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Abstract

We are developing a Fortran 90D compiler, which
converts Fortran 90D code into Fortran 77 plus mes-
sage passing node programs for distributed memory
machines. This paper presents the implementation
and performance results of Fortran 90D intrinsic func-
tions on the Intel iPSC/860 hypercube. Our imple-
mentation is portable and scalable.

1 Introduction
Fortran 90D is a version of Fortran 90 enhanced

with a set of data decomposition speci�cations which
indicate how arrays should be distributed among the
processors of the distributed memory computer and
also how they should be aligned with respect to one an-
other, both within and across array dimensions. For-
tran 90D is a data parallel language which can be e�-
ciently implemented on both SIMD as well as MIMD
machines. We are developing a compiler which con-
verts Fortran 90D to Fortran 77 plus message pass-
ing node programs for a distributed memory MIMD
machine [3]. In order to make the programs portable,
we are implementing all the communication using EX-
PRESS, a portable parallel programming environment
developed by Parasoft Corporation. Thus, the same
source program can run without modi�cation on a va-
riety of machines such as Intel iPSC/2, iPSC/860 and
Touchstone Delta, NCUBE and a network of worksta-
tions.

Since Fortran 90 is oriented towards scienti�c ap-
plications, many frequently required primitives (which
operate on arrays) are provided as part of the lan-
guage itself so that the user does not have to code
them afresh. These are known as intrinsic functions.
For the conversion of Fortran 90D to Fortran 77 plus
message passing, it is necessary to build a library of
intrinsic functions which can be called from the node
programs of a distributed memory machine. This pa-
per discusses the implementation and scalability of
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several of these intrinsic functions. Because of space
constraints, we describe the implementation of only
a few representative intrinsics and although we have
performance results on iPSC/2, iPSC/860, NCUBE
and a network of workstations, we give only the per-
formance on iPSC/860. A more detailed discussion
can be found in [1].

2 Fortran 90D Intrinsic Functions
The intrinsic functions that we have implemented

fall into four main categories :-

� Array Reduction Functions: ALL, ANY,
COUNT, MAXVAL, MINVAL, PRODUCT,
SUM.

� Array Manipulation Functions: CSHIFT,
EOSHIFT, TRANSPOSE.

� Array Location Functions: MAXLOC, MINLOC.

� Vector and Matrix Multiplication Functions:
DOT PRODUCT, MATMUL.

For each of these functions, we have written Fortran 77
routines which can be called from the node programs
of a distributed memory machine. The Fortran 90D
compiler will detect calls to intrinsic functions in the
Fortran 90D program and replace them with calls to
these routines.

Our implementation is not speci�c to any particular
architecture. The programmer has to specify the prob-
lem decomposition and we use EXPRESS to perform
a mapping from the problem domain to the underly-
ing processor topology. This provides the programmer
with a transparent view of the underlying architecture.
The programmer can assume that the processors are
con�gured as an n-dimensional grid corresponding to
the decomposition of the problem. The actual archi-
tecture of the parallel machine is e�ectively hidden,
which makes programming easier and portable.

3 Array Reduction Functions
We describe the implementation of MAXVAL. All

array reduction functions have been implemented in a
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Figure 1: MAXVAL on iPSC/860

similar manner. MAXVAL can be used to either �nd
the single maximum value in the entire array (result
is scalar) or to �nd the maximum along a particular
row or column of the array (result is a vector). If
the maximum value of the entire array is to be deter-
mined, each processor calculates the maximum value
in the local array and then all processors perform a
global maximum operation to �nd the maximum ele-
ment among all local arrays. If the maximum value is
to be found along a particular row (or column) then
each processor �rst determines the maximum value
along each row (or column) of the local array. If the
rows (or columns) are distributed, then those proces-
sors which share a particular row (or column) of the
array, perform a global maximum operation to deter-
mine the maximum value along the row (or column).
The performance of MAXVAL on iPSC/860 for one
dimensional arrays is shown in Figure 1. We see that
the speedup is higher for large array sizes. This is
because as the number of processors increases, the
computation time decreases almost linearly, but the
communication time increases. For large array sizes,
the computation time is much higher than the commu-
nication time and hence as the number of processors
increases, the speedup increases.

4 Matrix Multiplication

We have implemented two algorithms for MAT-
MUL { by Fox et al [4] and Berntsen [2]. The for-
mer method requires a particular multiplicand sub-
matrix to be broadcast to all the processors which are
in the same row of the processor con�guration, fol-
lowed by multiplication and neighbor communication
along the columns. In the latter method, initially ma-
trices are redistributed such that only neighbor com-
munication is necessary in subsequent steps. If the
processor con�guration is not a perfect square, virtual
processors are created so that each processor gets a
square sub-matrix. The current implementation as-
sumes that both matrices are block decomposed and
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Figure 2: MATMUL on iPSC/860

the number of processors allocated along a dimension
of the array must be a multiple of the other. The per-
formance of the two algorithms on iPSC/860 is shown
in Figure 2.

The speedup increases almost linearly with the
number of processors. In some cases the speedup is
superlinear because of cache misses in the single pro-
cessor case. The communication cost is marginally
less for the second algorithm for some of the processor
con�gurations.

5 Conclusion
We have implemented several Fortran 90D intrinsic

functions so that they can be called from the node pro-
grams of a distributed memory machine. Our imple-
mentations are scalable, portable and architecture in-
dependent. They can be run without modi�cation on
a variety of machines such as Intel iPSC/2, iPSC/860
and Touchstone Delta, NCUBE and network of work-
stations.
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