
Scalable BLAS 2 and 3 Matrix Multiplication for

Sparse Banded Matrices on Distributed Memory

MIMD Machines

Nikos Chrisochoides �, Mokhtar Aboelaze y,

Elias Houstis zand Catehrine Houstis x

Abstract

In this paper, we present two algorithms for sparse banded matrix-vector and sparse

banded matrix-matrix product operations on distributed memory multiprocessor systems

that support a mesh and ring interconnection topology. We aslo study the scalability of

these two algorithms. We employ systolic type techniques to eliminate synchronization

delay and minimize the communication overhead among processors. The performance of

algorithms developed for the above operations depends on the bandwidth of the matrices

involved and have been currently implemented on the NCUBE II with 64 processors. Our

preliminary experimental data agree with the expected theoretical behavior.

1 Introduction

In designing algorithms for multiprocessor systems, one must take into consideration the fol-

lowing three important issues [Bokh 90] : i) minimizing the edge contention; this happens

when one or more links are shared between more than one paths in the computation graph, ii)

minimizing the amount of data transfer between the di�erent processors, iii) minimizing the

synchronization delay; synchronization delay is the delay su�ered by a process that is waiting for

the completion of another process at another processor. It has been observed that the minimiza-

tion of the cost functions corresponding to the above three design objectives depend on the way

the underlying computation graph is decomposed which constitutes an NP-complete problem

for general computational graphs [Gare 79]. Another important factor in designing algorithms

for multiprocessors is known as scalability. Scalability is a measure of how well the algorithm

�Northeast Parallel Architectures Center, Syracuse University.
yYork University, Computer Science Department, North York, Ontario, Canada M3J 1P3.
zDepartment of Computer Science, Purdue University, West Lafayette, IN 47907.
xUniversity of Crete, Computer Science Department, Heraclion, Greece.

The work of M. Aboelaze was supported in part by NSERC-09P0043688. The work of N. Chrisochoides was

supported by Computer Science at Purdue University and Alex G. Nason award at Syracuse University. The

work of the rest of the authors was supported in part by AFSOR 88-0234, NSF grant CCF-8619817 and ESPRIT

project 2702-GENESIS-P.

behaves when the number of processors in the system increases. Some algorithm/architecture

pairs are e�cient when the number of processors are small. Increasing the number of processors

dramatically increases the overhead and the performance degrades.

For the case of well structured computations, special purpose algorithm architecture pairs

were suggested and known as systolic arrays [Kung 82], [Mold 82], and [Mira 84]. These architec-

tures consist of simple processing elements(PEs) which are capable of performing one arithmetic

operation. In systolic computations, the decrease of edge contention and the elimination of the

synchronization delay is achieved by mapping the computation graph into a systolic array such

that the correct data are in the correct place at the appropriate time.

In this paper we propose systolic type techniques to parallelize primitive linear algebra

operations applied to sparse data. The set of these operations are known as sparse BLAS 2 and 3,

which includes multiplication of banded matrices and banded matrix-vector operations. Sparse

matrix operations are used in the discretization of Partial Di�erential Equations (PDE) with the

well known �nite element and di�erence techniques. We are using the above implementation

of BLAS to develop MIMD solvers to solve PDE discretization equations. Unlike the sparse

matrix operations, the dense BLAS 2 and 3 have been studied extensively [Fox 87], [Cher 88],

[Bern 89]. In a previous paper [Chri 92], we showed the implementation and the performance

of parallel BLAS for dense matrices. The experimental results indicate an e�ciency of up to

98% for matrix-vector operations and 94% for matrix-matrix operations on a 64 processors

con�guration NCUBE II with one Mbyte of memory per processor. The remaining of this paper

is as follows, in section 2 we discuss the concept of scalability. In section 3, we review some of the

proposed ideas for the parallelization of BLAS and their complexity on various architectures. In

section 4, we present our proposed algorithms for the implementation of sparse BLAS 2 and 3 on

distributed memory machines with mesh and ring interconnection topologies. We also discuss

the scalability of our proposed algorithms. Section 5 is a conclusion.

2 Scalability

Scalability is a measure of the degree of matching between the architecture, and the application

program (algorithm), or, it is a measure of how fast the algorithm runs if we increase the

number of processors. An algorithm is said to be scalable on a particular architecture, if the

performance of the computer system grows linearly with the number of processors [Hwan 93].

Scalability analysis is a crucial factor in determining the performance of a speci�c algorithm on

a speci�c machine. A speci�c machine could be very e�cient for a particular algorithm, but

not as e�cient for another algorithm. On the other hand, a speci�c algorithm may run very

e�ciently on a speci�c machine, but not as e�cient if we increase the number of processors in

this machine. That is why scalability analysis is crucial in choosing the algorithm/architecture

pair [Kuma 87], [Kuma 91].

The performance of a speci�c algorithm on a particular machine is determined by many

factors, such as machine size (number of processors), machine speed, problem size (workload),

communication overhead, I/O overhead, and many other factors. In this paper, we investigate

the scalability of the algorithms on an NCUBE II. In this paper we choose the scalability measure

proposed in [Gust 88], where the speedup is de�ned as S(N;P) = T1
TP
, where TP is the execution

2

time of the computation in a P processors machine, and scaled speedup is de�ned as

Scl SpUp1 =
Mflops using P processors

Mflops using single processor
(2:1)

or

Scl SpUp2 = P � TWork done by P proces � TWork wouldn0 t done by serial proces

TWork done by P proces

(2:2)

where TWork done by P proces indicates the total elapse time using P processors, and

TWork wouldn0t done by serial proces indicates the overhead due to communication and synchroniza-

tion.

3 Overview of Parallel Matrix Multiplication Algorithms

The development and implementation of scalable and portable scienti�c algorithms across a

number of parallel machines is an important and challenging problem. One of the approaches

that have been extensively explored is the so called BLAS approach. The basic idea is to

identify a kernel of high level primitive mathematical operations, implement them on a variety

of machines, and use them to develop more complex applications on these target machines. Two

well known linear algebra kernels have identi�ed which are referred through out as BLAS 2 and

3. In this section we review some of the ideas proposed for their parallelization in the case of

dense data structures and various architectures.

Fox et al in [Fox 87] proposed techniques for the multiplication of matrices decomposed

into square or rectangular subblocks on hypercube architectures. These blocks are distributed

between the processors. The product matrix is distributed among the processors in the same

fashion. The algorithms exploit the mesh architecture embedded in any hypercube architecture.

They also use broadcasting for communicating some of these data blocks.

Deckel, Nassimi, and Sahni in [Deke 81] proposed a matrix multiplication algorithm for cube

connected and perfect shu�e computers. They use N2m processors to multiply two N � N

matrices in O(N
m
+ logm) time. They also show how m2; 1 � m � N , processors can be used to

multiply two N �N matrices in O(N
2

m
+m(N

m
)2:61) time. This method is e�cient for multiplying

dense matrices, but, it appears to be ine�cient for sparse BLAS 2 and 3 operations.

Johnson [John 85] presented algorithms for dense matrixmultiplication and for Gauss-Jordan

and Gaussian elimination. His algorithm can run on any boolean cube or torus computers. It

achieves a 100% processor utilization except for a latency period Tlatency = O(n) on an ncube

system. In [John 89], Johnsson et al presented a data parallel matrix multiplication algorithm

which was implemented on the Connection Machine CM-2. They report 5.8 GFLOPS overall

performance.

Independently, Cherakasky et al in [Cher 88], Berntsen in [Bern 89], and Aboelaze [Aboe 89]

improved Fox's algorithm for dense matrix multiplication, reducing the time complexity from

T =
2N3

P
� +

2N2

p
P
ttransf +

p
P (
p
P � 1)tstart

to

T =
2N3

P
� +

2N2

p
P
ttransf + (

p
P � 1)tstart

3

where P is the number of processors, � is the time for one addition and multiplication, and

ttransf ; tstart are machine dependent communication parameters. Berntsen's second idea was to

partition the hypercube into a set of subcubes and using the cascaded sum algorithm to add up

the contributions to the product matrix. His idea also reduced the asymptotic communication

to N2

P
2

3

at the expense of having N2

P
2

3

extra bytes of memory per processor.

The algorithms for dense matrices presented in [Fox 87], [Cher 88], [Bern 89], and [Aboe 89]

require P and
p
P iteration steps to compute the c = c + Ab and C = C + AB respectively; each

iteration step requires N

P
ttransf + tstart and

N2

P
ttransf + tstart communication time respectively. In

this paper, we present two algorithms for operation on band matrixA 2 RN�N , with bandwidth

w. The �rst algorithm is to multiply A by b, where b 2 RN . The second algorithm is to multiply

A by B, where B 2 RN�N , with bandwidth �. The �rst algorithm requires w iteration steps

with each iteration requiring N

P
ttransf+tstart communication time. The second algorithm requires

min(w; �) iteration steps with each iteration step requiring N min(w;�)

P
ttransf+tstart communication

time.

4 Parallelization of some level 2 and 3 BLAS for banded

matrices

4.1 Band Matrix Vector Multiplication

First we consider the parallelization of the operation c = �c + �A b on a linear array of P

processors when A is a banded matrix with w1; w2 upper and lower bandwidths. Throughout

the paper we assume that matrices are stored using a sparse scheme [Rice 85]. Figure 1 shows

the decomposition of the matrix into the processors's memory. In Figure 1 a row in the matrix

represent strip of rows in the original matrix. The matrix is divided intp P strips(P = 4 in

Figure 1), each strip is stored in a di�erent processor in a linear array or processors. The b

vector is also divided into P strips and stored in the di�erent processors.

The proposed implementation is based on a decomposition of matrix A into an upper U

(including the diagonal of A) and lower L triangular matrices such as A = L + U. Furthermore,

we assume that row strip fai;jgPj=1 and bi are stored in processor i. Without any loss of generality

we can assume and � = 1 beta = 1. Then the vector c can be expressed as c = c + (Lb +

Ub). The products Ub and Lb are computed within w1 + 1 and w2 iterations respectively. The

algorithm operates �rst by calculating Lb, which is accomplished by performing accumulation

and shifting the b vector to the left. Then the b vector is restored, and Ub is calculated by

accumulation and shifting b to the right. The computation involved is described in Figure 2.

In order to compute the complexity of the above algorithm we assume, that A has K non-zero

elements, and N >> w1 + w2 + 1. Then it can be shown that the time complexity is

TP =
K

P
� + (w1 + w2 + 1)f + �

N

P
g (4:1)

and the memory space required for each subdomain is O(K
P
+ 3N

P
).

4

2
6664

a11 a12
a21 a22 a23

a32 a33 a34
a43 a44

3
7775

2
6664

b1
b2
b3
b4

3
7775

b1
b2 b3 b4

a22 a33 a44a11

a12 a23 a34

Figure 1: Band matrix vector multiplication on a 4 processor system

4.2 Banded Matrix - Matrix Multiplication

Second, we consider the implementation of C = �C+�AB, on a ring of P processors when A, B

are banded matrices with u1; u2 upper, and l1; l2 lower bandwidths respectively. The processor

i computes a strip of columns Ci of matrix C and holds one strip of rows of matrix A (denoted

by Ai) and a one strip of columns of matrix B (denoted by Bi).

The algorithm consists of two phases as in band-matrix vector multiplication. Without any

loss of generality we can assume and � = 1 beta = 1. In the �rst phase, each PE starts by

calculating cii = cii + Ai � Bi, then each PE i passes Bi to PE i � 1, this phase is repeated

minu1; u2 + 1 times. In the second phase each PE restores Bi and passes it to PE i+ 1. This

phase is repeated li times, where ui = minu1; u2. The initial distribution of the matrices to

the processors is shown in Figure 3 for the case of P = 4. While The implementation proposed

for this operation is described in Figure 4. Without any loss of generality, we assume that

K1;K2 are the number of non-zero elements for the matrices A, B respectively and denote by

w1 = u1 + l1 + 1 and w2 = u2 + l2 + 1. Then we can show that

TP =
min(K1w2;K2w1)

P
� + f + �

N

P
min(w1; w2)gmin(w1; w2) (4:2)

The above realization has been implemented on the NCUBE 6400.

Tables 1 and 2 shows the maximum elapsed time and the scaled speedup for band matrix

vector multiplication, while Tables 3 and 4 shows the same results for band matrix matrix

multiplication. We notice that in Tables 1-4 the elapsed time is almost constant with increasing

the number of processors if the workload per processor is constant, which include a linear

scalability (linear isoecciciency function [Kuma 91]. While the scaled speedup increases with

5

Phase 1: Multiply the Upper triangular U by b

temp := d

For each PE i do in parallel

For j := 0 to w2

if (i + j =< P) then

begin

if (i = 1) then do nothing

else Send d to PE i-1

c := c + a(i, j+i) * d

if (i = P) then do nothing

else Receive d from PE i+1

end

endif

end

end

Phase 2: Multiply the Lower triangular L by b

For each PE i do in parallel

begin

d := temp

For j := 1 to w2

if (i < j) then

begin

if (i = P) then do nothing

else Send d to PE i + 1

if (i = 1) then do nothing

else Receive d from PE i - 1

c := c + a(i, i-j) * d

end

endif

end

end

Figure 2: The pseudo code for banded matrix-vector multiplication.

6

A1

A2

A3

A4

A1 A2 A3 A4

B1
B2 B3 B4

B1 B2 B3 B4

1

Figure 3: Band matrix vector multiplication on a 4 processor system

increasing the number of processors.

We realize that this is a limited experience. We are currently implementing direct and iterative

solvers for discrete elliptic equations within the //ELLPACK environment [Hous 90] to access

the performance of BLAS operations.

5 Conculsion

In this paper, we presented two scalable algorithms for band matrix vector, and band matrix

matrix multiplication. The e�ciency of these two algorithms is 40%, this is due to the need of

minimizing the memory requirements at the di�erent processor which means that the matrices

are to be stored using a sparse matrix storage scheme. The two algorithms are scalable (perfor-

mance grows linearly with increasing the number of processors), which means they are suitable

for multiprocessors with a lrage number of processors.

7

Phase 1

temp := b

For each PE i do in parallel /* each PE contain a = Ai , b = Bi */

For j := 0 to min(u1 , u2)

if (i + j =< N) then

begin

if (i = 1) do nothing

else Send b to PE i-1

c(i,i+j) := c(i,i+j) + a * b

if (i = P) then do nothing

else Receive b from PE i+1

endif

endfor

endfor

Phase 2

b := temp

For Each PE i in parallel do

For j := 1 to min(l1 , l2) do

if (i > j) then

begin

if(i = P) then do nothing

else send b to PE i+1

if(i = 1) then do nothing

else receive b from PE i-1

c(i, i-j) := c(i,i-j) + a * b

endif

endfor

endfor

Figure 4: The pseudo code for banded matrix-matrix multiplication

Table 1: Measured maximum total elapsed time (in seconds) for block tridiagonal matrices.

for band matrix vector multiplication

matrix size / node 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

8 0.0634 0.0644 0.0644 0.0644 0.0645

16 0.0221 0.0222 0.0222 0.0222 0.0222

32 0.0847 0.0848 0.0848 0.0849 0.0849

64 0.3345 0.3346 0.3346 0.3347 0.3347

8

Table 2: Measured scaled speed up (2.2) for block tridiagonal matrices.

for band matrix vector multiplication.

matrix size / node 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

8 3.55 7.03 14.05 28.22 56.25

16 3.87 7.72 15.43 30.94 61.80

32 3.96 7.91 15.83 31.66 63.30

64 3.99 7.97 15.95 31.90 63.80

Table 3: Measured maximum elapsed time (in seconds) for block tridiagonal matrices.

for band matrix band matrix multiplication

matrix size / node 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

8 0.275 0.281 0.281 0.281 0.281

16 4.029 4.030 4.030 4.030 4.030

Table 4: Measured scaled speed up (2.2) for block tridiagonal matrices.

for band matrix band matrix multiplication

matrix size / node 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes

8 2.78 7.31 14.62 29.24 58.50

16 2.76 7.28 14.56 29.12 58.25

9

References

[Aboe 89] Mokhtar Aboelaze, Unpublished manuscript, June, 1989.

[Bern 89] J. Berntsen Communication E�cient Matrix multiplication on hypercubes, Parallel

Computing, Vol 12, No 3, Dec. 1989 pp335{342

[Bokh 90] S.H. Bokhari Communication Overhead on the Intel iPSC-860 Hypercube. ICASE

Interim report 10, NASA Langeley Research Center, Hampton, Virginia 23665

[Cher 88] V. Cherkassky and R. Smith, E�cient Mapping and Implementation of Matrix algo-

rithms on a hypercube, The Journal of Supercomputing, Vol 2, pp 7{27, 1988

[Chri 90] N.P. Chrisochoides, Communication overhead on the NCUBE-6400 hypercube.

[chri 92] N. P. Chrisochoides, M. A. Aboelaze, E. N. Houstis, and C. E. Houstis The Paral-

lelization of Some Level 2 and 3 BLAS Operations on Distributed memory Machines, 7th

IMACS International Conference on Computer Mentods for Partial Di�erential Equations,

New Bruinsick, N.J. June 1992 pp 119-126.

[Deke 81] E. Dekel, D. Nassimi, and S. Sahni, Parallel Matrix and graph algorithms, SIAM

Computing, Nov. 1981, pp 657{675

[Fox 87] G.C.Fox, S. W. Otto, and A.J. Hey, Matrix Algorithms on a hypercube I : Matrix

Multiplication, Parallel Computing, 1987, pp 17{31.

[Gare 79] M. R. Garey and D.S. Johnson Computers and Intractability, A Guide to the Theory

of NP-Completeness.

[Hous 90] E.N. Houstis, J.R. Rice, N.P. Chrisochoides, H.C. Karathanases, P.N. Papachiou,

M.K. Samartzis, E.A. Vavalis, Ko Yang Wang and S. Weerawarana, //ELLPACK: A

numerical simulation programming environment for parallel MIMD machines, In Super-

computing 90, ACM Press, 3{23, 1990.

[Hwan 93] K. Hwang Advanced Computer Architecture with parallel ProgrammingMcGraw Hill

1993.

[John 85] S. L. Johnsson, Communication e�cient Basic Linear Algebra Computations on hy-

percube architecture, Technical Report YALE/CSD/RR-361, Dept. of Computer Science,

Yale University, 1985.

[John 89] S. L. Johnsson, T. Harris, and Kapil K. Mathur, Matrix Multiplication on the

Connection Machine, Proc. Supercomputing 89, Nov 13-17 1989, Reno Nevada, ACM

Press, page 326{332

[Kuma 87] V. Kumar, and N. Rao, Parallel Depth-First Search, Part II: Analysis, International

Journal of Parallel Programming, v 16(6) 1987, pp 501-519

10

[Kuma 91] V. Kumar, and A. Gupta Analyzing Scalability of Parallel Algorithms and Archi-

tecture Computer Science Department Tech. Report 91-81, University of Minnesota May

1991.

[Kung 82] H. T. Kung, Why Systolic Architecture, Computer, Vol 15, No 1, Jan. 1982, pp

37{46.

[Mira 84] W. L. Miranker and A. Winkler, Space-Time representations of computational struc-

tures, Computing, Vol. 32, 1984, pp 93{114.

[Mold 82] D. I. Moldovan, On the analysis ans synthesis of VLSI algorithms, IEEE Trans. on

Computers, Vol. C-31, No 11, Nov. 1982, pp 1121{1126

[Rice 85] J. Rice, and Boivster, Solving Elliptic Problems using Ellpack, Springer-Verlag, 1985.

11

