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Abstract

We are developing a compiler and runtime support system called PASSION: Parallel And Scalable

Software for Input-Output, to translate out-of-core data-parallel programs to message passing node

programs with explicit parallel I/O. This paper describes the design and implementation of the runtime

system used in PASSION. We explain the basic model used by the compiler and runtime system. We

describe the runtime routines for regular problems and provide an initial framework for runtime support

for out-of-core irregular problems. Preliminary performance results are presented for 2D FFT and Laplace

equation solver, and a kernel from a molecular dynamics code.
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1 Introduction

I/O for parallel systems has drawn increasing attention in the last few years as it has become apparent

that I/O performance rather than CPU or communication performance may be the limiting factor in future

computing systems. Large scale scienti�c computations, in addition to requiring a great deal of computational

power, also deal with large quantities of data. At present, a typical Grand Challenge Application could require

1Gbyte to 4Tbytes of data per run [dRC94]. These �gures are expected to increase by orders of magnitude

as tera
op machines make their appearance. Although supercomputers have very large main memories,

the memory is not large enough to hold this much amount of data. Hence, data needs to be stored on

disk and the performance of the program depends on how fast the processors can access data from disks.

Unfortunately, the performance of the I/O subsystems of MPPs has not kept pace with their processing

and communications capabilities. A poor I/O capability can severely degrade the performance of the entire

program. The need for high performance I/O is so signi�cant that almost all the present generation parallel

computers such as the Paragon, iPSC/860, Touchstone Delta, CM-5, SP-1, nCUBE2 etc. provide some kind

of hardware and software support for parallel I/O [CFPB93, Pie89, DdR92].

At Syracuse University, we consider the I/O problem from a language, compiler and runtime support

point of view. We are developing a compiler and runtime support system called PASSION: Parallel

And Scalable Software for Input-Output. PASSION provides support for compiling out-of-core programs

[TBC94], parallel input-output of data, communication of out-of-core data, redistribution of data stored on

disks, many optimizations including data prefetching from disks, data reuse etc. This paper describes the

design and implementation of the runtime system used in PASSION. We �rst explain the basic model used

by the compiler and runtime support system. The runtime routines have to take care of both parallel I/O

and interprocessor communication. We describe the runtime library for regular problems along with some of

the optimizations incorporated in the runtime library to reduce the amount of I/O. We have also developed

an initial framework for runtime support for out-of-core irregular problems. Preliminary performance results

on the Intel Touchstone Delta and Intel iPSC/860 are presented.

The rest of this paper is organized as follows. The basic model used by the compiler and runtime system

is described in Section 2. Section 3 describes runtime system of PASSION. Performance results are discussed

in Section 4 followed by a discussion of related work in Section 5 and Conclusions in Section 6.

2 Model for Out-of-Core Compilation

In the SPMD (Single Program Multiple Data) programming model, each processor has a local array associ-

ated with it. In an in-core program, the local array resides in the local memory of the processor. For large

data sets, however, local arrays cannot entirely �t in main memory. In such cases, parts of the local array

have to be stored on disk. We refer to such a local array as an Out-of-core Local Array (OCLA). Parts of
the OCLA need to be swapped between main memory and disk during the course of the computation.

The basic model of out-of-core compilation is shown in Figure 1. The simplest way to view this model is

to think of each processor as having another level of memory which is much slower than main memory. Since

the local arrays are out-of-core, they have to be stored in �les on disk. The local array of each processor is

stored in a separate �le called the Local Array File (LAF) of that processor. The node program explicitly

reads from and writes into the �le when required. If the I/O architecture of the system is such that each

processor has its own disk, the LAF of each processor will be stored on the disk attached to that processor.

If there is a common set of disks for all processors, the LAF will be distributed across one or more of these

disks. In other words, we assume that each processor has its own logical disk with the LAF stored on that

disk. The mapping of the logical disk to the physical disks is system dependent. At any time, only a portion

of the local array is fetched and stored in main memory. The size of this portion is speci�ed at compile time

and it usually depends on the amount of memory available. The portion of the local array which is in main

memory is called the In-Core Local Array (ICLA). All computations are performed on the data in the

ICLA. Thus, during the course of the program, parts of the LAF are fetched into the ICLA, the new values

are computed and the ICLA is stored back into appropriate locations in the LAF.
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Figure 1: Model for Out-of-Core Compilation

3 Runtime Support in PASSION

During program execution, it is necessary to fetch data from the LAF into the ICLA and store the newly

computed values from the ICLA back into appropriate locations in the LAF. Since the global array is dis-

tributed, a processor may need data from the local array of another processor. This requires data to be

communicated between processors. Thus the node program needs to perform I/O as well as communication,

both of which are not explicit in the source HPF program. The compiler does basic code transformations

such as partitioning of data and computation, and inserts calls to runtime library routines for disk accesses

and communication. The runtime support system for the compiler consists of a set of high level specialized

routines for parallel I/O and collective communication. These routines are built using the native communi-

cation and I/O primitives of the system and provide a high level abstraction which avoids the inconvenience

of working directly with the lower layers. For example, the routines hide details such as bu�ering, mapping

of �les on disks, location of data in �les, synchronization, optimum message size for communication, best

communication algorithms, communication scheduling, I/O scheduling etc.

3.1 Issues in Runtime Support

Consider the HPF program fragment given in Figure 2, which solves Laplace's equation by Jacobi iteration

method. The arrays A and B are distributed as (block,block) on a 4 � 4 grid of processors as shown in

Figure 3. Consider the out-of-core local array on processor P5, shown in Figure 3(B). The value of each

element (i; j) of A is calculated using the values of its corresponding four neighbors in B, namely (i � 1; j),

(i + 1; j), (i; j � 1) and (i; j + 1). Thus to calculate the values at the four boundaries of the local array,

P5 needs the last row of the local array of P1, the last column of the local array of P4, the �rst row of the

local array of P9 and the �rst column of of the local array of P6. Before each iteration of the program, P5

gets these rows and columns from its neighboring processors. If the local array was in-core, these rows and

columns would have been placed in the overlap areas shown in the Figure 3(B). This is done so as to obtain

better performance by retaining the DO loop even at the boundary. Since the local array is out-of-core,

these overlap areas are provided in the local array �le. The local array �le basically consists of the local

array stored in either row-major or column major order. In either case, the local array �le will consist of the

local array elements interspersed with overlap area as shown in Figure 3(D). Data from the �le is read into
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parameter (n=1024)

real A(n,n), B(n,n)

..........

!HPF$ PROCESSORS P(4,4)

!HPF$ TEMPLATE T(n,n)

!HPF$ DISTRIBUTE T(BLOCK,BLOCK) ONTO P

!HPF$ ALIGN with T :: A, B

...........

FORALL (i=2:n{1, j=2:n{1)

A(i,j) = (B(i,j{1) + B(i,j+1) + B(i+1,j)

+ B(i{1,j))/4

...........

B = A

Figure 2: HPF Program Fragment

the in-core local array and new values are computed. The in-core local array also needs overlap area for the

same reason as for the out-of-core local array. The example shown in the �gure assumes that the local array

is stored in the �le in column major order. Hence, for local computation, columns have to be fetched from

disks and then written back to disks.

At the end of each iteration, processors need to exchange boundary data with neighboring processors.

In the in-core case, this would be done using a shift type collective communication routine to directly

communicate data from the local memory of the processors. In the out-of-core case, there are two options:-

� Direct File Access: Since disks are a shared resource, any processor can access any disk. In the direct

�le access method, a processor directly reads data from the local array �le of some other processor

as required by the communication pattern. This requires explicit synchronization at the end of each

iteration.

� Explicit Communication: Each processor accesses only its own local array �le. Data is read into

memory and sent to other processors. Similarly, data is received from other processors into main

memory and then saved on disk. This is similar to what would be done in in-core compilation methods.

Consider a situation in which each processor needs to communicate with every other processor (all-

to-all communication). In the Direct File Access Method, this will result in several processors trying to

simultaneously access the same disk, resulting in contention for the disk. A minimum of one block of data,

the size of which is system dependent, is transferred during each disk access. Even if a processor actually

needs a small amount of data, one whole block will be transferred for each access from every processor. So

the Direct File Access Method has the drawback of greater disk contention and higher granularity of data

transfer. Also, in some communication patterns (eg. broadcast), the same piece of data may be fetched

repeatedly by several processors. In the Explicit Communication Method, each processor accesses only

its own local �le and reads the data to be sent to other processors into its local memory. This data is

communicated to other processors. Thus, there is no contention for a disk and since the data to be sent

to all other processors has to be read from disk, the high granularity of data access from disk is less of a

problem. In addition, the time to communicate data between processors is at least an order of magnitude

less than the time to fetch data from disk. However, this requires a communication phase in addition to I/O.

3.2 I/O Optimizations

3.2.1 Data Reuse

One way to reduce the amount of I/O is to reuse the data already fetched into main memory instead of

reading it again from disk. This can be explained with the help of the Laplace equation solver program
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Figure 3: Example of OCLA, ICLA and LAF

discussed earlier. Suppose the array is distributed along columns. Then the computation of each column

requires one column from the left and one column from the right. The computation of the last column

requires one column from the overlap area and the computation of the column in the overlap area cannot be

performed without reading the next column from the disk. Hence, instead of reading in the column in the

overlap area again with the next set of columns, it can be reused by moving it to the �rst column of the array

and the last column can be moved to the overlap area before the �rst column. If this move is not done, it

would be required to read the two columns again from the disk along with data for the next slab. The reuse

thus eliminates the reading of two columns in this example. In general, the amount of data reuse would

depend on the intersection of the sets of data needed for computations involving two consecutive slabs.

3.2.2 Data Prefetching

Since portions of the OCLA are fetched one slab at a time, the time spent on I/O can be minimized by

issuing a prefetch [Dav90, CKP91] for the next slab as soon as the current slab has been fetched. Thus the

reading in of the next slab can be overlapped with the computation being performed on the current slab.

Prefetching is done with an asynchronous I/O read operation. An example of how prefetching can be done

in the Laplace Equation solver is shown in Figure 4.

3.3 PASSION Runtime Library

We are developing a library of runtime routines using which we can compile any general out-of-core HPF

program. The routines are divided into four categories | Array Management/Access Routines, Communi-

cation Routines, Mapping Routines and Generic Routines. Some of the basic routines and their functions

are listed in Table 1.

3.3.1 Array Management/Access Routines

These routines handle the movement of data between the in-core local array and the local array �le. Any

arbitrary regular section of the out-of-core local array can be read for an array stored in either row-major or

column-major order. The information about the array such as its shape, size, distribution, storage format etc.

is passed to the routines using a data structure called the Out-of-Core Array Descriptor (OCAD) [TBC94].
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Call communication routine to perform overlap shift.
Call I/O routine to read the ICLA.

do l=1, k ! k = no. of slabs

if (l < k), Prefetch the next slab

do j = l1, u1

do i = l2, u2

A(i,j)=((B(i,j-1)+B(i,j+1)+B(i-1,j)+B(i+1,j))/4)

end do

end do

Call I/O routine to store the result.

if (l < k), wait for the prefetched slab to reach main memory

end do

Figure 4: Prefetching in the Laplace equation solver

3.3.2 Communication Routines

The Communication Routines perform collective communication of data in the out-of-core local array. We

use the Explicit CommunicationMethod described earlier. The communication is done for the entire OCLA,

i.e. all the o�-processor data needed by the OCLA is fetched during the communication. This requires

inter-processor communication as well as disk accesses.

3.3.3 Mapping Routines

The Mapping Routines perform data and processor/disk mappings. Data mapping routines include routines

to generate local array �les from a global �le. These routines use the two-phase data access strategy

[Jua92, BdRC93]. Disk mapping routines map physical disks onto logical disks.

3.3.4 Generic Routines

The Generic Routines perform computations on out-of-core arrays. Examples of these routines are out-of-core

transpose and out-of-core matrix multiplication.

3.4 Runtime Support for Out-of-Core Unstructured Problems

Unstructured or irregular problems [Pon94] are an important subclass of scienti�c applications. In irregu-

lar problems, patterns of data access cannot be predicted until runtime. In such problems, optimizations

that can be carried out at compile-time are limited. At runtime, however, the data access patterns of a

loop-nest are usually known before entering the loop-nest. This makes it possible to utilize various prepro-

cessing strategies to optimize the computation. These preprocessing strategies primarily deal with reducing

data movement between processor memories. Preprocessing methods for in-core computations have been

developed [MSS+88, Pon94] for a variety of unstructured problems including explicit multi-grid unstruc-

tured computational 
uid dynamic solvers [Mav91, HB91], molecular dynamics codes (CHARMM, AMBER,

GROMOS, etc.) [BBO+83], and diagonal or polynomial preconditioned iterative linear solvers [VSM90].

Figure 5 illustrates a typical irregular loop. The data access pattern is determined by the array in-

ter list, which is known only at runtime. This array is called an indirection array. Prior knowledge of

loop data access patterns (values of inter list) makes it possible to predict which data elements need to

be communicated between processors. A runtime pre-processing phase [MSS+88] can be used to carry out

optimizations. By pre-processing data access patterns, optimizations such as software caching and commu-
nication vectorization [DMS+94] can be performed.

We have developed runtime routines in PASSION to e�ciently implement out-of-core irregular compu-

tations on distributed memory machines. Due to space constraints, we only describe the case where the

indirection arrays are out-of-core but the data arrays are in-core. Such a situation actually appears in ir-

regular problems like molecular dynamics codes, where the size of data arrays associated with particles (e.g.
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Array Management Routines

PASSION Routine Function

1 read section Reads a regular section from LAF to ICLA

2 write section Writes a regular section from ICLA to LAF

3 read with reuse read section with data reuse

4 prefetch read Asynchronous (non-blocking) read of a regular section

5 prefetch wait Wait for a prefetch to complete

Array Communication Routines

PASSION Routine Function

6 oc shift Shift type collective communication on out-of-core data

7 oc multicast Multicast communication on out-of-core data

Array Mapping Routines

PASSION Routine Function

8 oc disk map Maps disks to processors

9 oc �le map Generates local �les from global �les

Generic Routines

PASSION Routine Function

10 oc transpose Transposes an out-of-core array

11 oc matmul Performs out-of-core matrix multiplication

Table 1: Some of the PASSION Runtime Routines

real x(n atom), dx(n atom) ! data arrays

integer inter ptr(niter) !

integer inter list(niter) ! indirection array

L1: do i = 1, n atom ! outer loop

L2: do j = inter ptr(i), inter ptr(i+1)-1 ! inner loop

dx(inter list(i)) = dx(inter list(i)) + x(i)

end do

end do

Figure 5: An Example with an Irregular Loop

atoms) is considerably small compared to the indirection list (indirection array). Since interactions among

particles in a problem size of O(n) can be O(n2), it is su�cient to consider only the indirection arrays to be

out-of-core. For instance, in one of the test cases presented in this paper, the size of data arrays is around

14K, however, the indirection array of size six million [Pon94]. The out-of-core pre-processing phase ana-

lyzes data access pattern and computes a communication schedule [MSS+88]. The computed communication

schedule can be used to exchange in-core data items among processors.

3.4.1 Implementation Details

We describe implementation details of a non-bonded force calculation kernel of a molecular dynamics code.

The kernel is similar to the loop shown in Figure 5. To successfully complete the computation associated

with an atom, the interaction among neighboring atoms must be known. In this case, interactions among

atoms are stored in an indirection array. Since indirection arrays are very large, the computation has to be

done in phases. This allows the indirection array elements fetched from disk to be stored in-core.

The execution of the kernel is done in three phases: 1) Data Distribution, 2) Pre-processing, and 3)

Computation. In order to balance load on processors, the atoms are distributed in round-robin fashion

over the processors. After data distribution, the indirection arrays are analyzed. The pre-processing phase
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involves the fetching of indirection arrays in slabs into processor memory and operating on them. Pre-

processing involves 1) address translation which uses a lookup table [DMS+94] and 2) determination of

communication patterns for in-core data arrays. The pre-processing phase optimizes communication by

using techniques similar to those used in PARTI/CHAOS runtime library [DMS+94, Pon94]. The third

phase carries out computation and communication.

Figure 6 illustrates the stripmining of out-of-core arrays in pre-processing and computation phases.

Figure 6(a) shows the stripmining of the indirection array in the preprocessing phase. Each indirection

array slab is represented using a di�erent shade. As described before, each slab is brought into memory and

analyzed for the data access pattern. On each processor, additional space is allocated for each data array

at the end of the local portion to store o�-processor elements. Figure 6(b) shows the stripmining of data

and indirection arrays in the computation phase. Each slab of the data array and the corresponding slabs of

indirection arrays are marked using the same shade. Since the interaction list size of atoms is not the same,

the size of the data array slab varies according to the indirection array slab. Here, the indirection array is

preprocessed to ensure more e�cient utilization of memory by choosing the size of the data slab so that the

corresponding indirection array can be stored in memory. It should be noted that even if the data array is

in-core, the computation on the data array has to be stripmined so that the corresponding indirection array

slab can be in-core.

4 Performance

We present preliminary performance results for both structured an unstructured problems on the Intel

Touchstone Delta and iPSC/860.

4.1 Structured Problems

As examples of structured problems, we consider the Laplace equation solver described earlier and also a

2D FFT code. The performance of the Laplace equation solver on the Intel Touchstone Delta is shown in

Table 2. We use Intel's Concurrent File System (CFS) [Pie89] on the Delta which has 64 disks. The table

compares the performance of the three methods | direct �le access, explicit communication and explicit

communication with data reuse. The array is distributed in one dimension along columns. We observe that

the direct �le access method performs the worst because of contention for disks. The best performance is

obtained for the explicit communication method with data reuse as it reduces the amount of I/O by reusing
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Table 2: Performance of Laplace Equation Solver (time in sec. for 10 iterations)

Array Size: 2K � 2K Array Size: 4K � 4K

32 Procs 64 Procs 32 Procs 64 Procs

Direct File Access 73.45 79.12 265.2 280.8

Explicit Communication 68.84 75.12 259.2 274.7

Explicit Communication 62.11 71.71 253.1 269.1

with data reuse

Table 3: Out-of-core 2D-FFT for 4K � 4K array (time in sec., Slab size as a fraction of local array size)

Processors Slab size Slab size Slab size Slab size

1/16 1/8 1/4 1/2

16 616.84 562.01 502.71 484.73

32 596.54 537.89 499.78 456.35

64 610.91 589.88 517.34 478.72

data already fetched into memory. If the array is distributed in both dimensions, the performance of the

direct �le access method is expected to be worse because in this case each processor, except at the boundary,

has four neighbors. So, there will be four processors contending for a disk when they try to read the boundary

values.

Table 3 presents the performance of the two-dimensional Fast Fourier Transform on the Intel Touchstone

Delta. The Fast Fourier Transform routine uses a PASSION routine to perform out-of-core transpose. The

array is initially distributed in one dimension along columns. In the �rst phase, the program performs in-core

FFT on the array slabs. Then the out-of-core array is transposed and the in-core FFT is again performed

on the slabs of the transposed array. This example was run on 16, 32 and 64 processors. The slab size

was varied from 1/16 to 1/2 of the local array size. As the slab size is increased, the performance tends to

improve because the number of I/O requests reduces. In all cases, however, the time taken is dominated by

I/O. As the number of processors is increased to 64, the parallel �le system is saturated with requests from

all the processors, and therefore, the performance tends to degrade.

4.2 Unstructured Problems

We studied the performance of the out-of-core unstructured molecular dynamics code on an Intel iPSC/860

with 16 processing nodes, 2 I/O nodes and 4 disks. The iPSC Concurrent File System (CFS) stripes data

uniformly over disks. User can specify the number of disks used for data striping. By default, data is striped

over all the available disks (in our case, 4). We present the performance of a molecular dynamics (MD)

kernel for 14K and 6K atoms cases. For this kernel to be executed in-core, atleast 32 processors are required,

since each processor on this system has 8MBytes of memory. As our system has only 16 processors, we ran

the program by keeping the indirection arrays out-of-core and the data array in-core.

Table 4 shows pre-processing times for several slab sizes for 14K atoms. This experiment was performed

by varying the number of processors. It can be observed that as the available memory increases, the

performance is improved. In addition, as the number of processors is increased, better performance is

observed. The best performance for is observed for 8 processors with slab size of 64K (92.16 sec). Table 5

shows pre-processing times for several slab sizes for 6K atoms. The best performance is observed for 8

processors with slab size of 64K (72.79 sec). Each iteration requires reading a indirection array slab from

disk and writing the modi�ed indirection array slab back to the disk. As a result, each iteration requires

two I/O accesses. Since the �le is distributed over all 4 disks, each I/O access results in 4 disks accesses. As

the number of processors increases, the number of disk accesses also increases saturating the I/O subsystem.

This results in performance degradation for a large number of processors.
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Table 4: Pre-processing Time in sec. for MD Kernel for 14K Atom Case

Processors Slab size

8 K 16K 32K 64K 128K

2 194.61 190.81 188.85 187.83 190.95

4 134.79 129.84 127.54 130.27 138.45

8 115.35 99.68 94.62 92.16 98.54

16 127.22 109.77 107.81 111.73 107.25

Table 5: Pre-processing Time in sec. for MD Kernel for 6K Atoms Case

Processors Slab size

8 K 16K 32K 64K 128K

2 135.79 117.10 113.48 110.98 117.56

4 89.95 85.74 86.33 85.14 85.59

8 82.36 78.60 75.31 72.79 73.88

16 162.62 128.52 111.88 108.21 109.92

Tables 6 and 7 show the computation times for MD kernel for various number of processors and data

array slab sizes. The computation time is the time taken to execute the loop once. Typically in a problem this

loop will be executed many times. The computation time also includes the communication time to gather and

scatter o�-processor data. The optimal performance for 14K case is observed for 8 processors (computation

time = 20.69 sec). For 6K atoms case, the optimal performance is observed for 4 processors (computation

time = 26.88 sec). It can be observed that, in general, as the size of the data slab is increased, performance

improves. This is due to reduction in the number of I/O requests. However, the computational cost is always

dominated by I/O cost. Computation on each in-core slab requires reading the corresponding indirection

array slab from disks. As explained earlier, computation stripmining is performed so that indirection array

could be distributed into slabs that can be in-core. Since the number of interactions depends on individual

atom, the number of atoms that correspond to a �xed size of indirection array varies. As the computation is a

sweep over atoms, the number of I/O requests is a function of the number of data(atoms) slabs. Hence as the

number of data slabs increases, the number of I/O requests increases. For eight and sixteen processors, the

concurrent �le system gets saturated with a large number of I/O requests (and corresponding disk requests),

and therefore the performance of computation phase degrades.

Due to space limitations, a detailed discussion of the performance results is not possible in this version

of the paper. It should be noted that for both of these problem sizes, an in-core implementation on a system

containing upto 16 processors was not possible due to memory size limitation. Further improvements in the

performance may be obtained if the �le system provides a greater control over stripe size, number of disks

on which a �le can be opened and prefetching.

Table 6: Computation Time in sec. of the MD Kernel for 14K Atoms Case

Processors Slab Size

8K 16K 32K 64K 128K

2 40.20 39.63 38.98 38.89 40.62

4 26.24 24.83 23.01 22.23 23.42

8 43.54 41.58 34.57 30.52 26.88

16 81.14 78.41 94.38 76.80 75.48
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Table 7: Computation Time in sec. of the MD Kernel for 6K Atoms Case

Processors Slab Size

8K 16K 32K 64K 128K

2 41.62 45.05 39.98 38.86 42.55

4 26.22 25.00 23.29 22.40 24.25

8 42.19 39.00 34.15 31.23 28.12

16 95.26 88.44 85.96 82.63 83.66

5 Related Work

There has been some related research in software support for high performance parallel I/O. Vesta is a

parallel �le system designed and developed at IBM T. J. Watson Research Center [CFPB93, CF94]. Lan-

guage support for out-of-core data parallel programs are proposed in [BGMZ92, Sni92]. File declustering,

where di�erent blocks are stored on distinct disks is suggested in [LKB87]. This is used in the Bridge File

System [DSE88], in Intel's Concurrent File System (CFS) [Pie89] and in various RAID schemes [PGK88].

The e�ects of prefetching blocks of a �le in a multiprocessor �le system are studied in [Dav90]. Software

prefetching for in-core problems is discussed in [MLG92, CKP91]. PARTI/CHAOS runtime support for

in-core irregular computations has been developed by Saltz and co-workers [MSS+88, DMS+94, Pon94].

6 Conclusions

We have presented the design and implementation of some of the PASSION runtime procedures for out-of-

core regular problems and an initial framework for out-of-core irregular problems. Preliminary performance

results are discussed for hand-coded versions of a Laplace Equation solver, 2D FFT and a kernel from a

molecular dynamics code. The PASSION runtime procedures perform

� Read and write to disk during computation.

� Interprocessor communication involving out-of-core data.

� Reuse of out-of-core data.

� Prefetching of out-of-core data.

� Pre-processing for out-of-core irregular computations.

� Scheduling communication for out-of-core data.

� Partitioning for out-of-core data.

The PASSION procedures can be automatically embedded by a High Performance Fortran compiler to

carry out parallel I/O. We are currently developing PASSION compiler transformation techniques to embed

runtime procedures.
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