
To appear in the proceedings of Parallel Compu-

tational Fluid Dynamics' 93, Paris, France.



PARALLEL GRID GENERATION ON DISTRIBUTED MEMORY MIMD MACHINES FOR

3-DIMENSIONAL GENERAL DOMAINS

Nikos Chrisochoides,� Geo�rey Fox,� Joe Thompson��

�Northeast Parallel Architectures Center, Syracuse University

111 College Place, Syracuse, NY, 13244-4100
��Engineering Research Center for Computational Field Simulation, Mississippi State University

P.O. Box Drawer 6176, Mississippi State, MS 39762

corresponding author: Nikos Chrisochoides (nikos@npac.syr.edu)

Extended Abstract

The mapping of sequentially generated irreg-

ular meshes onto distributed

memory MIMD/SIMD machines has been studied

extensively in the scienti�c computing literature;

a list of very interesting results, which is by no

means complete, appear in [Bokh 81], [Fox 86],

[Morr 87], [Sada 87], [Farh 88], [Simm 91], [Lori

90], [Stev 92], [Mans 92], and [Chri 92]. In this

paper we study the parallel generation of struc-

tured grids for 3-dimensional complex domains.

Speci�cally, we present a parallel grid generation

method based on composite block structures, and

a strategy for the mapping of the computations

associated to the parallel grid generation onto dis-

tributed memory MIMD machines (multiproces-

sor systems).

The parallel grid generation method for a given

3-dimensional domain 
 is described by the fol-

lowing four steps :

1. Decompose the physical domain, 
, using the

NGP interactive environment (see in [Thom

91]), into a small number of contiguous hex-

ahedron subregions, 
i, that can be mapped

into a rectangular computational blocks Bi

which form an initial composite block struc-

ture C0(
) = fBigNi=1.

2. Generate sequentially an Algebraic grid that

provides an explicit control of the physical

grid shape and requires a minimal number

of grid points. This grid is used as a back-

ground for the �ner composite block struc-

ture, Cf(
) = fB
0

ig
N

0

i=1 that satis�es the

following three properties :

j C0(
) j < j Cf (
) j
8Bi 2 C0(
) 9Ii � @ 3: Bi = [j2IiB

0

j ; B
0

j 2 Cf(
)

jB
0

i j = jB
0

j j 8B
0

i ; B
0

j 2 Cf(
)

3. Generate in parallel a �ner Algebraic grid,

using Cf(
), that provides an explicit control

of the physical grid spacing.

4. Generate in parallel the �nal grid using the

�ne Algebraic grid of step 3 as an initial so-

lution to start the iterative Elliptic grid gen-

eration.

Steps 1 to 3 require limited amount of computa-

tion while the step 4 is the most time-consuming.

The computation required for the parallel Elliptic

grid generation can be described by a loosely syn-

chronous computational model (i.e., a sequence

of computation-communication steps that almost

periodically require a global synchronization). A

careful mapping of the composite block structure

Cf(
) can reduce the communication overhead

and minimize the overall execution time for the

parallel grid generation.

The mapping of such computations onto dis-

tributed memory MIMD machines is a di�cult

combinatorial optimization problem. Strategies

for the mapping of such computations onto dis-

tributed memory machines can be applied to dif-

ferent levels (i.e., geometric, algebraic) of the grid

generation process. We propose and study geom-

etry based mapping heuristics based on a com-

posite block structure. Our goal is to map these



computations onto the processors of a distributed

memory MIMD machine so that the workload of

the processors is balanced and the required com-

munication and synchronization among the pro-

cessors is minimum. Such mappings will be used

to parallelize the grid generation modules of the

National Grid Project [Thom 91].

The basic idea of the grid generation using

a composite block structure is based on the

decomposition of the physical domain 
 into

contiguous hexahedron subregions 
i which are

mapped to rectangular computational blocks, Bi

(see in [Thom 84] for a comprehensive survey

of this method). In each of the computational

blocks an independent curvilinear coordinate sys-

tem (�1; �2; �3) is generated. Note that (i) the

size (i.e., the number of grid points) of those com-

putational blocks may vary and (ii) the number

of the subregions and thus of the computational

blocks usually is smaller than the number of the

available processors for large and massively scale

parallel machines. The grid of the full domain is

generated by composing \properly" the separate

coordinate systems of the computational blocks.

This composition requires an interaction between

adjacent rectangular blocks.

For each block Bi an independent curvilinear

coordinate system can be generated in parallel.

The degree of continuity of grid lines across the

interfaces of adjacent curvilinear systems requires

either the speci�cation of grid points at the same

�xed locations on both of the adjacent coordinate

systems (case of discontinuous grid line slope) or

the treatment of grid lines as a branch cut on

which the generation system is solved just as it

is in the interior of the blocks (case of continuous

grid line slope). In this case the interface locations

are determined by the grid generation system.

The continuity of grid line slope is handled by

providing an extra layer of points (outer-layer)

surrounding each block. The interface and outer-

layer grid points of a block are forced to coin-

cide with the interface and interior grid points of

an other adjacent block. This coincidence of the

points is maintained during the course of an iter-

ative solution of an elliptic system over all blocks.

This suggest that a local synchronization among

the processors that process adjacent blocks is re-

quired at the end of each iteration.

The mapping of a composite block structure

Cf(
) onto distributed memory MIMD machines

so that the workload of the processors is balanced

and the required communication and synchroniza-

tion among the processors is minimum, can be

formulated by :

min
m

max
1�i�P

f W (m(Di)) +
X

Dj2CDi

C(m(Di); m(Dj)) g

(O)

where

Di =

fBj jBj 2 Cf(
) and assigned to processor m(Di) g
is the set of blocks (subdomain) that are assigned

to the same processor, CDi
is the set of the sub-

domains that are adjacent to the subdomain Di,

m : fDigPi=1 ! fPigPi=1 is the mapping of the

subdomains to processors, W (m(Di)) is the com-

putational load of the processor m(Di), which is

analogous to
P

B
0

j
2Di

jB
0

j j, and C(m(Di); m(Dj))

is the communication required (for one iteration)

between the processors m(Di) and m(Dj).

There are two approaches for the solution of the

optimization problem (O). The �rst approach is

based on the approximation of the objective func-

tion of (O) by another function which is smoother,

more robust and suitable for the existing deter-

ministic and stochastic (physical) optimization

methods [Fox 86], [Flow 88], [Will 91] and [Mans

92]. The second approach is based on the split-

ting of the optimization problem into two distinct

phases [Simo 91], [Chri 92] corresponding to the

partitioning and allocation of the composite block

structure. In the partitioning phase we decom-

pose the composite block structure in to a pre-

speci�ed number (usually equal to the number of

processors) of subdomains such that the following

criteria are approximately satis�ed:

(i) the subdomains have the same number of

blocks,

(ii) the ratio interface surface to volume of the

subdomains is minimum

(iii) the number of adjacent subdomains is min-

imum, and

(iv) each subdomain is a connected domain.



In the allocation phase the objective is to assign

these subdomains to processors, such that the fol-

lowing objective is satis�ed:

(v) the communication requirements of the un-

derlying computation between the processors

of a given architecture are minimum.

For a given physical domain 
 and an initial

composite block structure C0(
) (see [Thom 84]),

the partitioning of a �ner composite block struc-

ture Cf(
) into P non-overlapping subdomains

fDig
P
i=1 is characterized in terms of the set of geo-

metrical adjacent subdomains CDi
to subdomain

Di and the number of the outer-layer interface

grid points, c(Di; Dj), between the subdomains

Di and Dj with c(Di; Dj) =j [(B
0

i \Bj)j, where
B

0

i 2 Di and Bj 2 Dk, & Dk 2 CDi
(see Ap-

pendix). Then, the optimal partitioning, as de-

�ned by criteria (i) to (iii), can be viewed as the

one with :

bN=Pc � jDij � dN=Pe i = 1; : : : ; P (O1)

min max
1�i�P

X

Dj2N(Di)

c(Di; Dj)

jDij
(O1)

min max
1�i�P

jCDi
j (O2)

where jDij is the size of the subdomain Di and

it is de�ned as the cardinality of the set of grid

points that belong in Di.

The composite block structure Cf(
) can be

created by an Algebraic grid (see in [Smit 83]),

with the minimum number of grid points, that

is based on the initial composite block structure

and provides explicit control of the physical grid

shape. Such a grid can be generated relatively

easy using the interactive environment of the Na-

tional Grid Project.

We solve the optimization problem (O0-O2) by

�rst, de�ning an Euclidean graph G(V;E) where

the vertices (V ) correspond to blocks B
0

i 2 Cf(
)

(the coordinates of the vertices are de�ned to be

equal to the coordinates of the mass centers of

the computational blocks, note that these coor-

dinates are integers numbers) and the edges (E)

indicate the connectivity of the blocks B
0

i with

their neighbor blocks, and then applying graph

partitioning algorithms that use the geometric in-

formation that is associated to the vertices of the

graph [Chri 92]

The determination of an optimal allocation m

is equivalent to minimizing the communication

overhead. The overhead due to communication

of non-local data can be modeled in terms of the

length of the interfaces between the subdomains

and a function fd. Mathematical models for the

allocation phase are described by the following

two minimization expressions :

min
m

1

2

PX

i=1

PX

j=1

c(Di; Dj)fd(m(Di); m(Dj)) (O3)

or

min
m

max
1�i�P

f
X

Dj2N(Di)

c(Di; Dj)�fd(m(Di); m(Dj))g

(O4)

where fd(m(Dk); m(D`)) is a function that de-

pends on the distance (Hamming) between the

two processors m(Dk); m(D`) to which the sub-

domains have been allocated, the interface com-

ponents (hardware/software) between the proces-

sors and the network, the router, and the archi-

tecture of the machine. An accurate analytic form

of the function fd is not known even for the com-

mercially available well known distributed mem-

ory MIMD machines; An alternative solution to

this problem is the use of approximations based

on assumptions that simplify some of the above

factors.

Allocation heuristics for 2-dimensional graphs

are presented in [Chri 92], easily these heuris-

tics can be applied to 3-dimensional graphs. In

our future work we will address the scheduling of

the computations based on the partitioning and

allocation of the composite block structure onto

distributed memory MIMD machines. Also, we

will solve the optimization problem (0) using an

approximate objective function. Finally, an eval-

uation on the quality of the solution (i.e., mini-

mization of the execution time of parallel Elliptic

grid generation) for the two approaches will be

performed.

Acknowledgements



The �rst author gratefully acknowledges the Alex

G. Nason Foundation for the Nason Prize Award

that supports him at NPAC.

Appendix

Let S be a solid and C0(S) = fB0; B1; :::; BNg
be a composite block structure. Then for each

Bi 2 C0(S) we de�ne :

� B
0

i to be the outer layer of Bi. The width

of the outer layer B
0

i is equal to the width of the

half stensil used by the elliptic solver (see in [3]).

� Bi to be the closure of the block Bi, The

closure Bi is de�ned to be equal to the union,

B
0

i [Bi, of the outer layer B
0

i and the block Bi.

� CBi
jC0(S) = fBj j Bj 2 C0(S) ^ Bi\Bj 6= ;g

to be the set of blocks Bj 2 C0(S) adjacent to the

block Bi 2 C0(S).

� j CBi
jC0(S)j to be the connectivity of the

block Bi, which is equal to the cardinality of the

set CBi
jC0(S).

� j Bi j as the computational workload of an

elliptic solver on Bi.

1 References

[Bokh 81] Shahid H. Bokhari, On the mapping

problem, IEEE Transactions on Computers,

Vol. C30, No. 3, 207-213, 1981

[Chri 92] N.P. Chrisochoides, On the mapping

of PDE computations to distributed memory

MIMD machines, Ph.D. Thesis, Purdue Uni-

versity, 1992.

[Fhar 88] C. Farhat, A simple and e�cient auto-

matic FEM domain decomposer, Computers

and Structures, Vol. 28, 579{602, 1988.

[Flow 88] J. Flower, S. Otto and M. Salana, Op-

timal mapping of irregular �nite element do-

mains to parallel processors, In Parallel Com-

puters and Their Impact on Mechanics (A.K.

Noor, ed.), AMD, Vol. 86, 239{250, 1988.

[Fox 86] G.C. Fox, A review of automatic load

balancing and decomposition methods for the

hypercube, Proceedings of the IMA Institute,

63{76, 1986.

[Hamm 92] Hammond W. S., Mapping Unstruc-

tured Grid Computations to Massively Paral-

lel Computers, Ph.D Thesis, Rensselaer Poly-

technic Institute, Troy, NY.

[Lori 90] Loriot, M. and L. Fezoui, Mesh Split-

ting Preprocessor, Unpublished Manuscript.

[Mans 92] Mansour N., Physical Optimization

Algorithms for Mapping Data to Distributed

Memory Multiprocessors, Ph.D Thesis, Syra-

cuse University, Syracuse, NY, 1992.

[Mori 87] Morison, R. and S. Otto, The scattered

decomposition for �nite elements, Journal of

Scienti�c Computing,, Vol. 2, No 1, 1987

[Sada 87] P. Sadayappan and F. Ercal, Nearest-

neighbor mappings of �nite element graphs

onto processor meshes, IEEE Trans. on

Computers, Vol. 36, 1408{1420, 1987.

[Simo 91] Simon, H. D., Partitioning of Un-

structured Problems for Parallel Processing,

RNR-91-008, NASA Ames Research Center,

Mo�et Field, CA, 94035

[Smit 83] Smith, R. E., Three-Dimensional Al-

gebraic Grid Generation, AIAA Paper, 83-

1904, 1983.

[Thom 91] Thompson, J. F., National Grid

Project, NSF Engineering Research Center

for Computational Field Simulation, Missis-

sippi State University.

[Thom 84] Thompson, J. F., A survey of com-

posite grid generation for general three-

dimensional regions. Numerical Methods for

Engine-Airframe Integration S.N.B. Murthy

and G. C. Paynter eds., 1984.

[Will 91] Williams, R.D., Performance of Dy-

namic Load Balancing Algorithms for Un-

structured Mesh Calculations, Concurrency

Practice and Experience Vol. 3, No. 5, 483-

496, 1991


