
Monte Carlo Simulations of Random Surfaces

with Extrinsic Curvature

by

Leping Han

DISSERTATION

Submitted in partial ful�llment of the requirements for the Doctor of Philosophy in

Physics in the Graduate School of Syracuse University

December, 1994

Approved

Geo�rey Fox

Date

i



Abstract

Random surfaces are of great interest as a model of gravity, but also provide the basis

for an exploration of membranes. Many random surface models have been proposed

to describe 
uctuating 
uid membranes. These models have been extensively studied

both analytically and numerically. We analyze numerically the critical properties of

two-dimensional discretized random surfaces with extrinsic curvature embedded in a

three-dimensional space. We measure a variety of local observables and use a �nite

size scaling analysis to characterize as much as possible the regime of crossover from

crumpled to smooth surfaces. We exclude some possible explanations for the observed

cross-over behavior and provide more questions for further study. The computational

issues and technical implementations of Dynamically Triangulated Random Surfaces on

computers, including parallel computers, are discussed in detail.

ii



Copyright c
 1994 by Leping Han

All Rights Reserved

iii



To my parents

iv



Vita

NAME OF AUTHOR:

Leping Han

DATE AND PLACE OF BIRTH:

September 17, 1965, in Beijing, China

DEGREES AWARDED:

Master in Computer Engineering, 1993, Syracuse University

B.S. in Physics, 1987, Beijing University

v



Contents

Acknowledgements viii

1 Introduction 1

1.1 String Theory : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

1.2 Quantum Field Theory : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

1.3 Field Theory And Statistical Mechanics : : : : : : : : : : : : : : : : : : 9

1.4 Quantum Gravity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

1.5 Random Surfaces : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

1.6 Monte Carlo Simulation : : : : : : : : : : : : : : : : : : : : : : : : : : : 17

2 Random Surfaces 24

2.1 2D Gravity and Random Surfaces : : : : : : : : : : : : : : : : : : : : : : 24

2.1.1 The Motivation for Random Surfaces { Continuum Model : : : : 24

2.1.2 The Discretization of Random Surfaces { Dynamically Triangu-

lated Random Surfaces : : : : : : : : : : : : : : : : : : : : : : : : 26

2.1.3 The Problem with the Model : : : : : : : : : : : : : : : : : : : : 29

2.2 Extrinsic Curvature : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30

2.2.1 The Construction of Extrinsic Curvature : : : : : : : : : : : : : 30

2.2.2 Perspective { with Extrinsic Curvature : : : : : : : : : : : : : : : 34

2.3 The Model of Random Surfaces used in the simulations : : : : : : : : : 35

2.3.1 Previous Analytical Work : : : : : : : : : : : : : : : : : : : : : : 37

2.3.2 Previous Numerical Evidence : : : : : : : : : : : : : : : : : : : : 39

2.4 The Goal of the Simulations { Is there a Phase Transition? : : : : : : : 42

vi



3 Computer Simulations and Measurements 45

3.1 The Observables : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 45

3.2 The Numerical Simulation : : : : : : : : : : : : : : : : : : : : : : : : : 47

3.3 The Phase Diagram : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52

3.4 Autocorrelation Times : : : : : : : : : : : : : : : : : : : : : : : : : : : 64

4 Data Analysis And Results 72

4.1 Data Interpretations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72

4.2 A True Phase Transition? : : : : : : : : : : : : : : : : : : : : : : : : : : 76

4.3 Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 77

4.4 Future Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 78

5 Computer Implementations and Issues in Computational Science 81

5.1 The Challenge of Random Surface Simulations to Computation : : : : : 82

5.2 The Random Surfaces Fortran Program : : : : : : : : : : : : : : : : : : 86

5.3 Optimization of the Random Surface Code for RISC : : : : : : : : : : : 90

5.4 Parallelization of Random Surafces Program { on Distributed Network,

SIMD & MIMD : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 102

5.4.1 Independent Parallelsm : : : : : : : : : : : : : : : : : : : : : : : 102

5.4.2 Parallel Random Surfaces : : : : : : : : : : : : : : : : : : : : : : 106

5.5 Visualization of Monte Carlo Simulation in 3 Dimensions : : : : : : : : 112

6 Conclusion 122

References 124

vii



List of Figures

1 Superstring is a possible candidate that can unite gravity with rest of the

particle forces : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

2 The essential di�erence between classical mechanics and quantum me-

chanics. The action principle is more fundamental than the equation of

motion at the quantum level : : : : : : : : : : : : : : : : : : : : : : : : : 4

3 The two-dimensional worldsheet swept out by a string : : : : : : : : : : 5

4 A biological membrane composed of a lipid bilayer: two layers of am-

phiphilic molecules with polar hydrophilic heads and long hydrophobic

hydrocarbon tails. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

5 String worldsheet with intrinsic coordinates �1 and �2. : : : : : : : : : : 25

6 Fluctuations in the topology of worldsheet : : : : : : : : : : : : : : : : : 25

7 Surface discretized into triangulations each characterized by a unit normal 27

8 Edge 
ipping : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

9 Surface coordinates (�1, �2) and embedding coordinates X�(�i) : : : : : 31

10 The tangent directions and normal direction at point P. : : : : : : : : : 32

11 The two principal directions 1 and 2 at a saddle point : : : : : : : : : : 33

12 The normals of two adjacent triangles : : : : : : : : : : : : : : : : : : : 34

13 Two normals at two di�erent points on a surface : : : : : : : : : : : : : 34

14 Update node g : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48

15 Relation between normals and perpendiculars : : : : : : : : : : : : : : : 48

viii



16 The edge curvature SE as a function of �. As in all other pictures, �lled

circles and a dotted line correspond toN = 144, crosses and a dashed line

indicate N = 288, and empty squares and a solid line represent N = 576. 53

17 The edge curvature speci�c heat, for lattice size 144, 288 and 576, C(�) 54

18 As in Fig. 16, but with the multi-histogram reconstruction in the tran-

sient region. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 55

19 The edge extrinsic-curvature speci�c heat C(�) as a function of �. Multi-

histogram reconstructions with errors are shown for N = 576 (long and

short dashed lines) and N = 1; 152 (solid lines). Four individual data

points are also shown for N = 2; 304 (solid circles). One sees that the

speci�c heat peak has saturated, i.e., it is not growing with the system

size N above 576. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 56

20 The gyration radius RG de�ned in equation (71) plotted as in Fig. 16 : 58

21 The e�ective inverse Hausdor� dimension � as a function of �, as de�ned

in (72). The �lled dots and the dashed curve are from a �t to the N = 288

and N = 144 data, while the empty dots and solid curve represent the �t

to N = 576 and N = 288. : : : : : : : : : : : : : : : : : : : : : : : : : : 59

22 The extrinsic Gaussian curvature j K j de�ned in (73), plotted as in Fig. 16 60

23 The 
uctuations of j K j. : : : : : : : : : : : : : : : : : : : : : : : : : : : 61

24 The intrinsic curvature j R j de�ned in (74) , plotted as in Fig. 16 : : : 63

25 The 
uctuations of j R j. : : : : : : : : : : : : : : : : : : : : : : : : : : : 64

26 The intrinsic extrinsic curvature correlation, as de�ned in (75), plotted

as in Fig. 16 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 65

ix



27 The average maximum coordination number of the surface vertices,

maxi qi, plotted as in Fig. 16 : : : : : : : : : : : : : : : : : : : : : : : : 66

28 The scaling exponent of maxi qi, plotted as in Fig. 16 : : : : : : : : : : 67

29 SE as a function of Monte Carlo time (80; 000 steps) for N = 144, � = 1:4. 67

30 R as a function of Monte Carlo time (300; 000 steps) for N = 144, � = 1:4. 68

31 SE as a function of Monte Carlo time (80; 000 steps) for N = 144, � = 1:5. 68

32 R as a function of Monte Carlo time (300; 000 steps) for N = 144, � = 1:5. 69

33 SE as a function of Monte Carlo time (300; 000 steps) for N = 576, � = 1:4. 69

34 R as a function of Monte Carlo time (3; 000; 000 steps) forN = 576, � = 1:4. 70

35 SE and R from the same Monte Carlo run, N = 576, � = 1:325, 20; 000

steps. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 71

36 The speci�c heat C(�) of the two-dimensional O(3) non-linear sigma

model as a function of � for lattice volumes N = 16, 25, 64, 100, 900,

2; 500, 4; 900 and 10; 000. The peak saturates quickly for N � 100 and

\�c" does not increase with the volume. : : : : : : : : : : : : : : : : : : 80

37 Wireframes for 144 nodes at � = 0:8 (crumple phase) : : : : : : : : : : 85

38 Wireframes of a torus with 144 nodes : : : : : : : : : : : : : : : : : : : 87

39 The nearest neighbors of node S0: S1, S2, S6, S5, S4 and the next

nearest neighbors: S9, S3, S14, S12, S7. To compute the edge action

along edge S1S2, triangles S1S3S2 and S0S1S2 involved. : : : : : : : : : 89

40 Mesh connectivity information distribution at the beginning : : : : : : : 96

41 Mesh connectivity information changes after 
ips : : : : : : : : : : : : : 97

42 Mesh connectivity information re-order after 
ips : : : : : : : : : : : : : 99

43 A con�guration with 2304 nodes at � = 0:8. : : : : : : : : : : : : : : : : 116

x



44 A con�guration with 2304 nodes at � = 1:4. : : : : : : : : : : : : : : : : 117

45 A con�guration with 2304 nodes at � = 1:425. : : : : : : : : : : : : : : : 118

46 A con�guration with 2304 nodes at � = 1:5. : : : : : : : : : : : : : : : : 119

47 A con�guration with 2304 nodes at � = 2:0. : : : : : : : : : : : : : : : : 120

48 Using AVS to display parallel simulations over a distributed network : : 121

xi



Acknowledgements

Studying physics at Syracuse University has been a wonderful and memorable experi-

ence. I would like to extent my genuine gratitude to everyone involved without much

hope to do justice to all of them in this small note.

I thank my advisor Geo�rey Fox, for his encouragement and guidance as I pursued

research that combined physics and computational science. He not only provided me

with a precious environment that allowed me to completely focus on research, but also

with his insights pointed out a bright future direction as a professional career for me. I

also thank Paul Coddington for the guidance in computational physics that he provided

on each day throughout these years. I am especially grateful to Mark Bowick and Enzo

Marinari for giving me this thesis topic and pointing out my physics research directions.

Thanks also go to David Edelsohn, who taught me about UNIX and the C language,

and Paul Souder, who helped me write my �rst Monte Carlo simulation program used in

a Muonian experiment at Los Alamos National Lab. I also enjoyed fruitful discussions

with Allen Su, John Apostolakis and Marco Falcioni.

I thank the Physics Department of Syracuse University for providing the opportu-

nity for my graduate education and Northeast Parallel Architecture Center for superior

computer resources.

Finally, I thank Lejing Han and Hurang Hu for their constant help. I am greatly

indebted to my wife, Min Lu for her unending support. It is she who makes this endeavor

possible.

Leping Han

Syracuse, January 24, 1995

xii



1 Introduction

In the twentieth century, two di�erent formalisms have emerged which can in principle,

explain all known physical phenomena: general relativity, which gives us a compelling

description of the large scale structure of the universe, and the quantum theory, which

has uni�ed the theory of sub-atomic particles. It seems that nature at its most funda-

mental level, would have two sets of laws, based on two sets of principles, two sets of

equations, and operating on two di�erent scales. It seems hard to believe that nature

could create a world split in such an arti�cial fashion. Therefore, to �nd a combined

quantum theory of gravity is a major goal in physics today.

General relativity was historically derived from geometry. First came Einstein's

equivalence principle and the geometrical picture of general covariance. From the geom-

etry came a unique action, the Einstein-Hilbert action. Then came the classical theory of

curved manifolds. Last comes the yet un�nished quantum theory of gravitation. Thus,

the historical sequence can be viewed as follows:

Geometry ! Action! Classical Theory ! Quantum Theory

Electricity

Magnetism

Weak Force

Strong Force

Gravitation

Superstrings

Figure 1: Superstring is a possible candidate that can unite gravity with rest of the

particle forces

1



In late 70s and early 80s, string theory has emerged as the leading candidate for

a theory of all known forces, including a �nite theory of quantum gravity (Fig. 1).

However, string theory has its own di�culties. The most striking feature of quantum

string models is perhaps their prediction of a critical space-time dimension outside of

which the quantum theory is problematical. For one of the most popular models, the

bosonic model, the critical space-time dimension is 26.

The bad feature of the bosonic model is the presence of a tachyon in the spectrum,

which violates causality. It is natural to seek super-symmetric models with an equal

number of bosonic and fermionic variables. It is indeed a general rule of super-symmetry

that super-symmetric multiplets tend to cancel unwanted e�ects, which is related to the

zero point energy. Soon after that, Neveu and Schwarz found another bosonic model

realizing such a symmetry [1]. But this model is consistent (apart from the tachyons)

still only in speci�c critical dimensions of space-time, i.e. d = 10. It is still far away

from our physical space-time 4 dimensional space.

People are more interested in a string world-sheet with the standard action em-

bedded in a physically meaningful dimension. However, even just for dealing with 4

dimensional space, we still do not know how to de�ne the path integral as used in quan-

tum �eld theory. People then started to think of using lattice formulations. Dynamically

Triangulated Random Surfaces are considered to be a good discretized version of the

world-sheet. It is expected that if a phase transition is found in the discretized theory,

a well-de�ned path-integral is obtained. Thus, the formulation in the continuum limit

is found.

In my thesis, I present the results of a large-scale simulation of a Dynamically Tri-

angulated Random Surface with extrinsic curvature embedded in three-dimensional 
at

2



space. We measure a variety of local observables and use a �nite size scaling analysis

to characterize as much as possible the regime of crossover from crumpled to smooth

surfaces. We also will discuss the computational approach and the challenging issues

involved in the study.

All work presented here was done in a collaborative manner by the computational

physics group at Syracuse University. I have been particularly devoted to developing

the random surface program, optimizing the program, taking data and analyzing data

and parallelizing the random surface program on di�erent types of high performance

parallel computers.

First, I want to brie
y review several important �elds and the relations among them.

These �elds are string theory, quantum �eld theory, statistical mechanics, quantum

gravity and Monte Carlo simulation. They play a major role in modern physics. I have

been very excited and challenged by the fact that the study of random surfaces is more

or less related to di�erent aspects of all these �elds.

1.1 String Theory

In classical theory, a point particle is described by a vector which points from the origin

to the location of the particle x�(�), where � parameterizes the location of the point

along the trajectory. If the particle is a free relativistic particle that moves in space-

time, based on classical theory, its world line is time-like and also has minimal proper

length.

The appropriate action is

S = �m
Z
ds (1)

where m is the mass and ds is the path length along the world line (Fig. 2). The path

3



Classical Mechanics Quantum Mechanics

Figure 2: The essential di�erence between classical mechanics and quantum mechanics.

The action principle is more fundamental than the equation of motion at the quantum

level

length ds can be written in terms of the coordinates:

ds = �
q
_x2�d� (2)

where the dot refers to di�erentiation with respect to the parameter � .

Fig. 2 illustrates the essential di�erence between classical mechanics and quantum

mechanics. Classical mechanics assumes that a particle executes just one path between

two points based either on the equations of motion or on the minimization of the action.

By contrast, quantum mechanics sums the contributions of probability function (based

on action) for all possible paths between two points. Although the classical path is the

one most favored, in principle all possible paths contribute to the path integral. Thus,

the action principle is more fundamental than the equations of motion at the quantum

level.

One of the key properties of the action is its reparametrization invariance which

means the action is invariant under an arbitrary reparametrization of the variable � , ie

under a change of coordinates � ! ~�(�).

A string is a one-dimensional extended object. The world history of the string is a

4



Xµ (σ,τ)

τ

σ

Figure 3: The two-dimensional worldsheet swept out by a string

two-dimensional surfaces in space-time. The natural generalization of the particle case

is to postulate that a free string (with free boundaries if it is open) is described by a

surface with the following properties:

1. The surface is time-like, i.e., it possesses everywhere time-like and space-like

directions (except possibly at the boundaries).

2. It has extreme area, i.e., it is an \extremum surface."

A string is described by a vector which points from the origin to its location in space-

time X�(�; �). Strings sweep out two-dimensional surfaces as they move in space-time

(Fig. 3).

Let M be a �xed two dimensional manifold. Surfaces with the topology of M are

described by maps [2]

X :M! Rd: (3)

The parametric equations of the string world surface are

X� = X�(x�) (4)

where � = 0; 1; :::; d� 1 and � = 0; 1. We assume that x� � (�; �) provides a good

5



parameterization.

One possible formulation for the action of string as the area of the world sheet was

introduced by Nambu, Goto and Hara. The area A of the surface swept out by the

string is given by

A =

Z
M

d2x
q
j dethj (5)

where

hij =
@X�

@xi
@X�

@xj
(6)

is the induced metric in the surface embedded in d-dimensional space

ds2 = dX�dX� =
@X�

@xi
@X�

@xj
dxidxj (7)

The action of the free string is proportional to the area and hence given by the Nambu-

Goto action [3]

S [X�(x�)] = � 1

2��0

Z
�2

�1

d�

Z
�(open)or2�(closed)

0
d�
q
j dethj (8)

where �
0

is a constant with dimension of length-squared in units of �h.

The above action (8) has one drawback: it is not quadratic in the �elds. This is a

serious problem if one wants to quantize the string by means of path-integral methods,

for the usual Lagrangian form of the path integral is only valid for quadratic actions.

Polyakov [4] proposed that in the quantum theory one replace the area action by

an equivalent classical action that depends on an additional intrinsic metric gij (con-

tinuum model). The new action is a functional of both the intrinsic metric gij and the

coordinates X with the quadratic form:

S[X; g] =

Z
M

d2x
1

2

q
j det gjgij @X

�

@xi
@X�

@xj
: (9)

6



Surprisingly, almost all of the main features of the Nambu-Goto string have some

forms of analogue in the �rst quantized point particle theory. Many basic methods of

quantization can be carried over directly from the point particle case [3].

Classically, one can eliminates gij from the equation (9) algebraically and substitut-

ing this solution back to the action. The resulting expression is the Nambu-Goto action,

namely, the area of the world sheet (de�nitely a reparametrization-invariant expression).

Quantum mechanically the elimination of g involves performing a path integral [3]. In

general an extra \Liouville mode" is left over (the Weyl invariance is broken) except in

the special case of d = 26. There are many papers in the literature [2, 3, 5, 6] showing

the ways to derive the critical dimension, i.e., d = 26.

1.2 Quantum Field Theory

Any quantum theory has to be understood on the level of quantum �eld theory. So

does string theory. We can think of string theory as a �eld theory by direct analogy

with ordinary quantum �eld theory. The basic object of ordinary quantum �eld theory

is a �eld �(x�) where x� is a coordinate on space-time. The dynamics of this �eld can

be described by an action S[�]. Given S[�] one may then compute, e.g., the amplitude

A(x�; y�) for a particle observed at x� to appear at y� via functional integration:

A(x�; y�) =

Z
D�iS[�]�(x�)�(y�) (10)

In string theory, particles are replaced by strings. While the location of a particle is

described by a single coordinate x�, the location of a string is described by a function

x�(�), where � is a parameter along the string. One then wishes to compute. e.g., the

amplitude A[x�(�); y�(�)] for a string observed at x�(�) to appear at y�(�). This re-

7



quires a string �eld �[x�(�)] whose domain is the space of all con�gurations x�(�). Given

some action S[�], the amplitude may then be computed just as in ordinary quantum

�eld theory:

A[x�(�); y�(�)] =

Z
D�eiS[�]�[x�(�)]�[y�(�)] (11)

In summary, string �eld theory is quantum �eld theory with space-time replaced by

string space; i.e., the space of all string con�gurations.

But the key question again in string �eld theory is to �nd a suitable action S[�]. To

construct the action, what kinds of properties should the action have?

The principle of renormalizability tells us that the action should be constructed out

of covariant expressions in X� and gij which are of dimensions two or less and which

respect the Euclidean invariance of physical space-time. The most general such action

consists of three terms [2]:

S[X�; gij ] = A
1

2

Z
M

d2x
p
ggij@iX

�@jX
� + B

Z
M

d2x
p
g + C

1

4�

Z
M

d2x
p
gR (12)

The �rst term in the above is just the classical action we had previously discussed.

The second term is a cosmological constant. The third term is a topological invariant

called the Euler characteristic �:

�(M) =
1

4�

Z
M

d2x
p
gR: (13)

The Euler characteristic �(M) is related to the topology of the manifold via the relation

�(M) = 2� 2h� b; (14)

where h is the number of handles on the surface and b the number of boundaries.

8



1.3 Field Theory And Statistical Mechanics

The connection between �eld theory and statistical mechanics is best understood using

the Feynman path integral approach [7].

A standard computation in quantum mechanics is the probability amplitude for a

transition of a point particle from the initial state qi at time ti to the �nal state qf at

the time tf . It is called a propagator, and can be expressed in the Heisenberg picture as

K(qf tf ; qiti) = hqf tf jqitii (15)

The Feynman formulation of quantum mechanics states that

K(qf tf ; qiti) =
X

all possible paths

eiS=�h (16)

where S is the classical action for a path x(t) connecting the initial point to the �nal

point (Fig. 2). The sum over all possible paths is generally written as a \path integral"

(or functional integral)

K(qf tf ; qiti) =

Z
[Dx(t)]eiS=�h (17)

In the case of quantum �eld theory, the fundamental objects are not paths but �elds

�(x), and the propagators are vacuum expectation values of time ordered products of

the �elds. In the Feynman formulation they are expressed as

h�(x1)�(x2)i � h0jT [�(x1)�(x2)]j0i =
Z
[D�(x)]�(x1)�(x2)eiS=�h (18)

where the action is the space-time integral of the Lagrangian

S(�(x)) =

Z
d4xL(�(x)) (19)

The functional integral represents the sum over all possible �eld con�gurations �(x).

The vacuum expectation values of the above equation (18) can be obtained from a

9



\vacuum generating functional"

Z =

Z
[D�(x)]eiS=�h (20)

in a similar manner to the calculation of correlation functions and other thermodynamic

variables from the partition function

Z =
X
s

e�H(s)=kT (21)

in statistical mechanics. Here H is the Hamiltonian, kT is the Boltzmann constant

times the temperature, and the sum runs over all possible states of the system.

We wish to convert Z in equation (20) to a form similar to the partition function

in statistical mechanics. We change variables to imaginary time (called the Euclidean

time in quantum �eld theory), i.e. perform a Wick rotation t ! �it, the Euclidean

action SE = �iS and the function Z can be expressed as

Z =

Z
[D�(x)]e�SE=�h (22)

If we identify SE=�h with H=kT , the partition function of statistical mechanics and the

generating functional of Euclidean quantum �eld theory are formally identical. The

result provides the link between quantum �eld theory and statistical mechanics. The

�h appears here because we are dealing with quantum mechanics system. In classical

mechanics the actual path of the particle is determined by �nding an extremum for the

action S. In quantum mechanics all paths contribute to the probability amplitude with

a weight eiS=�h. And �h sets the scale of quantum 
uctuations just as the temperature

sets the scale for thermal 
uctuations. Correlation functions in statistical mechanics are

equivalent to Euclidean space propagators in �eld theory.

10



The equation (22) is purely formal until a workable de�nition is given to the func-

tional integral. For example, a free particle's path integral reads

�!
Z
Dx = lim

N ! 1

Z 3Y
i=1

NY
n=1

dxi;n (23)

where the index n labels N intermediate points that divide the interval between the

initial and the �nal coordinates. We will take the limit when N approaches in�nity. We

must also be able to regularize all the usual divergences. The lattice approach solves

both these problems. On a �nite lattice, the functional integral is approximated by a

well de�ned �nite dimensional integral, and (23) is obtained by taking the continuum

limit, in which the lattice spacing goes to zero while the lattice volume tends to in�nity.

It can be shown [8] that the correlation length � of a lattice �eld theory is related to the

mass gap m by

� � m�1 (24)

Having properly de�ned the Euclidean space generating functional and seen that it is

mathematically equivalent to a partition function, powerful techniques from statistical

mechanics such as low and high temperature expansions, mean �eld theory, renormaliza-

tion group analysis and Monte Carlo simulation may be applied to the study of quantum

�eld theory. Such techniques are especially useful when the theory is discretized onto a

lattice.

Over the past 60 years, many predictions of the Standard Model of elementary

particle interactions, including predictions from QED and QCD, have been con�rmed

to a high degree of accuracy by accelerator experiments. Exact solutions of the QFT

equations do not exist at this time. In most cases the predictions of the standard

model have been obtained using perturbation theory because electro-magnetic, weak,

11



and strong interactions at high energies involve small values of the coupling constant.

Small values are especially applicable for scattering experiments involving electrons or

protons at very high energies of 100 Gev and more. However, other phenomena such

as nuclear structure, proton structure, and nuclear matter occur at high coupling and

therefore prohibit the use of perturbation theory. One of the most important challenges

facing quantum �eld theorists today is to solve QFT in the nonperturbative regime.

A potential solution to this challenge was found in the late 1970s and early 90s, with

the development of a formalism called lattice �eld theory (LFT). In its most useful

formulation, LFT makes much use of numerical techniques, particularly Monte Carlo

methods familiar in condensed-matter physics. The application of LFT to the strong

interactions has required hundreds and sometimes thousands of hours of supercomputer

time. LFT has helped spur the development of supercomputers { especially parallel

architectures, as LFT requires only local interactions.

It is hoped that the experience learned from LFT can be applied to the study of

string theory or even more directly to random surfaces. Therefore, in the context of

random surfaces, we want to use the path integral approach to quantize strings with the

partition function is given by

Z =
X

surfaces

exp(�area): (25)

where one is supposed to sum over surfaces with all topologies.

1.4 Quantum Gravity

As we mentioned above, one of the key motivations of studying string theory is to �nd

a theory that contains quantum gravity. Quantum Field Theory and the theory of

12



General Relativity are, separately, probably the two most successful physical theories of

this century. Nobody has yet been able to bring the two together into one complete and

consistent quantum theory of gravity.

Thus, the construction of a theory of quantum gravity which encompasses both Gen-

eral Relativity(GR), or some of its extensions, and the principles of Quantum Mechanics

is one of the most di�cult and exciting problems of theoretical physics. It is well-known

that there are at least two basic di�culties. Firstly, one major impediment to such a

theory is that, unlike gauge �eld theories, gravity with the Einstein-Hilbert action

S =
1

16�GN

Z
d4x

p
gR (26)

is not renormalizable, at least not by the usual methods of perturbation theory. Secondly,

the Einstein equations (the evolution equations for the metric) are derived from an action

principle, but the Einstein-Hilbert action is unbounded from below, and a naive path

integral formulation of a quantum theory is expected to be mathematically ill de�ned.

Among a list of attempts to de�ne quantum gravity including canonical quantum gravity,

standard �eld theory using perturbation theory, quantum �eld theory in curved space

time, the path integral approach to Euclidean quantum gravity, quantum cosmology,

discrete models of quantum gravity, and topological �eld theory [9, 10]. There is not

a single proposal for a quantum theory of gravity that is self-consistent as a physical

theory, even allowing for a great deal of incompleteness. If one examines the theories

closely, they are not 
awless to begin with.

Although quantum �eld theory and general relativity seem totally incompatible, the

past two decades of intense theoretical research have made it increasingly clear that

the secret to this mystery most lies in the power of gauge symmetry. At present, the

13



most promising hope for a truly uni�ed and �nite description of these two fundamental

theories is the superstring theory (Fig. 1). Superstrings possess by far the largest set of

gauge symmetries ever found in physics. This has lead a number of physicists to adopt

the position that General Relativity is only the low energy limit of some other quantum

theory, such as superstring theory. To pursue a quantum theory of gravity, one needs a

nonperturbative method of calculation: the methods of lattice �eld theory, which have

already been applied to gauge theories, are immediately suggested.

In the lattice formulations of quantum gravity, one tries to construct a discretization

procedure which makes the functional integration over metrics (or over the other de-

grees of freedom which describe classical gravity) meaningful, by truncating this in�nite

dimensional integral into a sum over a �nite number of variables. Then one should look

for critical values of the parameters (the coupling constants) of the discretized theory

where a scaling behavior occurs, so that the details of the discretization become irrele-

vant and a continuum theory can be constructed. This lattice approach has been very

successful for studying ordinary relativistic quantum �eld theories, such as non-Abelian

gauge theories. When trying to apply these ideas to General Relativity one hopes that

a quantum theory can be obtained from a path integral formulation based on the La-

grangian formulation of General Relativity, namely from the Einstein-Hilbert action,

which is a functional of the metric tensor g, taken as the dynamical variable.

Therefore, we are lead to consider the functional integral over the Euclidean metric

Z
D[g]eSE[g] (27)

with the Euclidean EinsteinHilbert action

SE [g] =
1

16�GN

Z
dDx

q
jgj(�R+�) (28)

14



Figure 4: A biological membrane composed of a lipid bilayer: two layers of amphiphilic

molecules with polar hydrophilic heads and long hydrophobic hydrocarbon tails.

where D is the dimension of space-time, GN Newton's constant and � the cosmological

constant.

1.5 Random Surfaces

More recently the connection between random surfaces, quantum gravity and string the-

ory has been the subject of many investigations. In statistical mechanics and condensed

matter physics problems involving interfaces (for instance wetting) or two dimensional

defects (for instance charge density waves), as well as two dimensional �lms or mem-

branes [11], such as monolayer of surfactant molecules at an oil-water interface in a

microemulsion, cell membranes and liquid membranes as shown in (Fig. 4), are natu-

rally formulated in terms of 
uctuating surfaces.

In string theory, the worldsheet must 
uctuate as one is required to integrate over

all admissible metrics to enforce di�eomorphism (reparametrization) invariance. In this

way new intrinsic degrees of freedom (the conformal modes of the metric) enter the the-

ory. From the statistical mechanics viewpoint one is thus dealing with an exciting class

of models described by certain order �elds living on a 
uctuating substrate. Averaging

over metrics corresponds to being in the universality class of translationally and orienta-

15



tionally disordered 
uctuating surfaces or membranes. These are often called liquid-like

membranes, as opposed to crystalline or hexatic membranes that are translationally or

orientationally ordered respectively [12]. The remarkable fact is that these statistical

mechanical models de�ned on a random mesh are, in a sense, easier to solve than the

conventional models de�ned on a rigid regular lattice. This is because di�eomorphism

invariance reduces the number of e�ective degrees of freedom. It is even possible to admit


uctuations which change the topology of the surface (growth or collapse of handles).

This is certainly of great interest as a model of gravity but also provides the basis

for an exploration of membranes. Recently, particularly simple models corresponding

to certain types of conformal matter coupled to 2d-gravity have been exactly solved

including the sum over all possible topologies [13, 14, 15]. The idea for the theory of

surfaces embedded in D � 1, advocated by various authors [16, 17] that random lattices

may provide a sensible discretization of two dimensional Euclidean quantum gravity was

con�rmed quantitatively. Exact results for the continuum theory, obtained by conformal

�elds theory methods, are in agreement with exact solutions for the discretized models.

Hoping to understand more in other than dimension D � 1, one wants to perform

the functional integral by de�ning the integral on a lattice. We know that if there is a

phase transition at a certain point, we can say that this point is the �xed point, and we

can make a continuum limit around this point, since the details of the discretization is

not important.

In the search for a discretized version of a bosonic string theory, the model of tri-

angulated random surfaces with Gaussian action was proposed in 1985 [16]. It was

hoped that this formulation could be used to understand the properties of a bosonic

string in sub-critical dimensions d < 26. Investigations carried out over the past few

16



years seem, however, to indicate that for any d > 1, it degenerates into a theory of

branched polymers [18, 19, 22, 20], Lattice approach also show the surfaces are crumple

[23, 24, 25, 26].

To overcome this problem it was suggested to add to the action a new term, propor-

tional to the extrinsic curvature [23, 24, 25, 26], which would smoothen the surface and

possibly avoid the collapse into a branched polymer. The importance of the extrinsic

curvature for the description of surfaces was pointed out many years ago in condensed

matter and biophysics [27, 47]. On a triangulated surface various forms of this term

have been investigated [28].

In spite of many new ideas and exciting development in random surfaces, we have to

admit that this approach has not established a very clear relationship to the continuum

theory. Here we are concerned with an attempt to regularize the formal Euclidean

path integral for quantum gravity by a discretization of the integration over the space

of metrics. Such a regularization may lead to a well de�ned theory. However it may

be completely unrelated to the \correct" quantum theory of gravity in 4 dimensional

real space. The relevant question to ask is therefore whether the such a regularized

path integral leads to reasonable physical statements. A much more modest goal is to

understand the statistical model resulting from such a discretization, and this is what

we want to study, since random surface models have a range of applications in physics

and many other �elds.

1.6 Monte Carlo Simulation

In the previous section we discussed brie
y the Monte Carlo method which is widely

used to perform computer simulations of path integrals or statistical systems. We now

17



present a detailed review of the Monte Carlo algorithm in the this section.

In statistical mechanics, generally we use two approaches, analytic methods and

Monte Carlo methods. Analytic methods are almost always approximations. There

are very few exact solutions. We know they are good for understanding basic physics,

but often break down in regions of interest such as phase transitions and we have little

knowledge or control of errors, which are not easily systematically improvable.

Monte Carlo calculations usually involve sums or integrals over very large number

of dimensions or con�gurations. We can compute quantities for any parameter values

(including where analytic methods don't work). Errors can be estimated, and are sys-

tematically improvable by using more sample con�gurations and larger systems (i.e.

more computer power!).

A typical example of the use of Monte Carlo method is for performing integrals.

Instead of choosing xi at regular intervals in the discretized integral (29), just choose

them at random. The error is purely statistical, / 1=
p
N independent of the dimension

of the integral. Other numerical integration methods have error / 1=N1=d [29].

I =

Z
b

a

f(x)dx � (b� a)

N

NX
i=1

f(xi) (29)

When using Monte Carlo simulation in physical system, we want to use computer

to generate possible con�gurations of the system and measure averages of physically

measurable quantities. The measurement average of a physical observable f is

hfi =
X
C

p(C)f(C) (30)

where f(C) is the value of observable f for the con�guration C, p(C) is the probability

distribution for the con�guration as a function of system parameters, and the sum is

over all con�gurations.

18



A fundamental result in statistical mechanics is that p is the Boltzmann distribution,

which is is de�ned by

p(C) =
1

Z
e�SE (31)

where SE is the Hamiltonian of the con�guration and Z is called partition function and

de�ned by

Z =
X
C

e�SE (32)

The partition function is a fundamental quantity in statistical mechanics. All quan-

tities of interest can be extracted from Z, so an analytic formula for Z implies an exact

solution of the model. The sum will actually be an integral if the space of possible

con�gurations is continuous rather than discrete.

To calculate sums, we resort to Monte Carlo techniques. As with the Monte Carlo

integration mentioned earlier, we could just generate con�gurations at random, and

approximate the measurement of the observable by Monte Carlo averages.

The problem here is that because of the rapidly varying exponential function in the

Boltzmann distribution, most randomly chosen con�gurations will make a negligible

contribution to the sum, since SE will be relatively large. One can estimate that if we

want to calculate the exact partition function Z numerically for Ising model to solve for

a 32 � 32 lattice, we would run this calculation for the age of the universe even using

the fastest computer.

In order to get sensible, accurate results when simulating statistical systems with a

rapidly varying Boltzmann distribution, it is vital to use the idea of importance sampling

in Monte Carlo integration.

Clearly the ideal situation would be to sample con�gurations with a probability given

19



by their Boltzmann weight p(C). Then the Monte Carlo average for f would just be:

f =
1

N

NX
i=1

f(Ci)

The next question is how to construct the sampling probability distribution p(Ci).

Let us set up a so-called Markov chain of con�gurations Ct by the introduction of a

�ctitious dynamics. The \time" t is computer time (marking the number of iterations of

the procedure), NOT real time { our statistical system is considered to be in equilibrium,

and thus time invariant.

Let P (A; t) be the probability of being in con�guration A at time t.

Let W (A!B) be the probability per unit time, or transition probability, of going

from A to B. Then:

P (A; t+ 1) = P (A; t) +
X
B

[W (B ! A)P (B; t)�W (A! B)P (A; t)] (33)

At large t, once the arbitrary initial con�guration is \forgotten," we want P (A; t) !

p(A).

For an equilibrium (time independent) probability distribution clearly a su�cient

(but not necessary) condition is the so-called detailed balance condition

W (A! B)P (A; t) = W (B ! A)P (B; t) (34)

This method can be used for any probability distribution, but if we choose the Boltzmann

distribution

W (A! B)

W (B ! A)
=
p(B)

p(A)
=
e�SE (B)

e�SE (A)
= e��SE (35)

where

�SE = SE(B)� SE(A) (36)

20



Note that Z does not appear in this expression. We can calculate the SE based on

the system Hamiltonian.

This dynamic method of generating an arbitrary probability distribution was in-

vented by Metropolis et al [30]. There are many possible choices of the W 's which will

satisfy detailed balance. They chose a very simple one:

W (A!B) = e��E=kT if �E > 0

= 1 if �E � 0

So, if E(B) > E(A)

W (A!B)

W (B!A)
=

e�[E(B)�E(A)]=kT

1
= e��E=kT

and if E(B) � E(A)

W (A!B)

W (B!A)
=

1

e�[E(A)�E(B)]=kT
= e��E=kT

So we have a valid Monte Carlo algorithm if:

� We have a means of generating a new con�gurationB from a previous con�guration

A such that the transition probability W (A!B) satis�es detailed balance

� The generation procedure is ergodic, i.e. every con�guration can be reached from

every other con�guration in a �nite number of iterations

The Metropolis algorithm satis�es the �rst criterion for all statistical systems. The

second criterion is model dependent, and not always true (e.g. for a system at T = 0).

Note that the Metropolis algorithm does not specify how the changes to the con�g-

uration should be made | it just says that any proposed change to the system should

be accepted with a certain probability that depends on the change in energy.

How the changes are made depends on the variables and the model being studied.

The only constraints on the update procedure are the two given above, ie, it should be

21



ergodic and it should not be biased in such a way as to violate detailed balance. Another

issue is e�ciency | the procedure should sample the con�guration space as e�ectively

as possible. There is often some freedom in tuning the algorithm to improve e�ciency

and performance.

The Monte Carlo evaluation of the path-integral (22) in Dynamically triangulated

random surfaces (DTRS) is to construct a Markov chain fTig of triangulations with

equilibrium con�guration exp(�SE) so that

hfi = lim
n!1

1

n

nX
i=1

f(Ti): (37)

Of interest is the phase diagram obtained for di�erent coupling constant.

When studying any macroscopic system with a very large number of degrees of free-

dom, one invariably makes an approximation and simulate a smaller and/or discretized

model system. This introduces systematic errors called �nite size e�ects. To over-

come this, usually one does a number of simulations at di�erent system sizes and then

extrapolates to an in�nite system.

For a �nite system, one would get rounded peaks rather than divergences. The peaks

narrow and increase in height as the lattice size is increased, and the location of the

peak shifts slightly [31].

Many problems require an empirical extrapolation to an in�nite system. In some

instances, such as at second order phase transitions, the form of the asymptotic (large

lattice size L) behavior is known. I do not want to discuss these relationships in detail.

However, these relations are extremely useful, and even allow us to extract exponents

and the critical coupling value at in�nite lattice size. However this method works only

if we are at \large enough" L. If � is very large (but not in�nite), may get incorrect

22



\pseudo-critical" exponents.

This is often the case at a \weakly" �rst order transition (very small latent heat). So

it is often very di�cult to distinguish between a �rst and second order phase transition,

or even to say for sure if there is a phase transition at all | is � = 1, or just � � L?

In this case we may need extremely large system sizes to get correct results.

In general, one doesn't know the form of the �nite size scaling. Usually One would try

to �t data to a scaling function, or go to large enough systems so that results approach a

constant (ie, are independent of lattice size) or one can do a simple linear extrapolation.

Although Monte Carlo simulation (using the Metropolis algorithm, for example) ap-

pears very straightforward, there are in fact many problems and subtleties that can trap

the unwary and produce unreliable results [31, 32]. The simulations and the interpreta-

tion of the results must be done with great care.

23



2 Random Surfaces

String theory has been conjectured to describe the underlying fundamental physics of a

wide variety of physical phenomena and models. In its simplest form, the bosonic string,

it is a theory of free 
uctuating surfaces. The functional integral for the Euclideanized

bosonic string is just the partition function for an ensemble of random 
uctuating 
uid

surfaces. Such surfaces are also ubiquitous in nature, being found for example in macro-

emulsions and the lipid bilayers that form an important part of cell membranes [57].

These systems are 
uid because their component `molecules' are loosely bound. Their

constituents are arranged so that the net surface tension (nearly) vanishes; thus these

membranes are subject to large thermal 
uctuations. In one important respect, however,

these chemical/biological membranes di�er fundamentally from the surfaces we discuss

and simulate; they are self-avoiding. The world-sheets of the bosonic string, in contrast,

generically self-intersect.

The theory of 2d 
uid random surfaces embedded in R3, with an extrinsic curvature

term (bending rigidity) in the action, has received considerable analytical and numerical

attention in the last decade [57, 42, 59]. This is the action that has been primarily

investigated throughout the study of random surfaces presented here.

2.1 2D Gravity and Random Surfaces

2.1.1 The Motivation for Random Surfaces { Continuum Model

Let us start by considering only a 
uctuating 2d-surface with no matter (order �elds)

at all. Since there are no embedding string coordinates it is also a model of strings in

zero dimensions. The Einstein-Hilbert action with a cosmological constant term for 2d

24



1 2
(ξ  , ξ  )

1 2
(ξ  , ξ  )

1 2
(ξ  , ξ  )

X
µ

Σ

Figure 5: String worldsheet with intrinsic coordinates �1 and �2.

gravity is [37]

S[g] =
�1
16�G

Z
�
d2�

p
gR+ �

Z
�
d2�

p
g (38)

where g��(�1; �2) is the 2d metric of the Riemann surface � with coordinates �1 and �2

(Fig. 5). These strings sweep out two-dimensional Riemann surfaces as they evolve in

Euclidean time. In the �rst quantized description of string theory one may view the

string coordinates describing the embedding of the worldsheet in the target space-time

as a collection of scalar �elds living on the worldsheet (Fig. 6).

Figure 6: Fluctuations in the topology of worldsheet

The partition function Z then depends on two variables, Newton's constant G and

the cosmological constant �

Z[G; �] =

Z
[Dg] e�S[g] (39)

25



where the path integral is over all admissible metrics of Riemann surfaces �. In two

dimensions the action (38) is simple since the �rst term is a topological invariant by the

Gauss-Bonnet theorem

S =
��(�)
4G

+ �A(�) (40)

where � is the Euler characteristic of � and A is the area. � is related to the number of

handles, or genus h, by � = 2� 2h, where for simplicity we are assuming � to be closed

(without boundaries). The partition function thus reduces to

Z [G; �] =
X
h

Z
dAe

�

4G e��A
h(A) (41)

where 
h(A) is the density of states of Riemann surfaces � of �xed area A and genus h,


h(A) �
Z
(h;A)

Dg�� (42)


h(A) is very di�cult to calculate as h increases and the sum over genus in (41) diverges

[60].

The above expressions are all, in fact, ill-de�ned. To give them meaning we must

regularize the path integrals.

2.1.2 The Discretization of Random Surfaces { Dynamically Triangulated

Random Surfaces

We are concerned primarily with the Polyakov form of the string action [4], in which an

additional intrinsic metric gij is introduced to describe the surface geometry since this

form of action would lead to the discretization of the surfaces more naturally.

One approach is to discretize by replacing � by a lattice. A particularly concrete

and appealing discretization is to consider all triangulations (or more generally cellular

decompositions) of �. The surface is thus replaced by a discrete set of n points (vertices)

26



n1 n2

Figure 7: Surface discretized into triangulations each characterized by a unit normal

labelled by an index i. The connectivity of the lattice is described by the adjacency

matrix

Cij =

8>>><
>>>:

1 if i and j are connected by a link

0 otherwise

(43)

This de�nes a metric on the lattice by �xing all links to have length one in the intrinsic

metric. Thus all triangles (cells) in the triangulation are equilateral and of �xed area.

In this case, the coordination number at each vertex determines the intrinsic cur-

vature of the surface. The coordinates i label the vertices of the triangulation. Then

the discrete analogue of the intrinsic metric is the adjacency matrix Cij whose elements

equal 1 if i and j label neighboring nodes of the triangulation, and vanish otherwise.

Two-dimensional di�eomorphism invariance reduces to the permutation symmetry of

the adjacency matrix at this discrete level. One of the keys, in fact, to the power of this

construction is the preservation of this symmetry. Each vertex of the triangulation is

embedded in R3 via the mapping X�

i
(Fig. 7).

Given the embedding X , we can also associate a unit normal vector (n�)
k̂
with each

triangle on the surface (Roman indices with hats label the triangles). Note that all of

27



the surface curvature of the triangulations is concentrated along the links and vertices.

The surface is still 
at in the direction tangent (but not transverse) to each link, so that

the mean curvature has support on the links, while the Gaussian curvature is non-zero

only at the vertices.

The Euler characteristic follows from Euler's relation � = V �E+F , for V vertices,

E edges (links) and F faces (triangles). Local curvature (intrinsic curvature) is de�ned

by means of the de�cit angle

Ri = �
(6� qi)

qi
; (44)

where qi denotes the connectivity of the lattice at vertex i.

qi =
X
j

Cij (45)

The Gaussian curvature K on the other hand is expressed in terms of the de�cit angle

in the embedding space (see Chapter 3).

To simulate the integral over metrics the adjacency matrix must be allowed to 
uctu-

ate so that the coordination number of a node becomes a dynamical degree of freedom.

The local environment of a node is constantly changing. This considerably complicates

the study of such models from a computational point of view but also makes them more

interesting. These models are called Dynamically Triangulated Random Surfaces DTRS

[16]. The basic move to update Cij is a 
ip on a fundamental parallelogram of two

triangles sharing a common edge (Fig. 8).

The discrete version of the partition function (41) replaces integrals over metrics by

sums over admissible triangulations and may be written in the form

Z[G; �] =
1X
h=0

e
2�2h
4G

1X
n=0

e��nZh;n (46)

28



 A

D

B

C

A B

C

D

FLIP

Figure 8: Edge 
ipping

where Zh;n is the number of distinct triangulations with n vertices and genus h. Zh;n is

a discrete version of 
h(A), since A is proportional to the n for �xed area elementary

triangles.

2.1.3 The Problem with the Model

It has been shown [13] that by including particular kinds of matter living on the surface,

the string susceptibility can be expressed as


h = 2� (1� h)

12

�
25� c+

q
(1� c)(25� c)

�
(47)

where c is called central charge, which measures the response of the free energy to the

local curvature of freedom of the model. If c = 1, the mean surface area

hAi = �@ logZ
@�

(48)

diverges as 1
���c

[14], where �c is the critical cosmological constant.

Diverging surface area is an indication of criticality. Near �c one may thus construct

a continuum limit with associated critical exponents that are universal in the sense that

they do not depend on the �ne details of the lattice.

Suppose now that we wish to describe more realistic string models corresponding to

surfaces embedded in a target space of dimensionality d greater than one. The surface is

29



given by x�(�1; �2) (� = 1; :::; d). These models have c > 1 [33]. An immediate problem

is then apparent from equation (47). According to the continuum results the string

susceptibility is imaginary for 1 < c < 25. This suggests that the model has an inherent

instability.

Analytical and computational investigations [23, 24, 25, 26, 33] established that

the continuum limit of these models is dominated by surfaces which degenerate into a

branched tree of tubes of diameter of order the lattice spacing. These are called branched

polymer con�gurations and are more one-dimensional than two-dimensional. The origin

of these spikes is clear in the Nambu-Goto formulation since an in�nitesimally thin long

tube has vanishing area and is therefore not suppressed by the area action. The large

entropy for such con�gurations eventually dominates the statistical mechanics of these

surfaces. The Polyakov action has been shown to be in the same universality class.

2.2 Extrinsic Curvature

2.2.1 The Construction of Extrinsic Curvature

Since the tubes of the branched polymers have a high extrinsic curvature it is possible

to suppress these (and other irregular) con�gurations by adding a bending rigidity term

to the action [18, 21, 34].

To write down the action, we introduce an explicit parametrization of a generic

surface M in R3 with coordinates (�1; �2) and the embedding X�(�i). � runs from 1

to 3, since we only study the case of a 3d embedding space (see Fig. 9). The induced

metric (the pullback of the Euclidean R3 metric via the embedding) is given by

hij = @�iX
�@�jX� : (49)

30



Figure 9: Surface coordinates (�1, �2) and embedding coordinates X�(�i)

We will use Greek letters for the embedding space indices; they can be raised and

lowered at will since our background space is 
at. Associated with each point in M are

tangent vectors t�
i
and a normal vector n� (see Fig. 10). The extrinsic curvature matrix

Kij can be de�ned by

@in
� = �Kijt

�j : (50)

The eigenvalues of this matrix are the inverses of the radii of curvature of M. In

three dimensions the extrinsic matrix Kij writes

Kij =

0
BBB@

1=r1 0

0 1=r2

1
CCCA (51)

31



Figure 10: The tangent directions and normal direction at point P.

where ri are the principal radii of curvature associated with the two principal directions

at every point on the surface (see Fig. 11).

One usually describes the geometry of these surfaces in terms of the mean curvature

[35, 36]

H =
1

2
hijKij ; (52)

and the Gaussian curvature

K = �ik�jlKijKkl : (53)

where � is the totally antisymmetric matrix, i.e., �11 = �22 = 0 and �21 = ��12 = 1.

One can show that the Gaussian curvature can be computed solely from the met-

ric hij , while the mean curvature depends explicitly on the embedding X�. In three

32



Figure 11: The two principal directions 1 and 2 at a saddle point

dimensions the mean curvature is

H =
1

2
Tr(Kij) =

1

r1
+

1

r2
(54)

where ri are the principal radii of curvature of the surface, and the Gauss curvature is

K = det(Kij) =
1

r1r2
(55)

The extrinsic curvature action is de�ned as

SEC = �

Z
d2�

p
h(TrK)2 (56)

Its discrete form may be written as

SEC = �
X
<ij>

(1� n̂i � n̂j) (57)

where i and j represent triangles that share a common edge and n̂i is the unit normal

to triangle i (Fig. 12).

33



i

j

n i

nj
normal

Figure 12: The normals of two adjacent triangles

n(0) n( ξ  , ξ  )
1 2

Figure 13: Two normals at two di�erent points on a surface

2.2.2 Perspective { with Extrinsic Curvature

From Fig. 12 and equation (54) SEC given in (57) clearly suppresses local 
uctuations

in the mean curvature of the surface. But the key question is whether there is long-

range order in the normals to the surface (see Fig. 13). The bending rigidity is, in fact,

a running coupling | it depends on the scale at which it is measured. A perturba-

tive calculation in the inverse coupling ��1 reveals that strings with bending rigidity

are asymptotically free in the same sense as Quantum Chromodynamics. Fluctuations

screen the theory and soften the e�ective bending rigidity as the length scale increases.

34



The momentum p dependence of � is found to be [18]

��1(p) =
��10

1� d

2

�
�1

0

2�
log�

p

(58)

where � is the cuto� or inverse lattice spacing and d is the dimensionality of the target

space. At large length scales � tends to zero and there is no suppression of 
uctuations

in the alignment of normals to the surface. The two-point function decays exponentially

< n̂(�1; �2) � n̂(0) >= e
�

j�j

�p (59)

with persistence length �p. Thus the surface is always disordered or crumpled at length

scales r exceeding �p. This conclusion is of considerable interest in the study of liquid

membranes as well. A typical example of a liquid membrane found in nature (which

can also be manufactured in the laboratory) is a lipid bilayer (Fig. 4). It consists of

two layers of amphiphilic molecules with polar hydrophilic heads and long hydrophobic

hydrocarbon tails. These bilayers arrange themselves in thin extended sheets. Within

the bilayer individual molecules are quite free to di�use, so that the in-plane elastic

constants turn out to be very low. Another candidate liquid membrane is a monolayer

of surfactant molecules at an oil-water interface in a micro-emulsion. In fact any 
exible

interface between three-dimensional phases is a candidate system for a liquid membrane

model. We see here a beautiful interplay between string theory, quantum gravity and

the statistical mechanics of 
uctuating liquid membranes [37].

2.3 The Model of Random Surfaces used in the simulations

We studied the theory de�ned by the action

S = SGauss + �SEC =
X
i;j;�

Cij(X
�

i
�X

�

j
)2 + �

X
<ij>

(1� n
�

k̂
� n�

l̂
) : (60)

35



where SGauss is the discrete form of Polyakov Action (9), SEC is the discrete form of

extrinsic curvature action and Cij is the adjacency matrix (43). Thus, for � > 0, we

have introduced a ferromagnetic interaction in the surface normals. The model de�ned

by this action has been studied in [38, 39, 40, 41, 42, 43] and references therein.

From (50) and the de�nition of the induced metric, it follows that equation (60) is

a discretization of the continuum action [42, 44]

S =

Z
d2�
q
jdet gj(gij@iX�@jX

� +
�

2
gijhklKikKjl) (61)

Note that the second term in this action is manifestly positive and reparametrization

invariant, and that � is a dimensionless coupling. So, naively, it is not clear whether it

is relevant or not. If it were relevant, one would then anticipate that (since it obeys all

of the appropriate symmetries) it should be e�ectively generated in any string action,

and that it should engender ordering of the normals. It should then lead to another

renormalization group (RG) �xed point at a �nite value of �, which would characterize

a phase transition between the crumpled phase (observed when � = 0) and a renor-

malization `smooth(er)' phase. The extrinsic curvature term is also higher-derivative,

indicating that the �eld theory described by this action is non-unitary. This fact alone

does not imply that the associated string-scattering amplitudes do not satisfy unitarity.

Polchinski and Yang [45] do, however, contend that in this case the string theory will

not be unitary. Even if this were so, this model could still be an appropriate description

of the statistical mechanics of 
uctuating surfaces, although not one corresponding to

a physical fundamental string theory. Braaten and Zachos [46] have also showed that

the generic static classical solutions of a similar higher-derivative theory of rigid strings

are unstable. This would also imply that these actions could only be the basis for ef-

36



fective, but not fundamental, quantum theories of strings. We proceed �rst to review

previous work which has addressed the question of whether or not these theories exhibit

a crumpling transition.

2.3.1 Previous Analytical Work

A group analysis [18, 20, 22, 47] indicates, however, that there should be no phase

transition at �nite coupling when such extrinsic curvature dependent operators are added

to the action. The computations of refs. [20, 22, 47] use the action

S =

Z
d2� (�0

p
deth +

1

�

p
det h(hijKij)

2) ; (62)

in the regime in which the string tension �0 is small (unlike the usual particle physics

limit of string theory, which is characterized by large �0). In (62) � is the inverse

of coupling constant. After integrating out 
uctuations of the embedding X� between

momentum scales � and ~�, it is found that the renormalization of the extrinsic curvature

coupling is given to one-loop order by

�(�) � �
d�

d�
= � 3

4�
�2 ; (63)

so that � is driven to in�nity in the infra-red. This theory thus exhibits asymptotic free-

dom. Surfaces are smooth (the normals are correlated) below a persistence length[19].

�p � exp(
4�

3�bare
) ; (64)

and are disordered above this scale. Some intuition into this result can be gained by

observing that this theory is similar to the O(3) sigma model, which is asymptotically

free [48]. The normals to M are the analogues of O(3) vectors, though in this case they

are constrained to be normal to a surface governed by the action (61).

37



Without the extrinsic curvature term, (62) is the Nambu-Goto action, while (61),

which we use in our simulations, is based on the action quantized by Polyakov. Classi-

cally (when the equations of motion for the Polyakov action are solved and substituted

back into the action) the two actions are equivalent. It has also been demonstrated [49]

that the two quantizations are equivalent in the critical dimension D = 26. In lower

dimensions (note that the Nambu-Goto action clearly does not make sense for D < 2),

it is not so clear that quantizations `based' on the two actions are indeed the same. The

work of Polchinski and Strominger [50] suggests that there are alternative quantizations.

Distler [51] has also questioned the equivalence of these quantizations in D = 3. Indeed,

even if the two quantizations are equivalent, it does not automatically follow that the

two theories are still the same once an extrinsic curvature dependent term has been

added.

In fact, Polyakov in [18] uses a hybrid form of the action (62) and still obtains the

same result for the beta function. He introduces an intrinsic metric gij, chooses the

conformal gauge gij = ��ij and considers

S =
1

2�

Z
d2�(�o�+ ��1(@2X�)(@2X�) + �ij(@iX

�@jX
� � ��ij)) : (65)

Classically, the Lagrange multiplier �ij constrains the intrinsic metric to equal the in-

duced metric (this equality is not enforced by the classical equations of motion for the

original Polyakov action). This constraint should be relaxed quantum mechanically if,

as Polyakov [48] argues, the condensate of this Lagrange multiplier assumes a value of

the order of the momentum cuto�. If this dynamical assumption is correct, then one

can essentially derive the equivalence of this Nambu-Goto like and the original Polyakov

quantizations. In the large D (embedding dimension) limit, saddle point calculations

38



[52] show that � indeed does acquire a large expectation value, and that for small values

of the string tension �o, the coupling � is asymptotically free, as the RG calculations

suggest.

There are, however, a couple of caveats and suggestions in the analytic literature that

do allow for the existence of a crumpling transition for 
uid surfaces. Polyakov remarks

that if, in the infrared region, 
uctuations of the internal geometry (�) are suppressed

relative to 
uctuations of the extrinsic metric, then the beta function is proportional

to � and hence the continuum limit of the theory exhibits non-trivial scaling behavior;

this presumably cannot be the case in the large D limit. Another RG calculation,

performed by Yang [53] using the Polchinski-Strominger action [50] with an extrinsic

curvature dependent term, indicates that the two-loop correction (which is proportional

to �3) might be large enough to yield a zero of the beta function, and thus a non-trivial

infrared �xed point. The Polchinski-Strominger action is based on the assumption that

the Liouville mode � e�ectively decouples (its mass is much greater than the momentum

scale set by the string tension); it is not clear why this assumption should hold for the

model that we simulate. Finally, note that these computations are perturbative (in 1=D

or �). It is possible that non-perturbative e�ects could drive a crumpling transition.

2.3.2 Previous Numerical Evidence

Monte Carlo simulations of the action (61) on dynamically triangulated random sur-

faces (DTRS) were �rst performed by Catterall [38], and shortly thereafter by Baillie,

Johnston, and Williams [39, 40] and Catterall, Kogut and Renken [43]. They simulated

triangulations with the topology of the sphere, and measured the speci�c heat

C(�) � �2

N
(< S2

E
> � < SE >2) ; (66)

39



on surfaces with up to N = 144 nodes (and N = 288 nodes in [41]). They found a peak

in the speci�c heat; the peak size appeared to grow with N . A similar model that can

be vectorized rather straightforwardly was also considered; the set of planar �3 graphs

was simulated [43, 54]. Each vertex of these �3 graphs was embedded in R3 and the

action (61) was used; graphs of up to 1000 nodes were simulated (these would be dual to

500 node triangulations). It was found that the speci�c heat peak grew with N , albeit

slowly, as

Cmax = AN! + B ; (67)

with ! = 0:185(50). Further work by Ambj�rn et al [41, 42], using dynamical triangu-

lations with the topology of the torus and lattices with up to N = 576 nodes, indicated

that the rate of increase of the peak height severely diminishes with increasing N . The

data strongly suggests that in fact the speci�c heat peak height does not diverge as

N ! 1. These authors also measured the bare string tension and mass gap, by em-

bedding the torus in a background toroidal space spanned by a loop, and measuring the

dependence of the free energy on the loop size. They found that these measurements

(when taken for � values near the peak position) are consistent with the appropriate

scaling relations (with vanishing bare string tension and mass gap, i.e. correlation length

tends to be in�nite because of the relation (24)) that should characterize a phase tran-

sition to smooth surfaces. This measurement, although it constitutes the best evidence

there is so far for a real phase transition at � = �c, is still quite an indirect way of

measuring correlation functions. As we will discuss, these scaling relations could contra-

dict other observed phenomena such as the absence of diverging correlation times and

increasing �nite size e�ects at the putative critical point.

Thus it appears that numerical evidence could allow for the existence of a crum-

40



pling transition (most probably of higher order), while analytical calculations generally

indicate that no such transition should occur.

In [55] the peak was measured in a DTRS simulation that incorporated self-avoidance

and the extrinsic curvature term SE , with a solid-wall potential substituted for the

Gaussian term in the action. The results for the speci�c heat turned out to be very

similar to those found in the simulations we have just discussed, for example, in [42].

The speci�c heat peak is, in this context, considered to be a lattice artifact, because

the peak height levels o� with large N (of order 500). These simulations included a

crude block-spin measurement that suggests that the renormalization group 
ow of � is

consistent with the analytical result of asymptotic freedom.

Simulations using other discretizations for the extrinsic curvature dependent term

have yielded somewhat di�erent results [38, 39]. The speci�c heat peak, measured in

simulations employing what is referred to as the `area discretization', is rather feeble, and

levels o� for small values ofN (byN = 72) The authors interpret this as being indicative

of perhaps a third order transition. Actions based on these various discretizations have

been simulated for �xed, triangular meshes. These systems model tethered or crystalline

membranes, in which the constituent molecules are tightly bound together. In the

tethered case, the speci�c heat peak obtained from simulations of the edge action (61)

grows vigorously as a function of N for very large (128�128) lattices [91]. This is strong

evidence for the existence of a second order transition which, in this case, is in accord

with the analytic results { these calculations are reviewed by Nelson [12] and David

[57, 58] and involve mean �eld and large D computations which suggest that the �

function is linear at leading order, with a zero for �nite �, i.e. a ultraviolet �xed point.

When the alternate area discretization is used in the tethered case, the speci�c heat

41



peak again stops growing. Recent work has demonstrated that this other discretization

is pathological in the tethered case; the class of `corrugated' surfaces, which are singular

in one direction and smooth in the other, then dominates the path integral [91].

Thus, given the muddle of somewhat contradictory evidence, it is unclear whether

or not a crumpling transition exists for 
uid surfaces. We have pursued this question

by taking high statistics measurements of the speci�c heat peak, and by measuring

many other observables describing the geometry of these surfaces, since observables

with di�erent quantum numbers can give quite di�erent information. For example, in

the Ising model the magnetization behaves quite unlike the internal energy (which is

invariant under the standard Z2 transformation).

To analyze and interpret this data, we have applied insights gained from work on

better understood systems, primarily spin models and lattice gauge theories. Issues of

the equivalence of the Nambu-Goto and Polyakov quantizations have also motivated us

to compare the intrinsic and induced geometry of the surfaces that we simulate.

2.4 The Goal of the Simulations { Is there a Phase Transition?

In the last few years random surfaces have been extensively explored via numerical

simulations on a wide range of computers, including parallel machines [38, 39, 40, 41].

There are some novel but not fully understood results. The full action which is simulated

is given by a quadratic interaction term plus the extrinsic curvature term in equation

(60). For � < �c ' 1:5 one sees the expected crumpled surface (see Fig. 43). The radius

of gyration of these surfaces grows only logarithmically with their area corresponding

to in�nite Hausdorf dimension dH de�ned by

R2
G ' A

2

dH (68)

42



where RG is the radius of gyration. For � > �c the surfaces become extended and

considerably smoother with dH approaching two, which would be the value one would

get for a 
at surface (see Fig. 47). The nature of the cross-over at �c is still uncertain.

It may be that the system is undergoing a true thermodynamic phase transition. If it

is of second order then the continuum limit constructed at the critical coupling would

be an interesting string theory corresponding to a real extended 2d surface rather than

a branched polymer with its largely one-dimensional character. In this case it must

be that the coupling 1
�
ceases to vary with scale (there is a �xed point of the beta

function q d�
dq
) at the critical coupling �c. At this point there is said to be a crumpling

transition. This is the most exciting possibility from the string point of view because

it would mean that we have successfully regularized and de�ned the quantum theory

of the string with more than one embedding dimension without any instability arising.

The challenge would then be to understand the exact nature of the continuum string

theory at the crumpling transition and the origin of the �xed point.

It may also be that the observed cross-over is not a true phase transition and that

the persistence length is simply reaching the �nite size of the surface that is simulated

on the computer. In this case it could still be that the surface is always crumpled on

su�ciently large distance scales. This is a real possibility for a liquid membrane but

would still leave us without a viable lattice regularization of a string in d > 1 dimensions.

Our study was focused on deciding which of the above possibilities was in fact correct

by performing large-scale simulations in three embedding dimensions [59].

Finally it is of great interest to extend the technique of dynamically triangulated

surfaces to manifolds of higher dimension, in particular to three and four dimensional

manifolds. One can then simulate say four dimensional Einstein-Hilbert quantum gravity

43



and seek critical points which provide a non-perturbative de�nition of a perturbatively

non-renormalizable quantum �eld theory. This would be a very exciting development.

Preliminary work indeed seems to indicate that there are indeed phase transitions in 4d

gravity [61]

Evidences from our recent and ongoing numerical simulations of dynamically trian-

gulated random surfaces indicate that there is a non-trivial crossover from a crumpled

to an extended surface as the bending rigidity is increased. The results will be present

in following sections.

44



3 Computer Simulations and Measurements

In Section 3.1 we de�ne the quantities we have decided to measure, and explain why they

are physically interesting. Next, in Section 3.2, we present the details of our numerical

simulations, including a complete high-statistics analysis of the behavior of a set of

relevant observables. Since computing correlation functions on dynamically triangulated

surfaces is a di�cult task, we have focused on elucidating the phase diagram by analyzing

local observables in great detail.

3.1 The Observables

To minimize �nite size e�ects, we have considered triangulations with the topology of

the torus. The action (61) was used, with the BRST invariant measure utilized also by

Baillie, Johnston, and Williams [39], so that

Z =
X

G2T (1)

Z Y
�;i

dX
�

i

Y
i

q
d
2

i
exp(�SGauss � �SE) ; (69)

where d = 3, qi is the connectivity of the ith vertex, and T (1) refers to the set of genus 1.

The authors of [41, 42] do not include this connectivity dependent term in their measure.

The long-distance physics of the simulations is presumably insensitive to the presence of

this term. Because we have chosen a di�erent measure, though, our quantitative results

cannot be precisely compared with theirs.

We measured a variety of quantities that characterize the extrinsic and intrinsic

geometry of these surfaces. These observables include:

1. The edge curvature SE and the associated speci�c heat C(�), which is a sensitive

45



indicator of the presence of a phase transition.

C(�) =
�2

N
(< S2

E
> � < SE >2) : (70)

This exhibits a peak at a coupling �c which depends on the exact discrete form of

the action chosen [38, 39, 40, 41, 42, 43, 54, 59]

2. The squared radius of gyration RG;

RG � 1

N

X
i;�

(X�

i
�X�

com)
2 ; (71)

where the com subscript refers to the center of mass of the surface. By measuring

the N dependence of the gyration radius, we can extract a value for the extrinsic

Hausdor� dimension, which is given by [42]

RG � N� � N
2

dextr : (72)

3. The magnitude of the extrinsic Gaussian curvature. We measure a discretization

of
R j K jpj h j, with

j K j= 1

N

X
i

j 2� �
X
ĵ

�
ĵ

i
j : (73)

Here h is the induced matrix (49 and �
ĵ

i
denotes the angle subtended by the ĵth

triangle at the ith vertex. This quantity, therefore, measures the magnitude of the

de�cit angle in the embedding space averaged over all vertices. We also record the

mean square 
uctuation of j K j, denoted by F [j K j].

4. The corresponding intrinsic quantity, j R j, given by

j R j= �

3N

X
i

j 6� qi j ; (74)

and its 
uctuations. When the intrinsic and extrinsic metrics are equal, the in-

trinsic and extrinsic de�cit angles are identical, and K = R=2.

46



5. To study the correlation between intrinsic and extrinsic geometry, we also measure

the quantity which we refer to as K �R:

K �R �
R
KRqR
K2
R
R2

=

P
i
(2� �P

ĵ
�
ĵ

i
)(6� qi)rP

i
(2� �P

ĵ
�
ĵ

i
)2
P

i
(6� qi)2

: (75)

This quantity is 1 when the metrics are equal, 0 if they are uncorrelated, and

negative when these curvatures are anti-correlated.

6. We measure, �nally, the average maximum coordination number of the surface

vertices, maxi qi.

3.2 The Numerical Simulation

In this chapter, I will mainly describe the physical model implemented in the computer

program and leave the explanation of the computer program to chapter 5 where other

computational issues will be discussed.

In our simulations we have used the standard Metropolis algorithm to update the

embedding �elds X
�

i
. To sweep through the space of triangulations we performed 
ips

(see reference [25]) on randomly chosen links. Flips were automatically rejected if they

yielded a degenerate triangulation; i.e. one in which a particular vertex has fewer than

three neighbors, or in which a vertex is labeled as its own neighbor, or where more than

one link connects two vertices. (It has been proven in ref. [25, 26] that the entire space

of graphs of a given topology can be spanned by only performing these 
ips.) After a set

of 3N 
ips was performed, 3N randomly selected embedding coordinates were updated

via random shifts from a 
at distribution (Fig. 14),

X� ! X� + �X� : (76)

47



a

b

c

d

ef

g a

b

c

d

ef

g

Figure 14: Update node g

n

n
j

i

h

h i

j

a b

Figure 15: Relation between normals and perpendiculars

The mean magnitude of these shifts

< �X��X� > (77)

was chosen so that the acceptance rate for updates of the X� was roughly 50 percent.

It can be very easily shown that the dot product between two normals of two adjacent

triangles n̂i � n̂j can be converted to the dot product of two perpendiculars as shown in

Fig. 15. The relation is

n̂i � n̂j = �~hi � ~hj=jhijjhjj (78)

48



N=36 1.375 1.400 1.425 1.475 �

3 3 3 3 �106 sweeps

N = 72 1.375 1.400 1.425 1.475 �

3 3 3 3 �106 sweeps

N=144 .8 1.25 1.35 1.40 1.45 1.50 2.0 �

3 3 3 3 3 3 3 �106 sweeps

N=288 .8 1.375 1.40 1.425 1.475 2.0 �

14.4 21.0 15.0 16.2 13.5 14.4 �106 sweeps

N= 576 .8 1.325 1.375 1.40 1.425 1.475 2.0 �

12.0 27.0 27.0 27.0 27.0 27.0 9.6 �106 sweeps

N= 1152 1.425 1.430 1.435 �

54 21 18 �106 sweeps

N= 2304 1.40 1.42 1.425 1.430 �

5 5 17 5 �106 sweeps

Table 1: A record of the number of sweeps performed at each di�erent � value for

di�erent lattice sizes.

Most of the Monte Carlo simulations were performed on HP-9000 (720 and 750 series)

workstations; we also collected some data by simulating lattices on each of the 32 nodes

of a CM-5. Our code was in Fortran, with the ranmar, described in reference [62].

In Table 1 we summarize our runs. All these runs were done in two major stages. At

the stage one, with the speed of our initial Fortran program, the feasible lattice size we

could run was up to 576 nodes. After the runs, we found out that the results were not

conclusive, i.e., the result was not at all clear whether a true continuous thermodynamic

49



phase transition separated the two regimes. There could be a several alternative inter-

pretations. Perhaps the simplest possibility, advocated in [55], is that the persistence

length � describing the exponential decay of the normal-normal two-point function in

the crumpled (disordered) regime simply reaches the �nite size of the system at �c. In

this case the observed smooth regime would be a �nite-size artifact with the true contin-

uum theory really being crumpled for all couplings �, in accordance with perturbative

analytical results [18, 20, 22, 47]. Since � grows exponentially with �, according to the

one-loop beta-function, this interpretation would imply that �c diverges logarithmically

with system size N . To resolve this issue and to gain further insight into the model it

was clearly desirable to extend the numerical simulations to larger lattice sizes and to

clarify the in
uence of �nite-size e�ects.

Therefore, we put substantial e�ort into optimizing our program. The new program

was much faster (see Chapter 5). Within a reasonable period of time, we ran the

simulations for lattice size up to 2304 nodes. Note that in table 1, we have performed

quite long runs on the larger lattice sizes. We will discuss in Section (3.4) why we believe

runs of this length are just su�cient to yield accurate values of the observables for the

largest lattice size (N = 2304).

We also plotted 3 dimensional view of random surfaces with di�erent number of

nodes at di�erent � value (see Chapter 5). We found the surfaces look like smoother as

� increases.

In all of our �gures the di�erent points will be printed with their associated statistical

error (sometimes too small to be visible). The statistical error is computed by means of a

standard binning procedure. We will explicitly discuss the cases in which our estimator

for the statistical error is not asymptotic.

50



The lines in these �gures are from a histogram reconstruction (see for example

[63, 64]). We patch di�erent histograms [65, 66, 67] by weighting them with the as-

sociated statistical reconstructions in determination (which we estimate by a jack-knife

procedure); this procedure seems to be very e�ective and reliable. All of the reconstruc-

tion curve sets (3: dotted, dashed and continuous for 3 surface sizes on each �gure)

consist of 3 curves (which sometimes appear as a single one). The middle curve is the

histogram reconstruction, and the upper and the lower ones bound the data within the

errors obtained by the procedure we have just described.

In our latest series of simulations on lattices, for N = 144 we have patched the four

histograms originating from � = 1:35, 1:40, 1:45, 1:50. For N = 288 we have used

� = 1:375, 1:40, 1:425 and 1:475. For N = 576, we chose � = 1:375, 1:40 and 1:425.

With 1152 nodes we ran 54 million sweeps at � = 1:425, 21 million sweeps at � = 1:430

and 18 million sweeps at � = 1:435. Since the autocorrelation time � is of order 400; 000

sweeps on the 1152 lattice these runs have at least 45� measurements. On the data

from these three points we use multi-histogram reconstruction [63, 67]. This works well

in that three di�erent reconstructions give coherent results. On lattices of 2304 nodes

we have poorer statistics. We ran 17 million sweeps at � = 1:425 plus approximately 5

million sweeps at � = 1:40, 1:42 and 1:43 as a consistency check. On the 2304 lattice

histogramming does not work well. This is to be expected since the statistics are not

good enough for such a large lattice. Still we have checked that our measurements at

� = 1:425 give consistent results, that the error estimate is reliable and that we are,

with good accuracy, at the peak of the speci�c heat. In all these simulations for 1152

and 2304 required the equivalent of approximately one year of CPU time on an HP

9000 (720 series) workstation. (for 1152 nodes and 2304 nodes, we also measured all

51



observables we described above, but we only plotted those of most physical interest.

We also thought of the possibilities that could account for the observed behavior of

C(�) without invoking a phase transition. One was based on the analogy between the

present model and the O(3) sigma-model in 2d [68]. This model is also asymptotically

free and consequently disordered at all non-zero temperatures.

The simulations were done on square lattices of volume N = 16, 25, 64, 100, 900,

2; 500, 4; 900 and 10; 000 using the Wol� algorithm [69]. For each point of the N =

25; 100 and 10; 000 lattices we used 100; 000 measurements. We took a measurement

every time the Wol� clusters updated a volume exceeding 30 times the volume of the

lattice. For the N = 16, 64, 900 and 4; 900 lattices the integrated autocorrelation

times were between 1 and 2 Wol� updates of the entire lattice. For each point of the

N = 16, 64, 900, 2; 500 and 4; 900 lattices we used 20; 000 measurements. We took

a measurement every time the Wol� clusters updated a volume exceeding 3 times the

volume of the lattice.

We have only drawn the reconstructed, patched curves (with their reliable errors) in

the regions where we trust them. For example, close to the pseudo-critical region we can

trust a peak pattern only when we can reconstruct the peak by starting from both sides

of the transition (without multi-histogram patching). So we have always used single

histogram to check these criteria, before constructing the �nal, multi-histogram data.

3.3 The Phase Diagram

We have measured, as stated previously, a large number of local observables. We will see

that a mixed picture emerges from these measurements. For example the observables

related to the dynamical triangulations exhibit a characteristic pattern, to be discussed

52



in detail below.

Figure 16: The edge curvature SE as a function of �. As in all other pictures, �lled

circles and a dotted line correspond to N = 144, crosses and a dashed line indicate

N = 288, and empty squares and a solid line represent N = 576.

We start by showing, in Fig. 16, the edge curvature SE as a function of �. The

crossover region is around � ' 1:4. For small values of �, the surface is crumpled (see

the latter part of this section). In this region, �nite size e�ects are already negligible for

our lattice sizes, and our 3 data points are on top of each other. We can see weak �nite

size e�ects by comparing the continuous lines in the transient region. The N = 144

dotted line is far from the ones of the two larger lattices, which lie, on the contrary, on

top of each other. Finite size e�ects are larger in the large � phase. One would expect,

close to a phase transition with a diverging correlation length, an increase in �nite size

e�ects which we do not observe here. The lattice should feel the presence of the zero

53



mass excitation, and the �nite size corrections should be larger than everywhere else

(in the case of periodic boundary conditions they would obey a power-law, rather than

decaying exponentially with size). This is surely not �rm evidence against the presence

of a phase transition, but it does show that the putative critical behavior is atypical.

The errors in the `
at phase' (� = 2:0) are not under control. Our estimators do not

plateau under repeated iterations of the binning procedure. In this regime, correlation

times are large, as we will discuss in next section. This caveat holds for this �gure and

for all the quantities we have measured.

Figure 17: The edge curvature speci�c heat, for lattice size 144, 288 and 576, C(�)

In Fig. 17 we show the related speci�c heat C(�), in the same � region. In Fig. 18

we enlarge the pseudo-critical � region, in order to show the reconstructed peak of the

speci�c heat. As already noted our reconstruction procedure is quite reliable here.

The speci�c heat peak for N = 576, 1152 and 2304 from the new runs is shown in

54



Figure 18: As in Fig. 16, but with the multi-histogram reconstruction in the transient

region.

Fig. 19.

Table 2 gives the results for the maximum of the speci�c heat and the associated

coupling �c as a function of N . We have reanalyzed the data presented in reference [59],

using a di�erent method of weighting relative errors when combining histograms. Thus,

some of the errors quoted here are smaller than the respective uncertainties in reference

[59].

We see that the speci�c heat peak grows vigorously with N for small lattices, so

it appears that there is a crumpling transition very similar to that of the crystalline

surface. However the speci�c heat height growth levels o� for larger N . From the data

for the three largest lattices, we can extract a speci�c heat exponent ! = :06 � :05,

with ! de�ned as in equation (67), and the constant B set to zero. If we estimate an

55



1.3 1.35 1.4 1.45 1.5
4

4.5

5

5.5

6
   data points for N = 576

   data points for N = 1152 

   data points for N = 2304 

  N = 576

  N = 1152

Figure 19: The edge extrinsic-curvature speci�c heat C(�) as a function of �. Multi-

histogram reconstructions with errors are shown for N = 576 (long and short dashed

lines) and N = 1; 152 (solid lines). Four individual data points are also shown for

N = 2; 304 (solid circles). One sees that the speci�c heat peak has saturated, i.e., it is

not growing with the system size N above 576.

e�ective exponent from the N = 144 and 288 lattices, we get :05� :06, and from the two

largest lattice sizes we get :07� :06; this demonstrates that we do not see, within our

statistical precision, any sign of a non-pure-power, non-asymptotic behavior. Note that

if the constraint that B vanishes is relaxed, our data is not accurate enough to yield a

meaningful �t to equation (67). A very small (asymptotically �nite) correlation length

is su�cient to produce such a small e�ect on our quite small lattice sizes. These results

appear to be consistent with those of the Copenhagen group [42], and they are not so

56



N C(max) �c

36 3:484� :008 1:425� :035

72 4:571� :015 1:410� :015

144 5:37� :08 1:395� :017

288 5:55� :05 1:410� :015

576 5:81� :06 1:425� :010

1152 5:69� :04 1:425� :010

2304 5:75� :10 1:425� :010

Table 2: The maximum of the speci�c heat and its position, with errors, for di�erent

lattice sizes.

far from the ones of the Urbana group [43, 54].

The critical value of � shifts very slowly to higher values for increasing N for the

largest lattices, although the increase is not statistically signi�cant.

In addition the shape of the speci�c heat (for example the width) is basically un-

changed as we go to larger lattices. From Figs. 17, 18, 19 we do not infer evidence of

criticality.

In Fig. 20 we show the radius of gyration of the surface, RG, as de�ned in (71).

Here obviously the volume scaling is non-trivial: larger surfaces have larger radius. The

histogram reconstruction already ceases to work for quite low values of � for the larger

lattice. This e�ect could be related to the interesting �nite size scaling behavior of this

quantity, which we illustrate in better detail in Fig. 21. Here we plot

�(N) �
log R(N)

R(N
2
)

log(2)
: (79)

57



This is an e�ective inverse Hausdor� dimension, which is a function of �. In the large �

limit � ! 1 and dextr ! 2, as expected for 
at surfaces. In the low � limit dextr becomes

very large. In the pseudo-critical region � is a linear function of �. Curiously enough,

the latter curve yields a Hausdor� dimension of 4, a value characteristic of branched

polymers, near the location of the speci�c heat peak. This value is not particularly

reliable though because of �nite-size e�ects and also because it changes rapidly in this

region. In ref. [42] a value compatible with ours (DH(�c) > 3:4) is quoted for the critical

theory. We stress however (and also here we are in complete agreement with [42]) that

the dimension in the pseudo-critical region depends heavily and quite unusually on N .

Figure 20: The gyration radius RG de�ned in equation (71) plotted as in Fig. 16

In both the high and low � regions �nite size e�ects are quite small (compatible with

zero to one standard deviation). In the pseudo-critical region, on the contrary, �nite

size e�ects are large. This e�ect cannot be explained by the shift in � which one gets

58



Figure 21: The e�ective inverse Hausdor� dimension � as a function of �, as de�ned in

(72). The �lled dots and the dashed curve are from a �t to the N = 288 and N = 144

data, while the empty dots and solid curve represent the �t to N = 576 and N = 288.

from the shift of the peak of the speci�c heat, which is far too small. This behavior is

very di�erent from that we discussed for SE and it seems to indicate the possibility of

some sort of critical behavior close to � = 1:4.

With our new runs on larger lattice, we note the behavior of the gyration radius at �c.

For large � (> 2), the scaling of R(N) � N
2

dH with N gives a Hausdor� dimension close

to 2 (as we expect for 
at surfaces). In the crumpled region the Hausdor� dimension

rapidly increases with diminishing �. We had pointed out that �nite size e�ects were

relevant in the sector close to �c and that we could not estimate a reliable number from

the lattice sizes analyzed. Here the largest lattice we simulated (N = 2304) does not give

useful data, since the error in R is too large, but on the 1152 and 576 node lattices we get

59



a fairly precise estimate of R, which allows us to estimate for the Hausdor� dimension at

the pseudo-critical point �c the value dH = 4:35� :3. This is an intriguing result, since

4 is the extrinsic Hausdor� dimension of a class of branched polymers, as constructed,

for instance, in references [70]. Such con�gurations are expected to dominate the string

functional integral for large embedding dimension D.

In Fig. 22 we plot the expectation values of the magnitude of the extrinsic Gaussian

curvature j K j. If the induced metric is equal to the intrinsic metric, then j K j= jRj

2 .

Figure 22: The extrinsic Gaussian curvature j K j de�ned in (73), plotted as in Fig. 16

This plot is not substantially di�erent from that of SE . We note that �nite size

e�ects are somewhat larger in this case than for the edge action, but they follow the

same pattern (exhibiting a big increase in the 
at phase).

The plot of the 
uctuations of the extrinsic Gaussian curvature, F [K], which we

present in Fig. 23, shows something very new. A very sharp crossover, with perhaps a

60



peak developing for large N , dominates the pseudo-critical behavior. Fluctuations do

not seem to depend on � in the crumpled phase, while they drop dramatically, in a

very small � interval, in the 
at region. Here again, �nite size e�ects are sizeable in the

pseudo-critical region. The position of the crossover does not depend sensitively on N ,

while the detailed shape at �c seems to change slightly with N .

Figure 23: The 
uctuations of j K j.

We measured again in our new runs on larger lattices the 
uctuations of the extrinsic

Gaussian curvature jKj, and computed the 
uctuations of the mean defect coordination

number jq � 6j. We �nd that on larger lattices the 
uctuations of these observables at

�c also do not grow with N ; thus their behavior does not provide unequivocal evidence

of the presence of a phase transition.

Table 3 gives the mean-square 
uctuations of both observables.

It is di�cult to give a precise interpretation of a plot like this, however, the crossover

61



N F [K] F [q � 6]

576 5:71� :08 8:39� :04

1152 5:59� :05 8:32� :03

2304 5:70� :10 8:37� :06

Table 3: The mean square 
uctuations of the extrinsic Gaussian curvature K and the

defect coordination number q � 6, with errors, for di�erent lattice sizes.

is very clear here.

In Fig. 24 we give the intrinsic curvature R and in Fig. 25 its 
uctuations. Both plots

are very similar to the related, extrinsic curvature, K plots. j R j drops o� rapidly, just

as j K j does. Through the peak region, though, j K j decreases by about a factor of 5

while j R j diminishes to only about :6 of its value on the left-hand side of the peak. Since

the action explicitly suppresses mean curvature, and the mean and extrinsic Gaussian

curvature are closely related (for instance, H2 > K

2
), we would expect that for large

� extrinsic 
uctuations would be suppressed much more than 
uctuations of intrinsic

geometry.

In Fig. 26 we plot the intrinsic extrinsic curvature correlation. The plot of K � R

indicates that intrinsic and extrinsic geometry are strongly correlated for small �, but as

one passes through the peak region they become decorrelated. This is not particularly

surprising, given that the action directly suppresses only extrinsic 
uctuations. Note

that RG calculations based on the Nambu-Goto action plus an extrinsic curvature term

(with no dependence on an intrinsic metric) perturb about a background that is both

intrinsically and extrinsically 
at. Given the observed decorrelation between intrinisic

62



Figure 24: The intrinsic curvature j R j de�ned in (74) , plotted as in Fig. 16

and extrinsic geometry, we would not anticipate that this background appears in the

low- temperature limit of the model which we simulate.

In Fig. 27 we plot the expectation value of the maximum coordination number,

which has non-trivial scaling behavior. In Fig. 28 we give its scaling exponent, de�ned

analogously to the exponent we have exhibited for the gyration radius. In the pseudo-

critical region qmax scales (for our 3 lattice sizes) as a power, with an exponent close to

0:1; we do not know if this scaling is meaningful.

We will discuss here correlation times for di�erent quantities . As we already pointed

out correlation times become very large in the large � region. In agreement with ref.

[42] (see their Fig. 1) we do not see any increase of the correlation times close to the

pseudo-critical point.

We will not present precise estimates of correlation times (exponential or integrated)

63



Figure 25: The 
uctuations of j R j.

[71] { they are too large to get precise estimates. We will limit ourselves to a discussion

of a few �gures, which give quite a clear idea of what is happening. The comparison

with Fig. 1 of ref. [42] cannot be very direct, since our action is di�erent, and because

their dynamics may be more e�ective than ours. Still, the comparison is quite puzzling,

since we estimate and exhibit correlation times which are much (orders of magnitude)

larger than the ones of [42]. Applying customary methods to estimate �int can lead to

an underestimate of correlation times if more than one time scale is present (that does

surely happen with our data if we integrate it on a window of reasonable size).

3.4 Autocorrelation Times

In Fig. 29 we plot SE for N = 144, � = 1:4, and in Fig. 30 the gyration radius for these

values (with a di�erent time scale). Clearly, the correlation time is at least of order

64



Figure 26: The intrinsic extrinsic curvature correlation, as de�ned in (75), plotted as in

Fig. 16

40; 000 sweeps in the �rst case and 100; 000 sweeps in the second one. In Figs. 31, 32,

we plot the same quantities for � = 1:5. Here correlation times are larger, of order

50; 000 steps for SE and larger than 150; 000 steps for RG. In Figs. 33, 34 we draw

the same plot on the largest lattice we study (N = 576) for � = 1:4. Here we can

see dramatic correlations, with times of at least 100; 000 steps for SE and of at least

1; 000; 000 steps for RG.

In Fig. 35 we plot, for the same time history and on the same scale, both SE and

RG. This �gure shows a clear anticorrelation: larger surfaces are 
atter and have smaller

curvature (this is apparent in the region close to the 2000th step).

65



Figure 27: The average maximum coordination number of the surface vertices, maxi qi,

plotted as in Fig. 16

66



Figure 28: The scaling exponent of maxi qi, plotted as in Fig. 16

Figure 29: SE as a function of Monte Carlo time (80; 000 steps) for N = 144, � = 1:4.

67



Figure 30: R as a function of Monte Carlo time (300; 000 steps) for N = 144, � = 1:4.

Figure 31: SE as a function of Monte Carlo time (80; 000 steps) for N = 144, � = 1:5.

68



Figure 32: R as a function of Monte Carlo time (300; 000 steps) for N = 144, � = 1:5.

Figure 33: SE as a function of Monte Carlo time (300; 000 steps) for N = 576, � = 1:4.

69



Figure 34: R as a function of Monte Carlo time (3; 000; 000 steps) for N = 576, � = 1:4.

70



Figure 35: SE and R from the same Monte Carlo run, N = 576, � = 1:325, 20; 000

steps.

71



4 Data Analysis And Results

4.1 Data Interpretations

Let us review the crux of our observations again. This model of crumpled surfaces

appears to exhibit sharp crossover behavior in the region around � = 1:4. The sharp

growth in the gyration radius and the suppression of curvature 
uctuations indicate that

the normals acquire long-range correlations, up to the size of the systems we examine.

Presumably the zero string tension measurement of [42] also shows that the disordered

regime di�ers from the regime in which the surfaces are ordered (up to scale of the

lattices that are simulated) by only a small shift in �. This evidence might indicate the

presence of a phase transition at this point. If so, it is very likely to be of order higher

than 2 (or, rather implausibly, it could be second order with an extremely low negative

speci�c heat exponent; our lattices are much too small for us to con�dently extrapolate

the value of the speci�c heat exponent as N !1).

If the transition were higher order, the peak should exhibit a cusp, but we would

need far more accurate data to detect this. The existence of this phase transition would

then suggest the existence of a new continuum string theory, though many other issues

would have to be resolved) to determine if such a theory is physically desirable.

There are other possible interpretations of our data. We need to consider the in-


uence of �nite-size e�ects, since the surfaces which we simulate are quite small, even

smaller than one might naively assume because they are not intrinsically smooth. For

instance, random surfaces characteristic of D = 0 gravity have a Hausdor� dimension

of roughly dintr = 2:8 [72, 73]; it has been predicted that surfaces embedded in 1 di-

mension have Hausdor� dimension 2 +
p
2 [72]. Thus, for instance, if the surfaces in

72



our simulations had an intrinsic dimension of 3, they would have a linear size of fewer

than 9 lattice spacings. Of course, our lattices are too small, by one or two orders of

magnitude, to really exhibit a convincing fractal structure.

Perhaps the simplest alternative explanation for the presence of this peak is suggested

by the arguments of Kroll and Gompper [55]. They argue that the peak occurs when

the persistence length of the system approaches the size of the lattice (�p � N
1

d ). For

couplings above this point, our simulations would simply be measuring �nite size e�ects.

For larger �, 
uctuations on a larger scale become more important, but when this scale is

greater than the lattice size, these 
uctuations are suppressed. Thus one might surmise

that the speci�c heat will drop for large �. (It clearly goes to zero for small � because of

the presence of the prefactor �2; the lattice implements a ultraviolet cuto� that freezes

out very short-range 
uctuations). As shown in section 4.2, we excluded this possibility

with our latest measurements.

The one-loop renormalization group calculation (64) predicts that the persistence

length grows as �p � exp(C�); C is inversely proportional to the leading coe�cient of

the beta function. We would expect that the peak position should shift to the right with

increasing N in this scenario as

�peak(N
0)� �peak(N) =

ln(N
0

N
)

dintrC
: (80)

Quite a large value of C is needed to explain the rapid crossover; roughly values of

C � 10; dintr � 3 are more or less consistent with the magnitude of the peak shift and

crossover width. The RG calculations using di�erent forms of the action yield C = 4�
3

(see equation 64), but this may not apply to the action we simulate.

This reasoning also indicates that the peak should widen as the lattice size increases;

73



we do not observe this at all. It seems plausible though that these arguments, based

only on the leading term of the high lambda expansion, are too naive.

An alternative scenario, which builds on the ideas in the above paragraph, is sug-

gested by the tantalizing similarities between the results of our 
uid surface simulations

and what has been observed for the d = 4 SU(2) Lattice Gauge Theory [63] and for the

d = 2 O(3) model. Let us discuss the case of the O(3) model.

The O(3) model, which is asymptotically free, exhibits a speci�c heat peak near

� = 1:4. This peak was �rst measured via Monte Carlo simulations by Colot [74]. It can

also be obtained by di�erentiating the energy data measured by Shenker and Tobochnik

[75, 76]. The origin of this peak is understood [76, 77]; it is due to the 
uctuations of the

sigma particle, a low-mass bound state of the massless O(3) pions. The sigma induces

short-range order, and contributes to the speci�c heat as a degree of freedom only at

high temperatures (when the correlation length in the system becomes smaller than its

inverse mass). The peak thus occurs at the beginning of the crossover regime, when the

correlation length is several lattice spacings.

According to the low temperature expansion, the correlation length grows as � �

exp(2��)=�. Thus one would expect a fairly rapid crossover in the O(3) model; the cor-

relation length should increase by roughly a factor of 9 when � is shifted by about :35.

In fact, the presence of the sigma signi�cantly modi�es this low-temperature expansion

result [77] in this intermediate regime, but does not qualitatively destroy the rapidity of

the crossover. Indeed, despite heroic e�orts, it has been impossible to extend computa-

tionally beyond this regime and precisely verify the asymptotic low-temperature relation

for the correlation length [78, 79]. Such a crossover is indeed observed, though the his-

togramming is not so apparent that it is as dramatic as the crossover behavior observed

74



for 
uid surfaces. To quantitatively compare the width of the crossover regimes for these

two models it would be necessary to measure a correlation length (perhaps extracted

from the normal-normal correlation function) in these random surface simulations.

The numerical simulations show a distinct peak in the speci�c heat which grows for

small lattices and then saturates, just as we �nd in the model of a rigid string treated

here. This may be seen in �gure 36 where we have plotted the speci�c heat C(�) for

the two dimensional O(3) model. It is very clear that the peak levels o� quickly for

N � 100 and that \�c" is not increasing with the size of the lattice. Measurements of

the asymptotic value of C(�) have been reported in the past [74, 80]. The authors of

[81, 82, 83] explain the peak as the excitation of an extra degree of freedom, the so-called

�-particle [84]. The would-be transition occurs when the mass of the �-particle becomes

comparable to the inverse correlation length of the O(3) model. It may be that there is

a similar interpretation of the observed peak of C(�). Also, the peak position shifts to

the right as L grows, and then appears to stabilize for large L.

This is more or less what we observe in our simulations of 
uid surfaces, on lattices of

small size. We point out these similarities largely to emphasize that there does exist an

asymptotically free theory (with low mass excitations) which exhibits crossover behavior

qualitatively similar to that observed in our simulations.

The analogy is perhaps deeper, though, since the 
uid surface action (with extrinsic

curvature) in certain guises looks like a sigma model action. So, perhaps it would not be

so surprising from this point of view to �nd a sigma particle in these theories perhaps

associated with (n̂2 � 1), in which n̂ denotes the unit normal to our surfaces.

Another additional possibility is that 
uctuations of the intrinsic geometry (the

Liouville mode) are responsible for short-range order and contribute to the speci�c heat

75



peak.

4.2 A True Phase Transition?

Clearly the maximum of the speci�c heat curve Cmax is e�ectively constant for sur-

faces with 576 or more nodes. The (pseudo)-critical coupling �c is also constant for

N = 576 and above. With the present data we can de�nitely exclude the presence of a

divergence in the speci�c heat. The growth of the speci�c heat peak observed on small

lattices [38, 39, 40] does not re
ect true asymptotic behavior. These results also inval-

idate the interpretation raised in the introduction [55, 59]. A one-loop renormalization

group calculation shows that the persistence length � grows with bending rigidity � as

exp( 3
4��). Equating � with the spatial extent of the lattice N1=din , where din is the

intrinsic Hausdor� dimension of the lattice, one would see that they become comparable

at a coupling �c � 3
4�din

ln(N). In the continuum limit N ! 1, �c diverges. Since, for

reasonable values of din, we do not see the increase in �c with N predicted by the above

relationship we can state with some con�dence that the origin of the observed speci�c

heat peak is not explained by the persistence length becoming comparable to the extent

of the lattice.

It is still possible that there is a true continuous phase transition, the crumpling

transition, occurring at �c. Assuming a continuous transition, a standard �nite-size-

scaling argument only tells us that ! = �

�d
< 0, where � is the exponent governing

the divergence of the speci�c heat, C(�) � j�� �cj��, � is the analogous exponent

for the correlation length and d is the intrinsic Hausdor� dimension of the surface. In

other words there may be a cusp singularity at �c as, for example, in the case of the

super
uid (�) transition in He4 [85, 86], for which � = �0:0127� 0:0026. Since we do

76



not have a measurement of �d, which may even be rather large, we have no reliable idea

of the exponent � itself. Generally speaking one �nds that second order transitions on

�xed lattices become higher order on dynamical lattices, as for example in the case of

the 2d-Ising model [87, 88]. Since there seems to be a 2nd order crumpling transition

for non-self-avoiding tethered (�xed-triangulation) surfaces [89, 90, 91, 92], it would be

consistent for the transition to be higher than 2nd order when the model is coupled to

gravity.

4.3 Conclusions

We have thus explored the phase diagram of 
uid random surfaces with extrinsic cur-

vature. With lattice size up to 576 nodes, we were not able to determine if our model

undergoes a phase (crumpling) transition at �nite coupling. We have observed dramatic

crossover behavior for particular observables in our Monte Carlo simulations, but on

the other hand, the correlation times and certain �nite-size e�ects do not behave as one

would expect in the presence of a phase transition. With larger lattice up to 2304 nodes,

we found that the extrinsic-curvature speci�c heat peak ceases to grow on lattices with

more than 576 nodes and that the location of the peak �c also stabilizes. The evidence

for a true crumpling transition is still weak. If we assume it exists we can say that the

�nite-size scaling exponent �

�d
is very close to zero or negative. On the other hand our

data does rule out the observed peak as being a �nite-size artifact of the persistence

length becoming comparable to the extent of the lattice.

The behavior of other lattice models also indicates that it is possible that we are

observing the e�ects of �nite-mass excitations on small lattices, rather than a phase

transition. We hope that future work will clarify this murky state of a�airs, to determine

77



if there indeed exists a crumpling transition for 
uid surfaces.

All told our work gives only weak evidence for a continuum crumpling transition.

The strongest evidence in favor of such a transition, at present, is the scaling behavior

of the string tension and mass gap reported in [42]. This highlights the need for more

extensive measurements on these important observables.

4.4 Future Work

There remains much to be done to clarify whether or not a crumpling transition occurs

for a �nite value of the extrinsic curvature coupling �. It would be interesting (and

probably a fair amount of work) to apply Wilson renormalization group techniques to

the actual action (61) which we simulate, to determine the leading coe�cient of the

beta function. Additionally, perhaps a calculation of 1=D corrections to the large D

computations already performed could unearth evidence of a sigma-type excitation in

these theories (the e�ects of the sigma appear as 1=N corrections in the O(N) model).

We also used the data to examine the behavior of complex zeroes (in complex � space)

of the partition function of our simulations [93]. It has been shown (in the case of SU(2)

lattice gauge theory) that such zeroes, when they are near but do not approach the real

axis in the in�nite volume limit, occur in theories which exhibit speci�c heat peaks with

no associated phase transition [63]. Low temperature expansions also indicate that the

O(3) model susceptibility has a complex singularity near the real axis [94]{ presumably

this corresponds to a zero of the partition function and is a manifestation of the sigma.

Of course, simulations on large lattices, with better statistics, should also help us

evaluate whether a crumpling transition exists. We could use parallel computers. How-

ever, as I will explain in chapter 5, the real parallelization of random surfaces program

78



is extremely hard. The alternative could be to �nd new algorithms, in order to evade

the long auto-correlation times that have characterized our simulations so far.

Even if no such transition exists for �nite �, one could still attempt to study a

continuum theory in the strong coupling limit, as is done for QCD, for instance. To do

so, we would like to examine global quantities, such as masses extracted from normal-

normal correlation functions, rather than just the local quantities (e.g., energy) that

we have measured. Measuring these correlations requires a de�nition of distance on

these triangulated lattices; the most successful de�nition of the metric is based on the

propagation of massive particles (via inversion of the Laplacian) on these lattices [95].

79



1 1.5 2
0.8

1

1.2

1.4

1.6

1.8

Figure 36: The speci�c heat C(�) of the two-dimensional O(3) non-linear sigma model

as a function of � for lattice volumes N = 16, 25, 64, 100, 900, 2; 500, 4; 900 and 10; 000.

The peak saturates quickly for N � 100 and \�c" does not increase with the volume.

80



5 Computer Implementations and Issues in Computa-

tional Science

As we have seen in the previous chapters, Monte Carlo simulations of random surfaces

require enormous computer power. The use of high performance computers is central

to our goal of understanding random geometry in many guises. With the most recent

advances in the �eld of supercomputing and massively parallel computing, computation

can thus lead to a vastly improved understanding of the fundamental interactions of

nature from gauge theories of the strong and electro-weak interaction to the most elusive

interaction in the quantum domain so far { gravity.

However, with dramatic changes in technology ahead, we have to ask ourself the

following question: how do we approach the problem of high-performance architecture

design and high-performance engineering and scienti�c computing? For example, the

new technology makes feasible massive parallelism. How much additional e�ort should

be invested in increasing the performance on a single processor before we seek higher

levels of performance on multiple processors? There are no simple answer to these

questions. The �rst is always essential to the latter. We need a combination of solutions,

and what we choose almost certainly will be application dependent, since at this stage

we have not yet constructed a general machine that would be equally e�ective for all

high performance applications.

In the past, we have seen many di�erent techniques used in hardware to improve

performance for the individual processor, such things as instruction bu�ers, cache mem-

ories, pipelined execution and RISC computer architecture [96, 97], have appeared in

many commercial machine implementations. And people created parallel computers to

81



overcome the current limits of technology in order to achieve even faster speed. How-

ever, can an application easily and e�ectively utilize these hardware capabilities? This

is always a complicated story. In terms of software issues, it has to address to both the

level of compiler design and the level of user's applications and algorithms. As com-

puter clock speed keeps increasing, the issue of how well applications can utilize each

computer's cycle becomes even more important, since many numerical applications are

so demanding of computational cycles and call for sophisticated 
oating-point proces-

sors in the architecture [98]. Parallel computers bring even bigger challenge to software

design and call for innovations of completely new algorithms.

We also note that with the increasing power of high performance computers, the

power of graphics system has been increasing and made it possible for the scienti�c

and engineering communities to gain new insight into their disciplines. Both the size of

scienti�c problems and the quantity of data generated present a great challenge to us:

namely how to understand the results of their computations. Solving these problems

interactively is essential and requires signi�cant computation and graphics power.

5.1 The Challenge of Random Surface Simulations to Computation

The computer science challenges for computationally intensive application with complex

data structure, such as random surface simulations, are centered on how to improve

individual processor performance and how to decompose the problem and map it onto

parallel processors.

The original code we used was written by Baillie, Johnston and Williams [99], and

was based on Distributed Irregular Mesh Environment(DIME), a general software pack-

age for handling dynamically triangulated meshes [100]. Dynamic unstructured meshes

82



of this type are also used for �nite element simulations and computational 
uid dy-

namics. This code was written in C, with the mesh represented as a linked list. The

generality of the code meant that it used a lot of unnecessarily complicated data struc-

tures, which increased the memory requirements and decreased the e�ciency of the

program.

In order to improve the performance of the code, we rewrote the program from

scratch without using DIME. The new program was written in Fortran, in order to

make it easier to parallelize by using Fortran 90, Fortran D, or CM Fortran. The new

code was simpler and more specialized. Consequently it ran approximately 8 times faster

than the previous code on the IBM RS/6000.

However this new code still ran very slowly on certain machines, especially the Intel

Touchstone Delta, which uses Intel i860 processors. For this code we realized only about

1 MFlop on the i860, which is theoretically an 80 MFlop processor for 32-bit operations.

We believed that we could substantially improve the performance of the program on

the i860 and the IBM RS/6000 by careful optimization of the code, and in particular by

making better use of the data cache. A 
oating point operation can be done in a single

cycle on modern RISC processors, however access to data not in the cache may take

many cycles. To get near optimal performance from these processors we therefore need

to be very careful to structure the code in such a way as to make best use of the data

cache, by keeping data as local as possible. This is a non-trivial problem for applications

with dynamic data structures such as the simulation of dynamically triangulated random

surfaces. This is very similar to problems of data locality on parallel processors, where

there is an even greater penalty in accessing data which is non-local. For programs such

as parallel random surface simulation, dynamic domain decomposition is required for

83



both load balancing and e�cient access to data. A similar approach can also be applied

to optimize sequential programs on processors with a hierarchical memory structure.

Unstructured numerical applications [100, 101] have been one of the most computa-

tionally demanding areas and have the most complicated but the richest data structures.

Naturally people like to use them to evaluate the overall performance of a computer sys-

tem in dealing irregular problems for both hardware and software aspects [101, 102].

The Monte Carlo simulation of dynamically triangulated random surfaces happens to

be one of the most suitable applications to be investigated for state-of-the-art computers.

It has very irregular with complicated data structures (see Fig. 37) and demands very

intensive 
oating point calculations. The computation is very time consuming. For

example, running on HP 9000 24 hours a day, the computation takes about 3 months to

have one statistically meaningful physical data point for a mesh with 1152 nodes, even

though our code is the fastest sequential code for dynamical random surface simulation.

We had done the largest simulations and most accurate measurements of physically

interesting observables so far on dynamically triangulated random surfaces with 2304

nodes, which gave us more meaningful physical results. However, correlation length for

most of observables is a major problem. The simulation takes hundreds of thousands of

sweeps of updating the mesh to yield one statistically independent con�guration. The

existence order and critical exponents of this crumpling transition are still uncertain.

That is the driving force for us to speed up the code by optimizing it, looking new

algorithm and using parallel computer. The study of computational behavior of the

random surface simulation on high performance computer also provides a basis for on-

going High Performance Fortran compiler support [102].

84



Figure 37: Wireframes for 144 nodes at � = 0:8 (crumple phase)

85



5.2 The Random Surfaces Fortran Program

The program used for the Monte Carlo simulation of string theories was written in

Fortran. The following outlines the crucial part of main program.

program main-outline

CALL mesh-set-up

CALL global-data-initialization

DO i = 1, n_measurements

DO j = 1, n_sweeps

CALL update-nodes

CALL update-links

ENDDO

CALL measurements

ENDDO

END

The program �rst constructs a initial mesh. Fig. 38 shows a initial mesh with torus

topology. We can see that one sweep consists of two parts : update-nodes and update-

links . The subroutine update-nodes is used to update each node's position of mesh in

the three dimensional space Fig. 8. The subroutine update-links is then used to change

the connectivity of the mesh, i.e., to try to 
ip each link between nodes in the mesh

Fig. 14. The Metropolis algorithm is used to update both the nodes and links of the

86



Figure 38: Wireframes of a torus with 144 nodes

87



surface. As the simulation proceeds, the geometrical data and the physical observable

associated with nodes and edges have to be recalculated.

The node update part loops over all nodes. In the loop it randomly picks an at-

tempted position for the current node and calculates the energy change of the system

between the old position and the attempted position Fig. 14. The Metropolis algorithm

determines if the attempted position should really be used to update the node's position

or not. The energy calculation is based on the length of the edges and the so called

edge action, i.e. the dot-product of two normal direction vectors of two triangles along

the common edge. This dot-product is actually calculated in terms of the two altitudes

in the triangles along the common edge. The edge action calculation is very expensive

since the calculation not only involves the data associated with all nearest neighbors but

also the next nearest neighbors Fig. 39. However the node update is still less irregular

in the sense that the connectivity is not changed. Therefore the data retrieving process

from cache or main memory for the calculation of node update is still relatively smooth.

It probably does not experience very frequent interruptions or jumps since hopefully

most of the required data are laid out in memory consecutively, so useful data may stay

in the cache for a while before moved out. With �xed connectivity in update-nodes, the

number of usage of branching condition statements and pointer operations cause much

less memory jumps than in subroutine update-links where the connectivity is changing

as each link 
ips. Therefore update-nodes produces less cache miss and page fault than

update-links . However, even in the case of update node, the mesh is still irregular. Each

node may have di�erent number of neighbors, and therefore a di�erent number of edges.

These complexities may cause load balance problems for later parallel computation.

88



S0

S1

S
4

S
5

S6

S2

S9

SS

S3

10
14

S 7

S8S13

S
12

Figure 39: The nearest neighbors of node S0: S1, S2, S6, S5, S4 and the next nearest

neighbors: S9, S3, S14, S12, S7. To compute the edge action along edge S1S2, triangles

S1S3S2 and S0S1S2 involved.

The subroutine update-links is used to randomly pick a link and attempt to 
ip it

to another diagonal as in Fig. 8. The calculation of the energy change between the

attempted con�guration and old con�guration is still similar to the one in update-nodes

which uses the Metropolis algorithm. However at this time, not only the calculation is as

expensive as in the update-nodes case, but also the data structure layout in the memory

associated with the nodes and edges may become very irregular. One may have to

search information throughout a big area of memory to calculate a observable since the

pointers may point to di�erent places as we add links to one node and remove links from

others. The data associated with the changing edges are scattered all over the memory

and logically closely related data information may move further apart in memory as the

89



links 
ip. Data locations are less predictable. Therefore, as the simulation proceeds,

the data associated with the changing edge may be moved in and out from the cache

more frequently, and the data required to calculate observables may be distributed over

di�erent pages in virtual memory space. Therefore the behavior of update-links part may

appear to be more "violent" in terms of memory access and becomes more interesting.

All of these characteristics are very good features to be used as a probe to investigate

the performance of application software, compiler and memory hierarchy. By monitoring

the performance of di�erent aspects in the random surface program we may gain some

insights into many computational issues.

5.3 Optimization of the Random Surface Code for RISC

(1) Optimization and Memory Hierarchy

Our Fortran code for the random surface simulations ran very slowly on the Intel

i860, and we were convinced that we could improve the speed of the code substantially

for this and other modern RISC processors by some careful optimization.

We believed that the poor performance of the program on the i860 processor was

probably due mainly to cache misses, since the o�-cache memory access for this processor

takes many cycles, whereas a 
oating point operation can be done in a single cycle. This

is the case for most RISC processors, and can be a problem in utilizing these processors

e�ciently. We therefore attempted to understand why the program ran so slowly, and

to try to optimize the program for RISC processors such as the i860 and the RS/6000

by investigating possible problems, in particular memory access.

Note that this is also an essential step in optimizing parallel programs, since we

want to distribute data over processors in such a way that the memory accessed by any

90



processor is as local as possible, to minimize communication costs between processors.

On a sequential machine we have a similar kind of memory hierarchy, with on-cache

memory corresponding to on-processor memory for a parallel machine, and o�-cache

memory corresponding to memory on a di�erent processor, which requires extra time to

access.

Based on the idea of memory having a hierarchy structure, and the particular charac-

teristics of certain RISC chips, we can outline a fairly systematic method for optimizing

the program. These methods are quite general, and can be applied to any numerically

intensive program run on a fast RISC processor. We have benchmarked the results of

these optimization techniques on the Intel i860, IBM RS/6000, HP 7000, DECstation

5000, and Sun SPARC 1+.

(2) Optimizing Compilers and Basic Optimization Techniques

We �rst investigate what the compiler provides. Optimization 
ags with compilers

provide local and global optimizations, and may perform some pipelining. A comparison

of the speed of the program before and after compiler optimization for all the di�erent

machines is shown in Table 4.

For the i860, we found that the speed is increased by almost a factor of 3 just

by using the NOIEEE compiler 
ag. This causes 
oat and double divides, which are

otherwise extremely slow since they are done in software, to be done using an inline

divide algorithm. This gives substantial speed-up of functions such as division, square

root, exponential and arccos which are used in the strings program. In a similar vein,

the RS/6000 Fortran compiler has a 
ag (qrndsngl) which needs to be turned on in

order to ensure strict adherence to the IEEE arithmetic standard (i.e. IEEE standard

91



arithmetic is not the default for this compiler). The strings code runs about 10% slower

with this 
ag set.

The random number generator subroutine was used many times in the inner loop of

the program, and each call to this subroutine has a function call stack overhead. The

IBM and Intel compilers provide an inlining compiler 
ag, which allow calls to speci�ed

functions, or functions of less than a certain size, to be placed into the code (inlined)

rather than using a function call. By using the inline operation on the random number

generator we get about a 4% speed-up for the i860, but no noticeable speed-up for the

RS/6000. The same results are obtained by manual inlining. There is a trade-o� here, in

that bad inline e�ects may actually decrease the performance of the code, by increasing

the code size and thus increasing overhead due to the small size of the instruction cache.

Compilers for other machines may do automatic inlining at a certain level of compiler

optimization, and one should be careful to check that this does in fact increase and not

decrease the performance of the program.

We know that current compiler technology has not yet matured to the point of

automatically taking advantage of many of the features of modern RISC chips. Thus

the user needs to carefully reconstruct the program and fully expose the availability of

pipelining and data locality to the compiler, in order to take maximum advantage of the

data cache.

Firstly, we must try to keep the most frequently used variables in the cache, and

reuse them as much as possible while they are still there. This may require re-ordering

parts of the code. We also tried to reduce unnecessarily large array sizes so that all, or at

least most, of the working set data remains in the cache. Thus after the transient period

for loading this data onto the cache, most of the memory access is to fast cache memory.

92



Even better is to keep data which is re-used in registers. This can be done explicitly

by the programmer in C by using the register variable type. In Fortran we need to

allocate such data to temporary locally declared variables, and hope the compiler takes

advantage of this.

Secondly, in trying to optimize code, one usually thinks of an assignment as being

fast and a multiplication as being slow, however this is not the case with modern RISC

processors. On the i860, for example, a load operation takes two clock cycles and

a store operation three cycles while add or multiply take just one. We should thus

eliminate redundant assignments and minimize memory access, use constants rather

than variables, and try to avoid data conversion.

Thirdly, we try to minimize the number of expensive calculations, such as division,

square root, exponential and arccos, which all occur in the strings code. If a calculation

is expensive and repeatedly used in several places, it may be possible to calculate it once

and assign it to a global variable, so further calculations are reduced to using this \look-

up table". We should also try to utilize the concurrent add and multiply operations.

An addition combined with a multiplication will be performed in about the same time

as a multiplication on most RISC processors.

Fourthly, branches (IF statements) and loops (DO or FOR statements) can have a

large overhead. We should try to avoid IF statement since they slow down any pipelining.

Optimizing loops is somewhat problematic. Using the DO loop is a very good way to

utilize the instruction cache, since it allows a lot of code to reside in the generally

small instruction cache space. In most processors the CPU can take care of the loop

while the 
oating point unit deals with the operations in the loop. However there is

still a substantial overhead in using a DO loop, so we should merge DO loops as much

93



as possible, and in cases where the loop contains very few instructions it should be

\unrolled". This means that if the number of iterations of the loop is very small (for

example, a loop over 3 dimensions), the loop should be eliminated and the instructions

written out explicitly for each iteration (each dimension). If the number of iterations of

the loop is large, say 100 iterations of a single line of code, then it should be unrolled

into a loop over say 5 iterations of 20 lines of code. The optimal number of lines of code

in the loop after such a split should be such that the loop just �ts in the instruction

cache. unrolling of loops should be done by the compiler, but this is not always the case.

Also, since data is usually loaded into the cache a few words at a time, we should

try to keep the loop stride smaller than the length of this cache line to avoid possible

\thrashing" of the cache (continual reading and writing of data to and from cache),

and also increase the chance of pipelining multiple read and write operations since the

working data will be in same cache line or nearby.

Another crucial point to note for multiple loops over elements of arrays of more

than one dimension is that the loops must be ordered in such a way that the inner loop

corresponds to the array index which changes fastest. In Fortran this is the �rst index,

while in C it is the last index, so optimal loop ordering will depend on the language

used.

(3) Program-Speci�c User Optimization

After implementing the generic optimization techniques given above, we turned to

more problem-speci�c methods to speed up the code. Here we are still interested in

minimizing memory accesses and maximizing cache usage, but now we are aiming to do

this by studying the speci�cs of our particular problem, and �nding ways to change the

94



algorithm so as to better match the data structures and data access to the hierarchical

cache memory of the processor. By appropriately ordering the operations at each mesh

point, and in particular the traversal of the mesh data structure, so as to maximize data

locality, we realized quite substantial gains in performance.

Here we show a typical example. Initially, each node in the mesh has six nearest

neighbor nodes, so it has six connecting links. Each link has a pointer node of link to

point to its node and a pointer link next link to point to its neighbor links. Initially

everything is in order (Fig. 40). As the mesh is changed during the simulation by 
ipping

the links, the associativity between nodes and links and neighboring links changes. Links

pointing to the same node may now not be located in contiguous sections of the memory,

and the link pointer may not point to the nearest neighbor link among the links around

a node (Fig. 41). That is the case in the original version of the code, for which the

links around a node are not ordered after 
ipping. However, the calculation of physical

quantities associated with each link requires the information at the nearest neighbor

links around their boundary nodes. Since the links are not ordered, to �gure out the

left side link and right side link of a given link, the original code �rst looks for the left

side and right side nodes S1 and S2 (Fig. 40, and then makes a comparison to see which

link connects the node pair (S0,S1) and (S0,S2).

...

s1 = node_left_to_link(this_link)

s2 = node_right_to_link(this_link)

111 temp_link = start_link_of_node(s0)

112 if (node_of_link(temp_link) .eq. s2) then

s0s1 = temp_link

95



Figure 40: Mesh connectivity information distribution at the beginning

96



Figure 41: Mesh connectivity information changes after 
ips

97



goto 113

else

temp_link = link_next_link(temp_link)

goto 112

end if

113 continue

...

Here we have changed the algorithm to improve data locality. At the time we 
ip

the link, we re-order the links immediately, each link getting a pointer to its nearest

neighbor link (Fig. 42). So we get its nearest neighbor links (S0S1; S0S2; etc.) basically

for free.

...

s0s1 = link_next_link(this_link)

s0s2 = link_last_link(this_link)

...

By implementing this and making other similar changes, we achieved the biggest

improvement in speed. It eliminates a lot of IF statements, pointer chain searching op-

erations, and several unnecessary large arrays. It also provides much useful information

for other calculations at no extra cost.

In general, it is much harder to exploit data locality in a dynamic mesh than a �xed

mesh. Because the neighbors of nodes and links and their corresponding ordering are

changing as the simulation continues, the neighboring physical memory locations may

not re
ect the neighbor of a link or a node, and vice versa. The optimization may

98



Figure 42: Mesh connectivity information re-order after 
ips

99



require a run-time preprocessing strategy to predict more precisely the data locality.

(4) Performance Comparisons

We have compared the performance of this code and the e�ect of these optimization

techniques on a number of current RISC-based processors and workstations, in particular

the Intel i860, IBM RS/6000, HP 7000, DECstation 5000, and Sun SPARC 1+. Table 4

shows the performance of the program on all these di�erent machines for various system

sizes. We show timings for the code before any optimization, with compiler optimization,

and with optimization by the user involving rewriting parts of the code as outlined above.

It is interesting to note that the slower processors (the DEC and Sun machines)

gain relatively little from these optimizations or compiler optimization, whereas the

more powerful processors (IBM and HP) show substantial improvement. The biggest

improvement is found for the i860, which is most likely due to the complexity of its

architecture and the consequent di�culty in creating good compilers for this processor.

(5) Conclusions

From the study of irregular dynamical mesh program optimization, we have learned

that we need to be careful to construct the code and the data structures so that they

make most e�cient use of the memory hierarchy characteristics and pipelining of modern

RISC processors. Current compilers can provide good optimization, but do not recognize

and exploit all the information on data locality and pipelining opportunities. Substantial

gains in performance can be achieved if the user is prepared to restructure the code to

help provide the compiler with this information, especially programs with adaptive,

irregular data structures such as the random surfaces application.

Our results show that the dynamical part of the program needs to have more aggres-

100



Unoptimized Optimized

code code

IBM RS/6000-550 3.8 3.7

6.9 8.2

HP 7000 4.1 3.5

11.7 12.1

Intel i860 1.5 3.0

2.8 4.7

DEC 5000 2.5 2.6

2.5 2.6

Sun SPARC 1+ 1.0 1.0

1.3 1.5

Table 4: Comparison in performance for random surface strings code on a number of

di�erent workstations. These are normalized so that the slowest is 1. It is di�cult to

obtain an exact 
op count for this code, due to the use of intrinsic functions, however

the numbers given here are also very close (probably within 10%) to the MFlop rate for

this code. The two values presented are for Fortran codes with (bottom) and without

(top) compiler optimization.

101



sive code re-arrangement or even algorithm modi�cation in order to achieve a relatively

big performance improvement. Simply using the basic general optimization techniques

does not have real e�ect on the dynamical part although it does speed up the static part.

That means the compiler needs to be more intelligent so that it can look deeper into the

program and extract more information about data association if the compiler wants to

do this level optimization. That is one issue that High Performance Fortran will eventu-

ally address. Dynamical run-time techniques have to be used to explore more precisely

the behavior of data locality. we are trying to extract more general strategies from ours

and other similar type of irregular applications to support the High Performance Fortran

development. This study is a pre-investigation for the on-going development of the High

Performance Fortran compiler by Syracuse University, Rice University and University

of Maryland.

The approaches we used here can be applied to improve the performance on almost

all major types of RISC processors. These data locality techniques can also be used

by data parallel compilers such as those for High Performance Fortran to allow these

languages to outperform conventional Fortran even on sequential processors. Thus the

High Performance Fortran not only achieves the parallelism but also exploits the capacity

of each individual processor, especially for very irregular problems.

5.4 Parallelization of Random Surafces Program { on Distributed Net-

work, SIMD & MIMD

5.4.1 Independent Parallelsm

Monte Carlo simulation approximates a large or in�nite sum or integral over all possible

states of the system by a �nite sum over representative states of the system (usually

102



called con�gurations). This is a statistical process, with a corresponding statistical error

which is proportional to the square root of the number of independent states sampled.

Monte Carlo simulations therefore have a large amount of trivial parallelism, in that dif-

ferent processors can be generating di�erent con�gurations completely independently,

by using di�erent starting con�gurations and di�erent random numbers. These indepen-

dent results can then be combined to reduce the statistical error in the simulation. As

long as the system size is small enough so that each processor can hold all the data for

a simulation, this procedure will give perfect speedup over a MIMD parallel computer

or an array of workstations.

We have used this method of trivial parallelization running independent random

surface simulations on networks of workstations and on MIMD parallel computers such

as the Intel Touchstone Delta and the nCUBE/2. These runs used di�erent parameter

values or di�erent meshes with di�erent random numbers for each simulation. This

kind of \job level" parallelism is common to many kinds of simulations in science and

engineering. Usually simulation involves studying changes in the system as parameters

are varied. Sometimes the choice of new parameters will depend on the results of the

simulation with the current parameters, so this is a sequential process. However in many

cases one would like to know results for a large number of parameter values which can

all be run independently.

This approach is ideally suited to very coarse-grained parallel machines, and espe-

cially for distributed computing over networks of workstations. There are at least three

methods of invoking job level parallelism on distributed networks, which we discuss be-

low. We have done our physics production runs with the strings program using the �rst

two methods, neither of which we found to be satisfactory. This has led us to think

103



of programming paradigms and systems software which would be ideal for this type of

physics application, and this is what we propose as the third method.

(1) The Brute Force Approach

The simplest but most tedious method is just to log on to any available machines

in the network and submit a di�erent job to each of these machines. This method is

too time consuming to use on any more than a handful of workstations. It would be

possible to set up a shell program to remotely run these jobs on di�erent processors,

however deciding which machines to use generally requires checking that the machine

is not already in use. Physicists and other scientists who might wish to use networked

workstations in this way usually do not have the systems programming knowledge to

implement such a method.

(2) Portable Parallel Software

Job level parallelism can be used on distributed computing networks and MIMD

parallel computers using parallel software. It is easy to set up parallel code to do this,

since only data input and output need to be managed, since all computation is sequential

and requires no communication. The problem with this method is that although the

programs are run independently, they generally require synchronization every time data

is input or output. If results are output frequently, this communication may cause

unacceptable performance degradation. Synchronization overhead can be reduced by

altering the code slightly to bu�er data on each processor and thus output larger blocks

of data less frequently. This was not required for the strings code, which performed

at virtually 100% e�ciency when distributed across the RS/6000 network, even for the

smallest system sizes used.

104



Synchronization during data output can also lead to performance problems if one or

more of the processors in the network is slower than the others, perhaps because it is

also running other jobs. This can be avoided by writing the data from each processor

into separate �les which can be accessed asynchronously. This can be done in Express,

for example. This approach allows all the processors to run completely independently.

We still have the problem of \load balancing", in the sense that some machines in the

network may be loaded with other jobs, and thus take much longer to �nish their work.

It would be helpful if there were some kind of dynamic load balancing functionality,

whereby if a machine became loaded with another job, then the process being run under

Express would be migrated to another unloaded machine in the network, if one was

available.

(3) A Transparent Network

It would be preferable to be able to run multiple jobs over the network without

having to deal with parallel software (such as Express) at all. Ideally, one would like

to be able to just set up a standard Unix run�le which submitted multiple jobs, with

di�erent input and output �les, to the network, rather than to a particular workstation.

Some clever systems software would then distribute these jobs to whichever machines on

the network had the smallest load and were not being used interactively. Again, some

load balancing software would be required, so that if an interactive session was started

on a workstation, the job would be migrated to another workstation. This would all be

transparent to the user, who would just submit jobs to the network and not care where

they were run.

This works very well for relatively small systems, however for large systems we

105



strike a snag related to the problem of critical slowing down, which we have seen is

a major problem for Monte Carlo simulations of spin models near phase transitions.

Random surface simulations also su�er badly from extremely long correlation length.

A consequence of this is that the equilibration time grows rapidly with the size of the

system. This is the time required for the Monte Carlo algorithm to move the system from

the initial state, which can be any con�guration, to an uncorrelated state representative

of the system being simulated, i.e. with a particular temperature or system parameter

(in the case of string theories, this is the extrinsic curvature parameter �). For trivial

parallelism, each processor has to run for at least the equilibration time before it can

start producing usable data, so this is e�ectively wasted time. For large systems, this

time may be so great that in practice it is not feasible to equilibrate the system on a

single processor, whereas a system being simulated in parallel over many processors may

be equilibrated and produce useful data in a reasonable time period.

5.4.2 Parallel Random Surfaces

Have seen the problem with independent parallelsm in the previous section, we also

started to work on parallelizing the random surface code on SIMD machines such as

the CM-2 and MIMD machines such as the CM-5, the Intel Delta, and the new IBM

RISC-based parallel machine. Since this application involves a dynamic irregular mesh,

we would expect that SIMD architectures would fare poorly on this problem. However

they may do reasonably well on problems with �xed triangulated surfaces which do not

change during the simulation.

E�cient parallelization of a dynamically triangulated random surface is a very dif-

�cult problem even on MIMD machines, since dynamic load balancing will be required.

106



This is because the mesh changes throughout the simulation, so that the neighbors of

a point, which will originally reside on the same processor or a neighboring processor

using standard domain decomposition, will change so that they may end up on distant

processors, thus increasing the communication cost. Also the irregularity of the mesh

means that it is not simple to determine which points can be updated in parallel, as it

is for the regular �xed lattices we use for the simulation of spin models.

In DTRS simulations, both the vertex and edge update operations are generally done

using the Metropolis Monte Carlo algorithm [31, 30]. The update of the variables on

each vertex depends only on the values at neighboring vertices. In general this will also

depend on next-nearest neighbor vertices, but for simplicity we will consider only the

nearest neighbor problem. The general case is a simple extension of this problem. The

Metropolis algorithm requires that dependent (neighboring in this case) values cannot

be updated simultaneously (i.e. in parallel).

If we describe the mesh in terms of an undirected graph with vertices and edges,

then the Monte Carlo update of the mesh is achieved using two basic operations: the

update (or \
ip") of an edge of the graph, which changes the structure of the graph (see

Fig. 8); and the update of the variables associated with a vertex of the graph, which, for

example, might be the position of the vertex in the embedding space, in which case the

update is just a \move" of the vertex (see Figure 14). These two updates are su�cient

to generate all possible triangulated meshes.

This is the well-known graph coloring problem. An undirected graph G is a set of

vertices V and a set of edges E. The edges are of the form (i; j) where i; j�V . A

coloring of a graph G is a mapping c : V ! f1; 2; : : : ; sg such that c(i) 6= c(j) for all

edges (i; j)�E. c(i) is referred to as the color of vertex i. Vertices i and j are said to be

107



neighbors if (i; j)�E. The number of vertices is denoted by V .

Note that for the DTRS simulations, we are updating both the vertices and the

edges, so for a parallel implementation we need a vertex coloring and an edge coloring.

We will concentrate solely on the problem of coloring the vertices of a graph.

To discretize the continuum world as a triangulated mesh is used in many simulations

in computational science. This is particularly common for partial di�erential equation

(PDE) solvers [100, 103]. These meshes are irregular and often adaptive, that is, they

change during the course of the simulation [104]. For example, in computational 
uid

dynamics, the simulation of air
ow over an airplane would use a �ner mesh in turbulent

regions and a coarser mesh in regions of laminar 
ow. The positions of these regions are

not known initially, but must be identi�ed during the course of the simulation.

Here we introduce some parallel graph coloring algorithms based on well-known se-

quential heuristic algorithms, and compare them with some existing parallel algorithms.

These algorithms are implemented on both SIMD and MIMD parallel architectures and

tested for speed, e�ciency, and quality (the average number of colors required) for col-

oring random triangulated meshes and graphs from sparse matrix problems.

Since this problem is so challenging to parallelize, we expect that the implementation

of a parallel algorithm for this dynamic irregular mesh problem will also provide input

for new parallel languages and compilers, such as Fortran D and High Performance

Fortran.

We would like to speed up the graph coloring part of these algorithms by doing

the coloring in parallel. However our goal is to reduce the run-time for the whole

computation. There is a trade-o� here between the time spent in coloring the graph and

in updating the edges and vertices of the graph. For an adaptive grid PDE solver, many

108



updates will generally occur between adaptive re�nements of the graph which require a

new graph coloring. In this case the percentage of the time spent in coloring the graph

is very small, so it is worth spending more time to get a better coloring, which should

improve the parallelism and reduce the update time. However for a DTRS simulation,

every iteration involves an edge update, which changes the structure of the underlying

graph, so the graph must be re-colored after every iteration. The graph coloring could

therefore provide a substantial overhead unless it is much faster than the update time.

In this case we are mainly interested in speed, and may be willing to make do with a

good coloring, rather than a better coloring which takes much longer. We are therefore

interested in studying and comparing a variety of parallel graph coloring algorithms.

For most of the applications that requires graph coloring, �nding a good graph

coloring with a small number of colors is only part of the problem. We must also be

concerned with load balancing, since each coloring is followed by an update step in which

the variables associated with vertices of the same color are updated in parallel. Thus

we need also to ensure that the number of vertices of each color on every processor is

approximately the same, in order to obtain good load balance in the update step. Our

goal is therefore not just to obtain a good coloring, but to obtain a balanced coloring,

that is, to minimize the number of colors required taking into account the load balance

constraint, that the number of vertices of each color be approximately the same on every

processor. It may be advantageous to make do with a larger number of colors if this

makes the load more evenly balanced.

We concentrated on the �rst of these two goals, optimal graph coloring and suggest

how the algorithms presented may be modi�ed to achieve balanced graph coloring.

I did not have enough time to continue this investigation. Several other people

109



in NPAC went on and implemented the parallization of random surfaces, using the

action with only Guassian term. They found The LDF algorithm appears to perform

exceedingly well in both architectures. The processing time required remains lower

compared to many of the other algorithms even as the size of the problem grows larger.

In particular the SDL and MIS algorithms require much more communication in each

pass, which would account for their poor performance at large problem sizes and with

more parallel processors. Even noting that the communication required by the LDF

algorithm is equivalent to that required by the J{P algorithm, it consistently performs

better. The LDF algorithm consistently achieves between 5 and 6 colors on planar

graphs, which is excellent considering the NP{Hard nature of the optimal 4-coloring.

The LDF algorithm is fairly easy to implement and to understand, which makes it

relatively easy to incorporate into many parallel architecture codes that may be written

at some point in the future.

For some algorithms, it may be important that there is no bias towards updating

certain vertices before others. This is known as the requirement for detailed balance

[31, 105]. For example, the LDF and SDL algorithms will both tend to color large-

degree vertices �rst, assigning them as a small number \color". If the vertices are

updated in color order, then there will be a bias towards updating these vertices �rst.

This problem can be avoided by picking the color sets to be updated in random order.

With the Jones-Plassmann and MIS algorithms, this problem does not arise because

there is no bias towards a particular set of vertices.

For applications such as DTRS, which require regular re-coloring of the graph, the

LDF algorithm is probably the best to use, since it takes the same time as J-P, but

requires fewer colors. For applications such as PDEs, the SDL algorithm, which takes

110



longer but uses fewer colors, may well be preferable since the coloring is performed once

only.

A further re�nement of the coloring algorithm is a balanced coloring, requiring that

the roughly equal numbers of vertices have each color. Having a small number of vertices

of any one color means that there is not much parallelism to be exploited in the update

step for the parallel application (such as a PDE solver or random surface simulation)

that is using the results of the graph coloring. A balanced distribution of colors makes

it easier to load balance the work of updating and e�ectively exploit a parallel machine.

A simple modi�cation to the sequential versions of the algorithms described here will

achieve a balance of colors. Instead of picking the smallest available color, one picks

the least used of all available colors [106]. This idea can be adapted readily to a MIMD

implementation; each processor chooses from the least used color in its local patch of

vertices. In a SIMD implementation this is not possible because each vertex knows only

the colors of its neighbors. An alternative strategy in this case would be to pick a color

at random from the set of legal colors for a vertex. This could result in a slight increase

in the average number of colors required, however this cost should be outweighed by the

improved load balance. No experiments with color-balancing were performed.

And they also disappointedly found no speedup with the number of processors used

on the iPSC/860. One reason for this may be that the algorithms as coded sent the set

of weights for the whole graph to every processor and the set of colors for the whole

graph to every processor.

Much pioneer work has been done in parallelization of random surfaces. However,

we still have lots of more work to do. We have not had a parallel random surface parallel

program. If we add in the extrinsic curvature term in the action in the parallel program,

111



things would become even more complex.

5.5 Visualization of Monte Carlo Simulation in 3 Dimensions

Graphics and visualization are increasingly becoming indispensable tools for analyzing

and understanding large data sets and complex physical problems. Many of our physics

applications involve complex and irregular data structures, and visualization tools are

extremely useful for analyzing and understanding the physical system and the complex

algorithms used to simulate the system. Graphical tools can also be a useful aid in

debugging such algorithms. The IBM RS/6000 workstation provides a powerful graphics

capability which we have used extensively in our studies of physics applications and

parallel algorithms.

The machine with 24-bit color also is licensed for the Advanced Visualization System

(AVS) from Stardent and Mathematica from Wolfram Research.

Graphics and visualization are extremely useful in the study of Monte Carlo simu-

lation of spin models, on many di�erent levels. They can aid the understanding of the

physical system, the algorithms used to study the physical system, and the implemen-

tation and debugging of these algorithms.

(1) Visualization Using AVS

Two dimensional dynamically triangulated random surfaces consisting of hundreds

of points embedded in three dimensional space-time are very di�cult to picture without

some sophisticated visualization tools. For our research, we are particularly interested in

seeing how the structure of the surface changes from smooth to crumpled as we change

the curvature parameter, and the variation in shape of the surfaces which are typical

of particular parameter values. We also wish to see how rapidly the surface changes

112



during the simulation, and how certain structures, such as large spikes, can be created

and take a long time to disappear, which contributes to the problem of critical slowing

down. New Monte Carlo algorithms which can reduce critical slowing down in random

surface simulations is an area we have been studying, and plan to investigate more in

the future. As we have seen with spin models, visualization is extremely useful for the

study of such algorithms.

Each 2 dimensional triangular cells cell is de�ned by vertices and connecting edges.

We have used the Application Visualization System (AVS), since is particularly powerful

at handling 3D images, especially for unstructured data. It also has a very simple and

powerful user interface, which allows a complex visualization program to be constructed

merely by connecting separate modules using an interactive graphical environment. AVS

also allows the user to interactively adjust lighting, shading, coloring, and orientation of

the image. Another bene�cial feature is that it is available for many di�erent systems,

including Silicon Graphics, Sun, DEC and IBM workstations.

We have written an interface module to read in a �le containing the random surface

data, and convert it into a format which is understandable by AVS. AVS then does the

rendering and display of the surface. Rendering, rotating, and zooming this complex

3-D image under AVS running on Sun or DEC platforms can be very slow, however

with the IBM RS/6000 these operations are done very quickly, especially when special

graphics hardware is utilized.

We used di�erent color maps to re
ect di�erent properties of the surface, such as

curvature, convexity, etc. We also used Guraud shading, which interpolates the color

between nodes of the surface.

Figures 43, 44, 45, 46 and 47 show several con�gurations of a torus with 2304 nodes

113



at di�erent �, ranging from 0.3 to 2.0. We can see the surface changes from a crumpled

one to a smooth one as � increases.

Here the colors represent the curvature of the surface, with blue corresponding to

smooth sections of the surface, and red representing sharply peaked elements. Concave

sections of the surface are shown by the addition of green to the color of a vertex, giving

yellow, green, or orange hues.

(2) Animation

We also developed a module which enables us to visualize the system by animating

the simulation, rather than just displaying individual meshes. This is done by running

the random surface program on the IBM RS/6000 workstation, and using a Unix pipe

to pass the data to an AVS module which we have written to take the data and convert

it into AVS format for rendering and real-time display. We have also included a pause

option to freeze the image at any time. In order to display the results of the simulation

in animated form, we need the power of the IBM RS/6000 to both run the simulation

fast enough, and to do the rendering of the complex surfaces extremely rapidly. The

IBM RS/6000 is not only much faster than the DEC or Sun workstations which also

support AVS, but has a much larger range of colors, and can use hardware rendering to

make the animation much faster and smoother.

We made a video of this animation, which is invaluable in helping to explain random

surface simulations when making presentations of our work at conferences and seminars.

This animation capability allows us to better study the dynamics of the system, in

particular the change in the surface when passing through the crumpling transition. It

is also a great help in trying to understand the causes of critical slowing down, and

114



should help us in our attempts to �nd new and better Monte Carlo algorithms.

(3) Using AVS to Display Parallel Simulations on a Network

The most recent version of AVS provides a parallel module execution function. We

are therefore able to visualize di�erent simulations running on di�erent machines in

the network in parallel. Here the amount of data being received, and the amount of

rendering required for multiple images, is so large that we need a very powerful machine

such as the IBM RS/6000 for this to be useful. An example of the RS/6000 monitor

when running AVS in this fashion is shown in Fig. 48.

115



Figure 43: A con�guration with 2304 nodes at � = 0:8.

116



Figure 44: A con�guration with 2304 nodes at � = 1:4.

117



Figure 45: A con�guration with 2304 nodes at � = 1:425.

118



Figure 46: A con�guration with 2304 nodes at � = 1:5.

119



Figure 47: A con�guration with 2304 nodes at � = 2:0.

120



Figure 48: Using AVS to display parallel simulations over a distributed network

121



6 Conclusion

The main result described in this dissertation is the numerical study of the critical

properties of non-self-avoiding 
uid like random surfaces with extrinsic curvature by

using dynamical triangulations. The topology of the surface is toroidal and the surface

is embedded in 3-dimensional space. We have thus explored the phase diagram of 
uid

random surfaces with extrinsic curvature, but unfortunately we have been unable to

determine if our model undergoes a phase (crumpling) transition at �nite coupling. We

have observed dramatic crossover behavior for particular observables in our Monte Carlo

simulations, but on the other hand, the correlation times and certain �nite-size e�ects

do not behave as one would expect in the presence of a phase transition.

We found that the extrinsic-curvature speci�c heat peak ceases to grow on lattices

with more than 576 nodes and that the location of the peak �c also stabilizes. The

evidence for a true crumpling transition is still weak. If we assume it exists we can say

that the �nite-size scaling exponent �

�d
is very close to zero or negative.

On the other hand our data does rule out the observed peak as being a �nite-size

artifact of the persistence length becoming comparable to the extent of the lattice.

The behavior of other lattice models also indicates that it is possible that we are

observing the e�ects of �nite-mass excitations on small lattices, rather than a phase

transition. We hope that future work will clarify this murky state of a�airs, to determine

if there indeed exists a crumpling transition for 
uid surfaces.

While studying random surfaces, we encountered many challenging computational

issues. The use of high performance computers is central to our goal of understanding

random surfaces. The irregular or 
uctuating meshes makes the computational side very

122



rich. Careful construction of program for irregular data structure application can lead

very big performance increase on some of RISC processors. It is always the essential

step before implementation on parallel computer. On parallel computer, programming

random surface simulations becomes much harder. We proposed some solutions to deal

with domain decomposition for mapping the problem on di�erent types of parallel com-

puters. However, there are still many unresolved issues for having a practical parallel

simulation program of dynamical triangulated random surfaces with extrinsic curvature.

We also gained insights from 3-dimensional visualization of the random surfaces in which

the structure and changes of the surfaces are very di�cult to picture.

123



References

[1] A. Neveu and J. H. Schwarz, Nucl. Phys. B31 (1971) 86; Phys. Rev. D4 (1971)

1109.

[2] M. Green and D. Gross, Workshop on Uni�ed String Theories (World Scienti�c,

Singapore, 1986)

[3] Lars Brink and Marc Henneaux, Principles of String Theory, (Plenum Press 1988).

[4] A. M. Polyakov, Phys. Lett. 103B (1981) 207.

[5] Michio Kaku Introduction to Superstrings (Springer-Verlag, New York 1988).

[6] M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory Vols. 1 and 2,

(Cambridge University Press, Cambridge, 1986)

[7] R. P. Feynman, Rev. Mod. Phys. 20 (1948) 267.

[8] J. Kogut, Rev. Mod. Phys. 51 (1979) 659

[9] Bernd Bruegman, Ph.D. Thesis (1993), Syracuse University.

[10] A. Ashtekar, Lectures on non-perturbative canonical gravity (World Scienti�c, Sin-

gapore, 1991)

[11] R. Lipowski, Nature, 349 (1991) 475.

[12] D. Nelson, in Statistical Mechanics of Membranes and Surfaces, Jerusalem Winter

School, Vol. 5, edited by D. Nelson, T. Piran and S. Weinberg (World Scienti�c,

Singapore 1989) 167.

124



[13] V. G. Knizhnik, A. M. Polyakov and A. B. Zamolodchikov, Mod. Phys. Lett. A3

(1988) 819.

[14] F. David, Mod. Phys. Lett. A3 (1988) 1651; J. Distler and H. Kawai, Nucl. Phys.

B321 (1989) 509.

[15] E. Br�ezin and V.A. Kazakov, Phys. Lett. 236B (1990) 144; M.R. Douglas and S.H.

Shenker, Nucl. Phys. B335 (1990) 635; D. J. Gross and A. A. Migdal, Phys. Rev.

Lett. 64 (1990) 127. D. Gross and A. Migdal, Nucl. Phys. B340 (1990) 333.

[16] V. A. Kazakov, Phys. Lett. 150B (1985) 282; F. David, Nucl. Phys. B257 (1985)

45; J. Ambj�rn, B. Durhuus and J. Fr�olich, Nucl. Phys. B257 (1985) 433.

[17] V. A. Kazakov and A. A. Migdal, Nucl. Phys. B311 (1988/89) 171.

[18] A. M. Polyakov, Nucl. Phys. B268 (1986) 406.

[19] L. Peliti and S. Leibler, Phys. Rev. Lett. 54 (1985) 1690.

[20] D. Forster, Phys. Lett. 114A (1986) 115.

[21] H. Kleinert, Phys. Lett. 174B (1986) 335.

[22] H. Kleinert, Phys. Lett. 114A (1986) 263.

[23] A. Billoire and F. David, Phys. Lett. 168B (1986) 87; Nucl. Phys. B275 (1986)

617.

[24] J. Ambj�rn, B. Durhuus and J. Fr�ohlich, Nucl. Phys.B275 (1986) 161; J. Ambj�rn,

B. Durhuus, J. Fr�ohlich and P. Orland, Nucl. Phys. B270 (1986) 457.

[25] D. Boulatov, V. Kazakov, I. Kostov and A.A. Migdal, Phys. Lett. 157B (1985)

295.

125



[26] D. Boulatov, V. Kazakov, I. Kostov and A.A. Migdal, Phys. Lett. 174B (1986) 87;

Nucl. Phys. B275 (1986) 641.

[27] P. B. Canham, J. Theor. Biol. 26 (1970) 61.

[28] F. David, Nucl. Phys. B (Proc. Suppl.) 17 (1990) 51

[29] W. Press, B. Flannery, S. Teukolsky and W. Vetterling, Numerical recipes in C,

(Cambridge University Press, Cambridge 1988)

[30] N. Metropolis et al., J. Chem. Phys. 21, 1087 (1953).

[31] For a review of spin models and Monte Carlo algorithms, see Ed. K. Binder, Monte

Carlo Methods in Statistical Physics, (Springer-Verlag, Berlin, 1986).

[32] P. Coddington, Lecture Notes (unpublished), (Sept. 1994)

[33] D. Kutasov and N. Seiberg, Nucl. Phys. B358 (1991) 600.

[34] W. Helfrich, J. Phys. 46 (1985) 1263.

[35] Y. Choquet-Bruhat, C. DeWitt-Morette and M. Dillard-Bleick, Analysis, Mani-

folds, and Physics (Elsevier, Amsterdam 1987).

[36] M. P. Do Carmo, Differential Geometry of Curves and Surfaces (Prentice-Hall,

Englewood, N.J., USA 1976).

[37] M.J. Bowick and E. Marinari, Gen. Rel. Grav. 24 (1992) 1209.

[38] S. Catterall, Phys. Lett. 220B (1989) 207.

[39] C. Baillie, D. Johnston and R. Williams, Nucl. Phys. B335 (1990) 469.

126



[40] C. Baillie, S. Catterall, D. Johnston and R. Williams, Nucl. Phys. B348 (1991)

543.

[41] J. Ambj�rn, J. Jurkiewicz, S. Varsted, A. Irb�ack and B. Petersson, Phys. Lett.

275B (1992) 295.

[42] J. Ambj�rn, A. Irb�ack, J. Jurkiewicz and B. Petersson, Nucl. Phys. B393 (1993)

571.

[43] S. Catterall, J. Kogut and R. Renken, Nucl. Phys. B (Proc. Suppl.) 99A (1991) 1.

[44] S. Catterall, Nucl. Phys. B (Proc. Suppl.) B (1991) 716.

[45] J. Polchinski and Z. Yang, Phys. Rev. D46 1992, 3667

[46] E. Braaten and C. Zachos, Phys. Rev. D35 (1987) 1512.

[47] W. Helfrich, J. Naturforsch. 28C (1973) 693.

[48] A. M. Polyakov, Gauge Fields and Strings (Harwood Academic Publishers, Chur,

Switzerland 1987).

[49] T. Morris, Nucl. Phys. B341 (1990) 443; J. Govaerts, Int. J. Mod. Phys. A4 (1989)

173.

[50] J. Polchinski and A. Strominger, Phys. Rev. Lett. 67 (1991) 1681.

[51] J. Distler, Nucl. Phys. B388 (1992) 648

[52] F. David, Europhys. Lett. 2 (1986) 577; F. David and E. Guitter, Europhys. Lett.

3 (1987) 1169; Nucl. Phys. B295 (1988) 332; F. Alonso and D. Espriu, Nucl. Phys.

B283 (1987) 393.

127



[53] Z. Yang, Phys. Lett. B279 (1992) 47.

[54] S. Catterall, D. Eisenstein, J. Kogut and R. Renken, Nucl. Phys. B366 (1991) 647.

[55] D. Kroll and G. Gompper, Science 255 (1992) 968; Phys. Rev. A46 (1992) 3118.

G. Gompper and D. Kroll, Europhys. Lett. 19 (1992) 581;

[56] J. F. Wheater, Nucl. Phys. B (Proc. Suppl.) 34 (1994) 15.

[57] F. David, Introduction to Statistical Mechanics of Random Surfaces and Mem-

branes, in Two Dimensional Quantum Gravity and Random Surfaces Jerusalem

Winter School, Vol. 8 edited by D. Gross, T. Piran and S. Weinberg (World Scien-

ti�c, Singapore 1992).

[58] F. David, in Statistical Mechanics of Membranes and Surfaces, Jerusalem Winter

School, Vol. 5, edited by D. Nelson, T. Piran and S. Weinberg (World Scienti�c,

Singapore 1989) 158.

[59] M. Bowick, P. Coddington, L. Han, G. Harris and E. Marinari, Nucl. Phys. B394

(1993) 791 and references therein.

[60] D. Gross and V. Periwal, Phys. Rev. Lett. 60 (1988) 2105.

[61] M. Agishtein and A. Migdal, Mod. Phys. Lett. A7 (1992) 1039 M. Agishtein and

A. Migdal, Nucl. Phys. B385 (1992) 395 J. Ambj�rn and J. Jurkiewicz, Phys. Lett.

B278 (1992)42.

[62] F. James, Comp. Phys. Comm. 60 (1990) 329.

128



[63] M. Falcioni, E. Marinari, M. L. Paciello, G. Parisi and B. Taglienti, Phys. Lett.

102B (1981) 270; Nucl. Phys. B190 (1981) 782; Phys. Lett. 108B (1982) 331; E.

Marinari, Nucl. Phys. B235 (1984) 123.

[64] A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61 (1988) 2635 and Erra-

tum, ibid. 63 (1989) 1658.

[65] A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63 (1988) 1196.

[66] N. A. Alves, B. A. Berg and S. Sanielevici, Nucl Phys. B376 (1992) 218.

[67] R. H. Swendsen, Physica A (1993) 53.

[68] See, for example, J. Zinn-Justin, Quantum Field Theory and Critical Phenomena

(Oxford University Press, New York, 1989).

[69] U. Wol�, Nucl. Phys. B322 (1989) 759; Nucl. Phys. B334 (1990) 581.

[70] J.M. Drou�e, G. Parisi and N. Sourlas, Nucl. Phys. B161 (1980) 397; J. Ambj�rn,

B. Durhuus and T. Jonnson, Phys. Lett. B244 (1990) 403.

[71] A.D. Sokal, in Computer Simulation Studies in Condensed Matter Physics: Recent

Developments, eds. D.P. Landau et al. (Springer-Verlag, Berlin-Heidelberg, 1988);

A.D. Sokal, in Proc. of the International Conference on Lattice Field Theory, Tal-

lahassee, October 1990, Nucl. Phys. B (Proc. Suppl.) 20, 55 (1991).

[72] H. Kawai and M. Ninomiya, Nucl. Phys. B336 (1990) 115.

[73] A. Migdal, talk given at Syracuse University, April 1992.

[74] J. L. Colot, J. Phys. A16 (1983) 4423.

129



[75] S. Shenker and J. Tobochnik, Phys. Rev. B22 (1980) 4462.

[76] R. Brout, W. Deans and A. Silovy, Phys. Rev. B27 (1983) 5813.

[77] R. Brout and W. Deans, Nucl. Phys. B215 (1983) 407; J. Orlo� and R. Brout,

Nucl. Phys. B270 (1986) 273.

[78] J. Apostolakis, C. Baillie and G. Fox, Phys. Rev. D43 (1991) 2687.

[79] P. Hasenfratz and F. Niedermayer, Phys. Lett. B245 (1989) 522.

[80] G. Martinelli, G. Parisi and R. Petronzio, Phys. Lett. B100 (1981) 485.

[81] R. Brout and W. Deans, Nucl. Phys. B215[FS 7] (1983) 407.

[82] R. Brout, W. Deans and A. Silovy, Phys. Rev. B27 (1983) 5813.

[83] J. Orlo� and R. Brout, Nucl. Phys. B270[FS 16] (1986) 273.

[84] W.A. Bardeen, B.W. Lee and R.E. Shrock, Phys. Rev. D14 (1976) 985.

[85] J.A. Lipa and T. C. P. Chui, Phys. Rev. Lett. 51 (1983) 2291.

[86] See N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group,

FIP Vol. 85 (Addison-Wesley, Reading Massachusetts, 1992).

[87] V. A. Kazakov, Phys. Lett. A119 (1986) 140.

[88] D. V. Boulatov and V.A. Kazakov, Phys. Lett. B186 (1987) 379.

[89] Y. Kantor and D. Nelson, Phys. Rev. Lett. 58 (1987) 2774; Phys. Rev. A36 (1987)

4020.

[90] J. Ambj�rn, B. Durhuus and T. Jonnson, Nucl. Phys. B316 (1989) 526.

130



[91] R. Harnish and J. Wheater, Nucl. Phys. B350 (1991) 861.

[92] J. F. Wheater and P. W. Stephenson, Phys. Lett. B302 (1993) 447.

[93] K. Anagnostopoulos, M. Bowick, P. Coddington, M. Falcioni, L. Han, G. Harris

and E. Marinari, Phys. Lett. B317 (1993) 102.

[94] P. Butera, M. Comi and G. Marchesini, Nucl. Phys. B300 (1989) 1.

[95] M. Agishtein, R. Benav, A. Migdal and S. Solomon, Mod. Phys. Lett. A6 (1991)

1115.

[96] H. S. Stone, High-Performance Computer Architecture (Addison-Wesley Publishing

1993)

[97] W. Stallings, Proceedings of The IEEE, Vol 76, No.1, (1988) 38

[98] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, D. W. Walker,

Solving Problems on Concurrent Processors, Vol. 1, (Prentice-Hall, 1988)

[99] C.F. Baillie, D.A. Johnston and R.D. Williams, Comput. Phys. Commun. 58, 105

(1990).

[100] R.D. Williams, Proc. of the 3rd Hypercube Conference, Pasadena, 1988, ed. G. C.

Fox, (ACM Press, New York, 1988).

[101] R. Das, D.J. Marvriplis, J. Saltz, S. Gupta and R. Ponnusamy, The Design

and Implementation of a Parallel Unstructured Euler Sover Using Software Primi-

tives,ICASE Report No. 92-12

131



[102] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, S. Ranka, M. Wu, Compiling Fortran

90D/HPF for Distributed Memory MIMD Computers Syracuse University Internal

Report, March 8, 1993, SCCS-444.

[103] N. Chrisochoides and E. Houstis and J. Rice, J. of Parallel and Distributed Com-

puting, 21 (1994) 71

[104] Gordon Erlebacher and Peter R. Eiseman, AIAA Journal, Vol. 25, Num. 10 (1987)

1356

[105] H. Gould and J. Tobochnik, An Introduction to Computer Simulation Methods,

Vol. 2, (Addison-Wesley, Reading, Mass., 1988)

[106] G. Huang and W. Ongsakul, An E�cient Task Allocation Algorithm and Its Use

to Parallelize Irregular Gauss-Seidel Type Algorithms, (8th International Parallel

Processing Symposium, Apr. 1994, Cancun, Mexico)

132


