs op-

erations on it's OCLA in stages. Each OCLA computation involves repeated execution of three steps (1)

Fetching an ICLA, (2) Computing on the ICLA, (3) Storing the ICLA back in the local array �le. Figure 3(B)

shows the ICLA's using di�erent shades. Figure 3(C) shows the data that needs to be fetched from other

processors (called the ghost area). In the out-of-core method, all the processors communicate this data before

the computation on the OCLA begins. To illustrate the point that out-of-core communication requires I/O,

note that processor 5 needs to send the last column to processor 6. This column needs to be read from the

local array �le and communicated. Figure 4 shows the phases in the out-of-core communication method.

In the out-of-core communicationmethod, communication and computation are performed in two separate

phases. As a result, the OCLA computation becomes atomic, i.e., once started it goes to completion without

interruption. This method is attractive from the compiler point of view since it allows the compiler to easily

identify and optimize collective communication patterns. Since the communication will be carried before the

computation, this strategy is suitable for HPF FORALL-type of computations which have copy-in-copy-out

semantics. In the above example, four shifts are required which result in disk accesses, data transfer and

data storage (in that order).

3.2.2 In-core Communication

For OOC computations, the communication may be performed in an entirely di�erent way by just con-

sidering the communication requirements of the ICLA (or slab in memory) individually. In other words,

communication set for each ICLA is generated individually. The basic premise behind this strategy is that

if the data present in the memory can be used for communication while it is resident in memory, it may

reduce the number of �le I/O steps.

6

R

G

S

R

G

Fetch Slab

Compute

Store Slab

Fetch Slab

Fetch Slab

Compute

Store Slab

Fetch Slab

R

G

R

R

G

G

G

R

1
2

3 4

S

G: Get Data from disks

S: Store Data to disks

R: Request Data from disks

Node 2Node 1

S

S

Send data

Send data

Local Computation Phase

Involving I/O
Collective Communication

Figure 4: Out-of-core Communication. Collective communication performed either before or after the local

computation phase.

7

In-core communication method di�ers from the out-of-core communication method in two aspects, (1) in

the in-core communication method, communication is not performed collectively. The two phases, computa-

tion on the ICLA and communication are interleaved. However the computation on the ICLAs is still carried

out in an SPMD fashion. The data to be communicated is the data which is required for the computation of

the ICLA but is not present in the memory (but it may be present in remote memory or another processor's

�le). The in-core communication can be further divided into two types, (1) Demand-driven Communication

and (2) Producer-driven Communication.

� Demand-driven In-core Communication (Consumer decides when to fetch)

Node 1

Fetch Slab

Compute

Store Slab

Fetch Slab

Compute

G: Get Data from disks
S: Store Data to disks

R: Request Data from disks

Fetch Slab

Compute

Store Slab

Fetch Slab

Compute

 Store Slab

Node 2

1

3

4

2

Send Data

G

R

S

R

R

G

R

S

R

G

S

G

G

Request for sending data

5

Figure 5: Demand-driven In-core Communication. Node 2 requests data from Node 1 (point 2). Node 1

reads data from disks and sends to node 2 (points 4-5).

In this strategy, the communication is performed when a processor requires o�-processor data during

the computation of the ICLA. Figure 5 illustrates the demand-driven communication method. Node

2 requires o�-processor data at point 2 (Figure 5). Let us assume that the required data is computed

by node 1 at point 1 and stored back on disk. When node 2 requires this data, it sends a request to

node 1 to get this data. Node 1 checks if the data is in memory else it reads the data (point 3). After

reading the data from disk, node 1 sends this data to node 2. Node 2 receives this data (point 5) and

uses it during the computation of the ICLA.

This method can be illustrated using the example of the elliptic solver (Figure 3). Consider again

processor 5. Figure 3(B) shows the di�erent ICLAs for the processor 5. Let us consider slab 1 (shown

8

by the darkest shade). The ghost area of this slab is shown in Figure 3(D). When this ICLA is in

processor's memory, it requires data from processors 1, 4 and 9. Hence, processor 5 sends requests to

processors 1, 4 and 9. After receiving the request, processors 1, 4 and 9 check whether the requested

data is present in the ICLA or it has to be fetched from the local array �le. Since processors 1 and 9

have also fetched the �rst slab, the requested data lies in the main memory. Hence processors 1 and

9 can send the requested data without doing �le I/O. However, since processor 4 has also fetched the

�rst slab, the requested data does not lie in the main memory. Therefor, processor 4 has to read the

data (last column) from it's local array �le and send it to processor 5. It is important to note that

the shift collective communication pattern in the original OOC communication is broken into di�erent

patterns when in-core communication is considered.

� Producer-driven In-core Communication (Producer decides when to send)

1

Node 1

R

G

S

R

G

Fetch Slab

Compute

Store Slab
Fetch Slab

Compute

Store Slab

Fetch Slab

Compute

 Store Slab

G

3

Node 2

2

S

R

S

R

G

Fetch Slab

Compute

 Store Slab

Fetch Slab

Compute

G: Get Data from disks
S: Store Data to disks
R: Request Data from disks

S

R

G

4

5

6

Send Data to Node 1

Send Data to Node 2

Figure 6: Producer-driven In-core Communication. Node 1 sends data to node 2 (points 1-2). Node 2 uses

this data at point 3.

The basic premise of this communication strategy is that when a node computes on an ICLA and can

determine that a part of this ICLA will be required by another node later on, this node sends that data

while it is in its present memory. Note that in the demand-driven communication, if the requested

data is stored on disk (as shown in Figure 5), the data needs to be fetched from disk which requires

extra I/O accesses. This extra I/O overhead can be reduced if the data can be sent to the processor

either when it is computed or when it is fetched by it's owner processor.

This approach is shown in Figure 6. Node 2 requires some data which is computed by node 1 at point

9

1. If node 1 knows that data computed at point 1 is required by node 2 later, then it can send this

data to node 2 immediately. Node 2 can store the data in memory and use it when required (point 3).

This method is called the Producer-driven communication since in this method the producer (owner)

decides when to send the data. Communication in this method is performed before the data is used.

This method requires knowledge of the data dependencies so that the processor can know beforehand

what to send, where to send and when to send. It should be observed that this approach saves extra

disk accesses at the sending node if the data used for communication is present in its memory.

In the example of the elliptic solver, assume that processor 5 is operating on the last slab (slab 4 in

Figure 3(D)). This slab requires the �rst column from processor 6. Since processor 6 is also operating

on the last slab, the �rst column is not present in the main memory. Hence, in the demand-driven

communication method, processor 6 needs to fetch the column from it's local array �le and send it

to processor 5. In the producer-driven communication method, processor 6 will send the �rst column

to processor 1 during the computation of the �rst slab. Processor 5 will store the column in its local

array �le. This column will be then fetched along with the last slab thus reducing the I/O cost.

3.2.3 Discussion

The main di�erence between the in-core and out-of-core communication methods is that in the latter, com-

munication and computation phases are separated. Since the communication is performed before the com-

putation, an out-of-core computation consists of three main phases, Local I/O, Out-of-core Communication

and Computation. The local I/O phase reads and writes the data slabs from the local array �les. The com-

putation phase performs computations on in-core data slabs. The out-of-core communication phase performs

communication of the out-of-core data. This phase redistributes the data among the local array �les. The

communication phase involves both inter-processor communication and �le I/O. Since the required data may

be present either on disk or in on-processor memory, three distinct access patterns are observed

1. Read(write) from my logical disk.

This access pattern is generated in the in-core communication method. Even though data resides

in the logical disk owned by a processor, since the data is not present in the main memory it has

to be fetched from the local array �le.

2. Read from other processor's memory.

In this case the required data lies in the memory of some other processor. In this case only

memory-to-memory copy is required.

3. Read(write) from other processor's logical disk.

When the required data lies in other processor's disk, communication has to be done in two

stages. In case of data read, in the �rst stage the data has to read from the logical disk and

then communicated to the requesting processor. In case of data write, the �rst phase involves

communicating data to the processor that owns the data and then writing it back to the disk.

The overall time required for an out-of-core program can be computed as a sum of times for local I/O

Tlio, in-core computation Tcomp and communication Tcomm.

10

T = Tlio + Tcomm + Tcomp

Tlio depends on (1) Number of slabs to be fetched into memory and, (2) I/O access pattern. The

number of slabs to be fetched is dependent on the size of the local array and the size of the available in-core

memory. The I/O access pattern is determined by the computation and the data storage patterns. The

I/O access pattern determines the number of disk accesses. Tcomm can be computed as a sum of I/O time

and inter-processor communication time. The I/O time depends on (1) whether the disk to be accessed is

local (owned by the processor) or it is owned by some other processor, (2) the number of data slabs to be

fetched into memory and, (3) the number of disk accesses which is determined by the I/O access patterns.

The inter-processor communication time depends on the size of data to be communicated and the speed of

the communication network. Finally the computation time depends on the size of the data slabs (or size

of available memory). Hence, the overall time for an out-of-core program depends on the communication

pattern, available memory and I/O access pattern.

4 Experimental Performance Results

This section presents performance results of OOC applications implemented using the communication strate-

gies presented in this paper. We demonstrate that under di�erent circumstances, di�erent strategies may

be preferred, i.e., no one strategy is universally good. We also show performance by varying the amount of

memory available on the node to store ICLAs.

The applications were implemented on the Intel Touchstone Delta machine at Caltech. The Touchstone

Delta has 512 compute nodes arranged as a 16�32 mesh and 16 I/O nodes connected to 32 disks. It supports

a parallel �le system called the Concurrent File System (CFS).

4.1 Two-Dimensional Out-of-core Elliptic Solver

Figures 7 presents performance of 2D out-of-core elliptic solver using the three communication strategies.

The problem size is 4K�4K array of real numbers, representing 64 MBytes of data. The data distribution

is (BLOCK-BLOCK) in two dimensions. The number of processors is 16 (with a 4*4 logical mapping). The size

of the ICLA was varied from 1/2 of the OCLA to 1/16 of the OCLA.

Each graph shows three components of the total execution time; namely, Local I/O (LIO) time, Com-

putation time (COMP) and the Out-of-core Communication time (COMM) for Out-of-core Communica-

tion Method, Demand-driven In-core Communication Method and Producer-driven In-core Communication

Method. From these results we make the following observations

� COMP remains constant in all the three communication methods. This is expected as the amount of

computation is the same for all cases.

� COMM is largest in the out-of-core Communication method. This is because, each processor needs to

read boundary data froma �le and write the received boundary data into a �le. Since the boundary data

is not always consecutive, reading and writing of data results in many small I/O accesses. This results

in an overall poor I/O performance. However, in this example, for the out-of-core communication

11

method, COMM does not vary signi�cantly as the size of the available memory is varied. As the

amount of data to be communicated is relatively small, it can �t in the on-processor memory. As a

result, communication does not require stripmining (i.e. becomes independent of the available memory

size). If the amount of data to be communicated is greater than the size of the available memory, then

COMM will vary as the size of the available memory changes.

� Producer-driven in-core communication, even though it performs the best, does not provide signi�cant

performance improvement over the Demand-driven in-core communication method. The main reason

that is due to lack of on-processor memory, the receiver processor stores that received data on disk

and reads it when needed. This results in extra I/O accesses.

� In both Demand and Producer-driven communication methods, COMM does not vary signi�cantly as

the amount of available memory is changed. In the 2-D Jacobi method, the inter-processor communi-

cation forms a major part of in-core communication. Since the in-core communication requires small

I/O, the in-core communication cost is almost independent of the available memory.

� As the amount of memory is decreased, more I/O accesses are needed to read and store the data.

This leads to an increase in the cost of LIO. It should be noted that the local I/O and the I/O during

communication are the dominant factors in the overall performance.

Figure 8 illustrates the performance for the same problem with the same level of scaling for the problem

size and the number of processors. This example solves a problem of 8K�8K on 64 processors. Clearly, for

both problem sizes, the out-of-core communication strategy performs the worst in terms of the communication

time due to the fact that communication requires many small I/O accesses.

As we will observe in the next application, when the communication volume is large and the number of

processors communicating is large, out-of-core communication provides better performance.

4.2 Two-Dimensional Fast Fourier Transform

This application performs two-dimensional Fast Fourier Transform (FFT). The FFT is an O(Nlog(N))

algorithm to compute the discrete Fourier transform (DFT) of a N � N array. On a distributed memory

machine, FFT is normally performed using transpose/redistribution based algorithms. One way to perform

a transpose based FFT on a N �N array is as follows:

1. Distribute the array along one dimension according to some (*,cyclic(b)) distribution.

2. Perform a sequence of 1D FFTs along the non-distributed dimension (column FFTs).

3. Transpose the intermediate array x.

4. Perform a sequence of 1D FFTs along the columns of the transposed intermediate array x
T .

Note that the above algorithm does not require any communication during 1D FFTs. However this

algorithm requires a transpose (redistribution) which has an all-to-all communication pattern. Hence, the

performance of the transpose based algorithm depends on the cost of the transpose. Figure 2 presents an

12

0
Amount of Memory (As a fraction of local array size)

0

100

200
T

im
e
 (

se
c
)

OOC Jacobi (4K*4K Array on 16 Processors)
Demand-driven In-core Communication Method

Communication time
Local I/O Time
Computation Time

1/2
1/4

1/8 1/16 0
Amount of Memory (As a fraction of local array size)

0

100

200

T
im

e
 (

se
c
)

OOC Jacobi (4K*4K Array on 16 Processors)
Producer-driven In-core Communication Method

Communication time
Local I/O Time
Computation Time

1/2
1/4

1/8 1/16

0
Amount of Memory (As a fraction of local array size)

0

100

200

300

T
im

e
 (

se
c
)

OOC Jacobi (4K*4K Array on 16 Processors)
Out-of-core Communication Method

Communication time
Local I/O Time
Computation Time

1/2
1/4

1/8 1/16

Figure 7: Out-Of-Core Jacobi Method, 4K*4K Array, 16 Processors. Communication time is greater for the

out-of-core communication method. Both in-core communication methods require more local I/O than does

the out-of-core communication method.

13

0
Amount of Memory (As a fraction of local array size)

0

100

200

300

400

T
im

e
 (

se
c
)

OOC Jacobi (8K*8K Array on 64 Processors)
Demand-driven In-core Communication Method

Communication time
Local I/O Time
Computation Time

1/2
1/4

1/8 1/16 0
Amount of Memory (As a fraction of local array size)

0

100

200

300

400

T
im

e
 (

se
c
)

OOC Jacobi (8K*8K Array on 64 Processors)
Produder-driven In-core Communication Method

Communication time
Local I/O Time
Computation Time

1/2
1/4

1/8 1/16

0
Amount of Memory (As a fraction of local array size)

0

100

200

300

400

500

600

T
im

e
 (

se
c
)

OOC Jacobi (8K*8K Array on 64 Processors)
Out-of-core Communication Method

Communication time
Local I/O Time
Computation Time

1/2
1/4

1/8 1/16

Figure 8: Out-Of-Core Jacobi Method, 8K*8K Array, 64 Processors. Both in-core communication methods

give better performance than the out-of-core communication method.

14

HPF program to perform 2D FFT. The DO 1D FFT routine performs 1-D FFT over the j
th column of the

array.

PROGRAM FFT

REAL A(N,N)

!HPF$ TEMPLATE T(N,N)

!HPF$ DISTRIBUTE T(*,BLOCK)

!HPF$ ALIGN WITH T :: A

FORALL(J=1:N) &

DO 1D FFT(A(:,J) ! PERFORM 1-D FFT

A=TRANSPOSE(A)

FORALL(J=1:N) &

DO 1D FFT(A(:,J)) ! PERFORM 1-D FFT

STOP

END

Figure 9: An HPF Program for 2-D FFT. Sweep of the 1-D FFT in (X/Y) dimension is performed in parallel.

The basic 2D-FFT algorithm can be easily extended for out-of-core arrays. The OOC 2D FFT algorithm

also involves three phases. The �rst and third phase involves performing 1D FFT over the in-core data.

The transposition phase involves communication for redistributing the intermediate array over the disks.

Thus, the performance of the out-of-core FFT depends on the I/O complexity of the out-of-core transpose

algorithm. The transpose can be performed using two ways, (1) Out-of-core Communication and (2) In-core

Communication.

4.2.1 Out-of-core Communication

In the out-of-core communication method, the transposition is performed after the computation in the �rst

phase as a collective operation.

Figure 10 (A) shows the communication pattern for the out-of-core transpose. Each processor fetches data

blocks (ICLAs) consisting of several subcolumns from it's local array �le. Each processor then performs an

in-core transpose of the ICLA. After the in-core transpose, the ICLAs are communicated to the appropriate

processor which stores them back in the local array �le.

4.2.2 In-core Communication

In this method, the out-of-core 2D FFT consists of two phases. In the �rst phase, each processor fetches a data

slab (ICLA) from the local array �le, performs 1-D FFTs over the columns of the ICLA. The intermediate

in-core data is then transposed. In the second phase, each processor fetches ICLAs from it's local array �le

and performs 1D FFTs over the columns in the ICLA.

Figure 10 (B) shows the in-core transpose operation. The �gure assumes that the ICLA consists of

one column. After the in-core transpose, the column is distributed across all the processors to obtain

15

p
 0

p
 1

p
 2

p
 3

After Transpose

p
 0

p
 1

p
 2

p
 3

p
 0

p
 1

p
 2

p
 3

(A) Out-of-core Communication

OCLA

File View

(B) In-core Communication

Communication

After

File View

p
 0

p
 1

p
 2

p
 3

Figure 10: Out-of-core Transpose. The out-of-core communication method writes blocks of consecutive

data using a small number of I/O accesses. In-core communication method requires a large number of I/O

accesses. Each access writes a small block of consecutive data.

16

corresponding subrows. Since the data is always stored in the column major order, the subrows have to be

stored using a certain stride. This requires a large number of small I/O accesses.

Since in the transpose based FFT algorithm, the communication patterns for the demand-driven and

producer-driver in-core communication are similar. We have implemented only the Producer-Driven com-

munication.

4.2.3 Experimental Results

Figures 11 and 12 present performance results for the out-of-core 2D FFT using the two communication

strategies. The experiment was performed for two problem sizes, 4K*4K and 8K*8K array of real numbers,

representing 64 MBytes and 256 MBytes respectively. The arrays were distributed in column-block form

over 16 and 64 processors arranged in a logical square mesh. The amount of available memory was varied

from 1/2 to 1/16 of the local array size. Each graph shows three components of the total execution time;

namely, computation time (COMP), local I/O time (LIO) and communication time (COMM). From these

results, we observe the following

� For the out-of-core FFT, COMM for the in-core communication method is larger than that for the out-

of-core communication method. COMM includes the cost of performing inter-processor communication

and I/O. The in-core communication method requires a large number of small I/O accesses to store

the data. In both in-core and out-of-core communication methods, COMM increases as the amount of

available memory is decreased.

� The in-core communication method requires less LIO than the out-of-core communication method.

This is due to the fact that in the in-core communication method, part of the local I/O is performed

as a part of the out-of-core transpose.

� As the number of processors and grid size is increased, the out-of-core communication performs better

but performance of the in-core communication method degrades.

� In both methods, the computation cost COMP remains the same.

5 Communication Strategies in Virtual Memory Environments

So far, we presented communication strategies for OOC computations, where data staging was done explicitly

at the application level. This staging is performed by runtime routines (e.g. see [TBC+94b]). In this section,

we briey discuss how these strategies can be used when node virtual memory on nodes may be available.

Assume that node virtual memory is provided on an MPP, where the address space of each processor is

mapped onto a disk(s). For example, on SP2, each node has a disk associated with it for paging. Also assume

that node has a TLB-like mechanism to convert virtual addresses to the corresponding physical accesses.

In such an environment, where demand paging is performed for accesses for data not present in the

memory, sweep through a computation will involve page faults and accesses to pages from disks when

needed. Two types of page faults are possible in this environment; namely, page faults caused by local

accesses, termed as \local page faults" and page faults caused by data required by remote processors due to

17

0
Amount of Memory (As a fraction of local array size)

0

500

1000

1500

2000

2500

3000

T
im

e
 (

se
c
)

Out-of-core FFT (4K*4K Array on 16 Processors)
In-core Communication Method

Communication time
Local I/O Time
Computation Time

1/2
1/4

1/8 1/16 0
Amount of Memory (As a fraction of local array size)

0

100

200

300

400

500

600

700

800

T
im

e
 (

se
c
)

Out-of-core FFT (4K*4K Array on 16 Processors)
Out-of-core Communication Method

Communication time
Local I/O Time
Computation Time

1/2
1/4

1/8 1/16

Figure 11: Out-of-core FFT of (4K*4K) array on 16 Processors. The overall execution time is dependent

on the time required to do out-of-core communication. Communication time required for the out-of-core

communication method is 1/4 of that required in the in-core communication method.

0
Amount of Memory (As a fraction of local array size)

0

500

1000

1500

2000

2500

3000

3500

4000

T
im

e
 (

se
c
)

Out-of-core FFT (8K*8K Array on 64 Processors)
In-core Communication Method

Communication time
Local I/O Time
Computation Time

1/2
1/4

1/8 1/16 0
Amount of Memory (As a fraction of local array size)

0

100

200

300

400

500

600

T
im

e
 (

se
c
)

Out-of-core FFT (8K*8K Array on 64 Processors)
Out-of-core Communication Method

Communication time
Local I/O Time
Computation Time

1/2
1/4

1/8 1/16

Figure 12: Out-of-core FFT of (8K*8K) array on 64 processors. The out-of-core communication method

performs better than previous case. In-core communication methods perform worse than the previous case.

18

communication requirements termed as \remote page faults". The former is equivalent to local I/O in the

explicit method for data accesses in form of slabs using the compiler and runtime support. The latter is

equivalent to the I/O performed during communication in the explicit method.

If no compiler and runtime support for stripmining computations, and no (explicit) access dependent

support for I/O is provided, paging of the system level can be very expensive. On the other hand, if explicit

support by the compiler and the runtime system is provided to perform explicit I/O at the application level,

all techniques discussed earlier in this paper can be applied in the systems that do provide virtual memory

at the node level. The following briey discusses the communication scenarios.

In the virtual memory environment, the computation can be stripmined so that a set of pages can be

fetched in the memory. When the computation of data from these pages is over, either the entire or a part of

the slab is stored back on disk. Suppose the local computation requires data which does not lie in the in-core

slab (Demand-driven In-core Communication). In this case, a page fault will occur. Since the required data

will lie either on the local disk or on the disk owned by some other processor, both \local page faults" and

\remote page faults" are possible. A local page fault fetches data from the local disk. A remote page fault

fetches data from a distant processor. Remote page fault results in inter-processor communication. If the

owner processor does not have the required data in it's memory, a local page fault will occur else the owner

processor can send the data (or page) without accessing it's own disk. This situation is very similar to the

communication in the out-of-core scenario.

Since the Producer/Demand-driven communication strategies allow the nodes more control over how

and when to communicate, these strategies are suitable for virtual memory environments. Consider the

Producer-driven in-core communication method. Suppose the processor A knows that a particular page

will be required in the future by processor B. Then processor A can either send the page to processor B

immediately or retain this page (this page will not be replaced) until processor B asks for it. Processor B

also knowing that this page will be used later will not replace it. Further optimizations can be carried out

by modifying basic page-replacement strategies. Standard LRU strategy can be changed to accommodate

access patterns across processors, i.e. if a page owned by a processor A is recently used by a processor B,

then this page will not be replaced in processor A.

6 Conclusions

We have shown that communication in the out-of-core problems requires both inter-processor communica-

tion and �le I/O. Communication in the out-of-core problems can be performed at least in three di�erent

ways. The out-of-core communication method performs communication in a collective way while the in-

core communication methods (Producer-driven/Consumer-driven) communicate in a demand basis by only

considering the communication requirements of the data slab which is present in memory. In-core communi-

cation methods are suitable for problems in which the communication volume and the number of processors

performing communication is small. Producer-driven in-core communication method can be used to im-

prove communication performance by optimizing �le I/O. Out-of-core communication method is useful for

problems having large communication volume. In both methods, the communication cost depends on the

amount of �le I/O. We demonstrated, through experimental results, that di�erent communication strategies

19

are suitable for di�erent types of computations. We believe, these methods could be easily extended to

support node virtual memories on distributed memory machines.

References

[BCF+93] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, and S. Ranka. Fortran 90D/HPF compiler for

distributed memory MIMD computers: Design, implementation, and performance results. In

Proceedings of Supercomputing '93, pages 351{360, November 1993.

[BCT94] R. Bordawekar, A. Choudhary, and R. Thakur. Data Access Reorganizations in Compiling Out-

of-core Data Parallel Programs on Distributed Memory Machines. Technical Report SCCS{622,

NPAC, Syracuse University, April 1994.

[CBH+94] A. Choudhary, R. Bordawekar, M. Harry, R. Krishnaiyer, R. Ponnusamy, T. Singh, and

R. Thakur. PASSION: Parallel and Scalable Software for Input-Output. Technical Report

SCCS{636, NPAC, Syracuse University, September 1994.

[CF94] P. Corbett and D. Feitelson. Overview of the Vesta Parallel File System. In Proceedings of the

Scalable High Performance Computing Conference, pages 63{70, May 1994.

[CFPB93] P. Corbett, D. Feitelson, J. Prost, and S. Baylor. Parallel Access to Files in the Vesta File

System. In Proceedings of Supercomputing '93, pages 472{481, November 1993.

[DdR92] E. DeBenedictis and J. del Rosario. nCUBE parallel i/o software. In Proceedings of 11th

International Phoenix Conference on Computers and Communications, pages 117{124, April

1992.

[dRC94] J. del Rosario and A. Choudhary. High performance i/o for parallel computers: Problems and

prospects. IEEE Computer, March 1994.

[For93a] High Performance Fortran Forum. High Performance Fortran Language Speci�cation Version

1.0. Technical Report CRPC-TR92225, Center for Research in Parallel Computing,Rice Uni-

versity, January 1993.

[For93b] High Performance Fortran Forum. High Performance Fortran Language Speci�cation. Version

1.0, May 1993.

[HKT92] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiler support for machine-

independent parallel programming in fortran d. In Languages, Compilers and Run-Time Envi-

ronments for Distributed Memory Machines. North-Holland,Amsterdam,The Netherlands, 1992.

[Ini94] Applications Working Group Of The Scalable I/O Initiative. Preliminary survey of i/o intensive

applications. Technical Report CCSF-38, Concurrent Supercomputing Consortium, Caltech,

Pasadena, CA 91125, January 1994. Scalable I/O Initiative Working Paper No. 1.

20

[KLS+94] C. Koelbel, D. Loveman, R. Schreiber, G. Steele, and M. Zosel. High Performance Fortran

Handbook. The MIT Press, 1994.

[Pie89] P. Pierce. A Concurrent File System for a Highly Parallel Mass Storage Subsystem. In Proceed-

ings of 4th Conference on Hypercubes, Concurrent Computers and Applications, pages 155{160,

Match 1989.

[SS93] S. Saini and H. Simon. Enhancing applications performance on intel paragon through dynamic

memory allocation. In Proceedings of the Scalable Parallel Libraries Conference, Mississippi

State University, October 1993.

[TBC94a] R. Thakur, R. Bordawekar, and A. Choudhary. Compiler and Runtime Support for Out-of-Core

HPF Programs. In Proceedings of the 8th ACM International Conference on Supercomputing,

pages 382{391, July 1994.

[TBC+94b] R. Thakur, R. Bordawekar, A. Choudhary, R. Ponnusamy, and T. Singh. PASSION Runtime

Library for Parallel I/O. In Proceedings of the Scalable Parallel Libraries Conference, October

1994.

21

