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1 Abstract

The purpose of this project is to design and implement parallel algorithms and software

modules for structured static and adaptive grids that are necessary for the scalability

of the existing parallel Partial Di�erential Equation (PDE) solvers. In this report we

present our progress on modules for parallel algebraic and elliptic grids, a parallel multi-

block Euler discretization module, and parallel iterative solvers. Also we de�ne the

interfaces between : (1) parallel grid generation modules and multi-block Euler module,

and (2) multi-block Euler module with parallel iterative solvers.

Our approach for the solution of the data-mapping problem reduces the employ-

ment of sequential data pre-processing required for the data-parallel PDE solvers and

at the same time exploits the re-usability of existing well written and tested sequential

structured multi-block methods for parallel CFD codes. Preliminary data indicate that

this approach is ten times faster than the fastest traditional data-mapping method, for

relatively small problems (i.e., tens of thousands of grid points) and approximately P

times faster for very large problems (i.e., millions of grid points) that are processed on

coarse-grain distributed address space MIMD machines with P processors.

The development phase of the parallel Algebraic and Elliptic grid generation modules,

multi-block Euler discretization module and interface with Parallel Iterative Methods

should be completed by the end of May. The interface of grid modules with NGP's1 and

EagleView's geometry modeler, and data mapper [8], as well as the extensive evaluation

to various parallel platforms, and documentation will be completed by the end of this

year.

2 Introduction

Numerical grid generation methods are used extensively for numerical solution of Par-

tial Di�erential Equations on arbitrarily shaped regions. This procedure which is mainly

used in computational 
uid dynamics can also be applied to all physical problems that

involve �eld solutions. The grid generation method here frees the computational simu-

lation from any restriction to boundary shapes and allows general implementations with

the boundary speci�ed by the input, [18], [19], [20]. The computation is done on a �xed

square grid in the computational space, which is rectangular by construction. Even

though the correspondence between any physical region is a single rectangular block for

three-dimensional con�gurations, the grid is likely to be skewed. Hence, the physical

region is segmented into contiguous regions each of which transforms into a rectangular

block in the computational region. The grid is generated within each subregion, [19],

[21].

1National Grid Project at MSU
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The generation procedures for curvilinear grids involve two general types : the numer-

ical solution of partial di�erential equations and construction of algebraic interpolation.

The algebraic generation system is faster, but the grid generated from solution of partial

di�erential equations are smoother even though they are computationally intensive. The

partial di�erential system may be elliptic, parabolic or hyperbolic. The hyperbolic and

parabolic generation systems are faster than elliptic systems, but are more limited in

the con�gurations that can be solved.

The partial di�erential system used here is elliptic. This system is most generally

applicable with complicated boundary and is solved as a composite grid. For each

block an independent curvilinear coordinate system is to be generated. The degree of

continuity of grid lines across the interfaces of adjacent curvilinear coordinate systems

requires either the speci�cation of grid points at the same �xed locations on both the

adjacent coordinate systems or the treatment of grid lines as a branch cut on which the

generation system is solved just as it is in the interior of the blocks. Thus the interface

locations are not �xed and are determined by the grid generation system, [21].

Since grids in the blocks cannot be generated totally independent, but only as an

entire composite grid, an extra layer of points surrounding each block is provided. Here

the grid points on an interface of one block is coincident in the physical space with

those on another interface of the same or another block. Also, the grid points on the

surrounding layer outside the �rst interface are coincident with those just inside the

second interface and vice versa. This coincidence is maintained during the course of an

iterative solution of an elliptic generation system by setting the values on the surrounding

layers equal to those at the corresponding interior points after each iteration. Hence all

the blocks are iterated to converge together.

The programmingmodel for loosely synchronous computations is the Single-Program-

Multiple-Data(SPMD) model, where parallelism is achieved by partitioning the geomet-

ric data of the partial di�erential equations and allocate the disjoint subproblems to the

processors. Thus during each iteration, each processor performs three basic tasks:

� Local communication,

� Computation (solution of partial di�erential equations), and

� Global Communication.

The local communication involves exchanging the inner layer of the adjacent blocks,

to preserve the coincidence of the interface layers of each block. The computation

involves solving the partial di�erential equations and updating the interior points of

the grid, from the outer layer passed from the neighboring block. Finally, the global

synchronization consists of reduction operations that are required for the convergence.

The global synchronization also ensures the updating of interior points of each block

before the next iteration, when these layers are communicated to the adjacent block.

In this implementation, we have focused on minimizing communication time, by

overlapping communication with computation apart from using e�cient implementations

for massage passing . The other signi�cant improvement has been with the reduction
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of the number of copy functions invoked at every iteration, which required changing the

data structure of the blocks. The parallel implementation of the grid generation has been

done using the p4 (Portable Programs for parallel Processors) environment. p4 is a subset

of Message Passing Interface which allows the same code to be used on multiplemachines

with minimal changes. The current implementation can be run in IBM RS6000 and TMC

CM-5 with changes in the processor group �le, which con�gures the machine and spawns

tasks to the processors. Section 3 describes the grid data structure, its mapping, and

implementation in the p4 parallel programming environment. Communication, data

dependencies, and the computation properties of the important components of a typical

CFD code are analyzed and details associated with developing the code for DM-MIMD

machines are presented in section 4. References are cited for more details wherever felt

necessary. We conclude with some observations.

2.1 Current Status

The parallel grid generation system involves the following developments,

1. A C driver which would call on already tested fortran routines for computations,

when required.

2. An e�cient data structure for the grid, and incorporate this in the grid generation

system to avoid multiple copying of data

3. A parallel implementation of this with communication provided for composite grid

generation of generic structures.

4. Port this parallel implementation to other parallel machines

5. Exhaustive testing and performance analysis

A C driver, given in Item 1, has been debugged for a small data set and this needs to

be expanded for a large data set which would include imperfections and hence require

smoothing. The C data structure, Item 2 has been incorporated. Basic communica-

tion routines have been incorporated and this has to be made generic to accommodate

generic partitions of complex structures, as required in item 3. Item 4 is trivial, since,

communication is done over the p4 layer and hence porting requires very little changes

in code. Item 5, exhaustive testing and performance analysis is yet to be done.

Parallel implementation of the multi-block CFD code required work in the following

areas:

1. Developing a pre-processor for decomposing grid generated sequentially [17]2

2The parallel grid generation module is at present limited in application to relatively simple geometries.
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2. Developing a pre-processor to identify neighbouring elements and nodes in a com-

posite grid with an arbitrary number of blocks for input to the data mapping

program [8]

3. Code modi�cations to run on Sun workstations in sequential mode

4. Dynamic memory allocation to incorporate arbitrary sized blocks

5. C-driver program for e�cient data communication between subdomains and be-

tween blocks

6. Incorporating message passing using MPI for the discretization module

7. Developing e�cient parallel Matrix-vector product routines using MPI for the

linear system generated in the discretization module 3

8. Interfacing the discretization and PIM (Parallel Iterative Methods) solver modules

9. Porting code on a SP1, the TMC CM-5 and the Intel Paragon parallel platforms

A pre-processor has been developed for decomposing a simple C-grid around an iso-

lated airfoil. The pre-processor in Item 2. has been developed for the same geometry.

Further work is required to generalize these programs to more complex geometries (Two

element airfoil, a SCRAMJET engine section and the Engine-airframe interaction prob-

lem in two dimensions). The goals under Items 3 and 4 have been achieved. Some

modi�cations are underway in the C-driver program to incorporate MPI for data com-

munication between processors. Current work is also focused on implementing message

passing in the discretization module and developing an e�cient parallel Matrix-vector

product algorithm using MPI.

3 Parallel Grid Generation

The design challenge for large-scale multiprocessors is (i) to minimize communication

overhead, and (ii) allow communication to overlap computation. Communication and

computation overlap requires support of asynchronous communication. Blocking send/receive

communication exacerbates the e�ects of network latency on communication latency.

Also with synchronous communication it is not possible to overlap communication and

computation. With asynchronous communication, tolerating latency becomes a pro-

gramming problem, a communication must be initiated su�ciently in advance of the use

of the result.

The computation involved in grid generation for each block is independent of the

other blocks excepting when the interface layer is to be updated after every iteration.

The local communication involves exchange of the interface layers (surface) between

3Sparse block banded matrix-vector product routines [10]
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processors of the parallel machine, between neighboring sub-domain. The traversal

required for the exchange depends on the e�ciency of the partition and allocation phase.

This local communication time for this implementation of parallel grid generation is

minimized �rst by reducing the copying of bu�ers internally (by p4) and externally. The

time spent in actual communication just involves the time to send the bu�er and the

communicator returns back to continue with the computation. Su�cient computation

time is allowed before the receive to avoid a block during receive.

The computation is staggered into three cycles in this code, to avoid bottle necks

caused when more than one message is received by each processor. This is also used

to preserve the order in which the messages are to be received. Thus in each cycle the

processors will utmost receive or send only one message. The global synchronization

consists of reduction operations that are required for checking the convergence criteria

through out the composite block. This global synchronization also ensures the surface

received do not lag in iteration values owing to unbalanced load in certain processors.

Time to send includes time for packing and moving the message. Receive is blocking

in most parallel machines and this is circumvented by using message available testing

primitives like mesg test or polling mechanisms. The communication is done through

p4 (Portable Programs for Parallel Processors), [4], [5]. We chose p4 because of its

impending compatibility to the Message Passing Interface Standards.

The packing time for messages in p4 is reduced by, avoiding overheads in internal

formatted copying of the message bu�er to be sent. This is done by allocating a pre-

formatted memory to the bu�er using the p4 function, p4 msg alloc. Asynchronous

message passing is used, the send and receive functions are locally blocking, that is they

are blocking until the receive or send is completed. p4 does direct process-to-process

communication as opposed to messages through daemons, which translates to e�cient

communication.

The Parallel grid generation system involves the following basic tasks: (i) Local

communication, (ii) Computation (solution of partial di�erential equations), and (iii)

Global Communication. Each of this is discussed in detailed in the following sub-sections.

3.1 Data Partitioning and Allocation

Data mapping is described in earlier work done by Chrisochoides [8],[9]. The optimiza-

tion problem here, is split into two distinct phases corresponding to the partition and

allocation of the grid. In the partition phase, the grid is decomposed into a speci�c

number (usually equal to or multiples of the number of processors) of sub-domains or

substructures with the following objectives: (i) the maximum di�erence in the number

of active grid points of the sub-domain is minimum, (ii) the ratio of the number of inter-

face points to the number of active interior points of the sub-domain is minimum, (iii)

the number of adjacent sub-domains is minimal, (iv) each sub-domain is a connected

domain. The allocation phase allocates the sub-domain to the processors, so that: geo-

metric neighbor sub-domain are allocated to neighbor processors in the interconnection

network of the parallel machine, [9].
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3.2 Computation

In this section we discuss the grid structure, computational aspect of the grid generating

system. The construction of computational 
uid dynamics codes for complicated regions

is greatly simpli�ed by a composite block, the computations are done in the rectangular

computational regions, [19], [20]. The entire three- dimensional physical region is �lled

with a set of interfacing hexahedrons with curved surfaces each of which corresponds to

a rectangular computational block. Each of these blocks has its own set of right-handed

curvilinear coordinates (independent of those in other blocks),[21]. Each computational

block is surrounded by an extra layer of points, as can be seen from the data structure

described later, in order to allow connections across the interfaces in the physical region

to be formed, (Shown in �gure 1). The interfaces between blocks are branch cuts, and

the code establishes a correspondence across the interface using the surrounding layer

of points outside the blocks. This allows points in the interface to be treated just as all

other points, so that there is no loss of continuity.

The elliptical grid generation system is based on a system of Poisson-like equations,

52 �i = Pi i=1,2,3

A three dimensional elliptic grid generation system is constructed as a linear com-

bination of the nine equations obtained by writing the basic three-dimensional elliptic

system given above three times, in each case dropping the derivative with respect to one

curvilinear coordinate. All control functions are dropped except for one of the diago-

nal elements. Thus, automatic evaluation of control functions are done from the initial

algebraic grid (generated by trans�nite interpolation) and then smooth it.The control

functions can also be determined automatically to provide orthogonality at boundaries

with speci�ed normal spacing. Here, the iterative adjustments in the control functions

are made by increments radiated from the boundary points where orthogonality has not

been attained, [19]. The boundary orthogonality can be achieved through Neumann

boundary conditions, which allow the boundary points to move over a surface spline,

the boundary point locations being located by Newton iteration on the spline to be at

the foot of normals to the adjacent �eld points.

3.2.1 Data Structures

The data structure used here has two main roles, the �rst is to keep track of the neigh-

boring blocks and the processors they are residing in. The second comes from using

separate pointers for the outer layers. This is done to exploit the C features for e�cient

copy. The main advantage of this data structure comes during message passing, where

the inner layer is passed as it is without any internal (user to p4 memory) or external

copying. Each block stores its size and hence the blocks do not have to be of a constant

size, [3], [16], [22]. The blocks are characterized by the following pieces of information,

� Block id : the unique numerical id of this block.

� The number of points in the blocks in x, y, and z directions.
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Figure 1:

� Pointers to surfaces x, y, and z.

� Pointer to an array of neighbor blocks, maximum six (3D).

� Pointer to an array of processor id's which hold the blocks.

� Total number of neighbors.

� Pointers to the outer top, bottom, right, left, front, and back surfaces in

x, y, and z directions each.

� Pointers to the inner top, bottom, right, left, front, and back surfaces in

x, y, and z directions each.

3.3 Message Passing

Message Passing Interface (MPI) de�nes a set of library interface standards for message

passing in the various parallel machines, [4]. The goal of this interface, is to develop

a widely used standard for writing message-passing programs. As such the interface

establishes a practical, portable, e�cient, and 
exible standard for message passing.

Message passing is a paradigm used widely in parallel machines with distributed

memory, [5]. The parallel grid generator is iterative and hence communication, both

local and global are of much importance, for the overall e�ciency of the implementation.

Here the higher level routine and abstractions are built on lower level message passing

routines. The standard is particularly bene�cial, specially when it provides hardware

9



support and thereby enhance scalability: global reduction operations. The iterations are

to be checked for global convergence since this grid generation method is composite. This

interface also facilitates quick implementation on di�erent platforms with no signi�cant

changes in the underlying communication and system software.

The target machines for this interface are distributed memory multiprocessors, net-

work of workstations, and combinations of all these. Shared memory implementations

are also available. MPI provides with reliable message transmission. Check, for trans-

mission errors and time outs to other error conditions, is not required. But MPI does

not provide mechanisms for dealing with failures in the communication system or node

failures. Resource errors may occur when a program exceeds amount of available system

resources. This restriction of system resources, with respect to bu�ers should be taken

care of since the messages sent and received are 3-dimensional surfaces and the data set

is large. This is prevented from happening by splitting the send and receive, into three

phases.

Some of the main features of MPI include mechanisms for : dynamically creating

sets of locally named processes, and partitioning communication space, [4]. The group

of dynamically created processes, is an ordered set, where the processes are identi�ed

by their ranks when communication occurs. Thus the logical name of the processor

starts from zero to the net number of processors. The mechanism of partitioning space,

context is an opaque object with additional attributes for inter-communication. For

intra-communication, a context is a hyper-tag needed to make a communication safe for

point-to-point and MPI de�ned collective communication. This hyper-tag also allows

multiple messages to the same processor and ensure correct placement in the receive

bu�ers. MPI communicators provide speci�c scope for the communications, it brings

together group and context. Thus a communicator restricts the spatialscope of com-

munication, and provides local process addressing. MPI also provides a caching facility

that allows an application to attach attributes to context, group and communicator de-

scriptors. Thus caching is the process which propagates implementation-de�ned data

(and virtual topology data) in groups and communicators.

The basic point to point communication requires an envelope which speci�es the

message destination and message to be packed in a bu�er. Order of messages is preserved,

within each context: if two messages are sent successively from the same source to the

same destination, the message is received in the order they are sent, though this is not

true with multi thread executions. In this implementation, the outer surfaces include

points for x, y and z coordinates. These points for each surface is sent together and thus

preservation of the order is important. Data type matching at both send and receive ends

is important. The communication environment used in this portable implementation is

p4 (Portable Programs for parallel Processors).

3.3.1 P4 : Portable Programs for Parallel Processors

The Message passing interface used in this parallel grid generation package is P4(Portable

Programs for Parallel Processors), [10][11]. P4 is a library of routines designed to
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express a wide variety of parallel algorithms portably, e�ciently and simply. It is

currently portable to most parallel machines. IBM RS6000, TMC CM-5, IBM SP-1

(TCP/Ethernet, TCP/switch, EUI, and EUI-H), Ncube, Intel Paragon, Intel Touch-

stone Delta, to name a few. Although P4 tries to be completely portable, there are a

small number of speci�c exceptions that has to be taken into account on a given ma-

chine. This allows comparison of di�erent machine performances for this application.

Some of the salient features of P4 include:

� Support for both message passing and explicit shared memory operations.

� xdr support for heterogeneous networks.

� automatic or user control of message-passing / bu�er-management.

� An optional P4 server for quick startup on remote machines.

E�ciency requires the use of models of computations relatively close to those pro-

vided by the machines themselves and their system software. This reduces overheads

caused by this extra layer of interpretation. Simplicity requires providing the program-

mers with a relatively small number of concepts, while providing a rich enough set to

express the algorithms. These two are not consistent, and such inconsistencies are re-

solved by providing multiple ways of doing things. P4 provides completely automatic

bu�er management, but if the programmer prefers to deal with it, to avoid overhead of

extra copy operation, p4 o�ers appropriate bu�er management routines: p4 msg alloc.

This bu�er management routine is used to allocate memory to the pointer which holds

the inner layer of the interface used in communication: itopx; itopy; itopz, the top sur-

face. This bu�er is passed directly from processor to processor. Hence this bu�er is

used in both the send and receive end, and care is taken to ensure no overwriting of

yet-to-be-used data is done.

Portability requires use of widely accepted models of computations, rather than

speci�c implementations of those models. Considerable complexity has been absorbed

into P4 itself in order to provide simplicity and portability. For the shared-memory

MIMD model, it provides the monitor paradigm. for Distributed memory MIMD model,

message passing functions and global operations are provided on all platforms which

support this model. Explicit management of clusters for both shared- and distributed-

memory MIMD models are implemented.

The precise con�guration of processes (the machines they will run on and the exe-

cutable) is speci�ed in a processgroupfile. the name of the process group �le is typically

a command line argument or can be provided in a �le with an extension :pg. This is the

only change that has to be made to run the code provided in IBM RS6000 and CM5

and SUN clusters.
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4 Application : Parallel Multi-block Euler Module

In this section some of the issues relating to parallel implementation of an implicit multi-

block Euler 
ow solver on message passing MIMD architectures are discussed. Implicit

schemes, due to their better stability properties, are usually the preferred numerical

scheme. Such schemes however involve the simultaneous solution of large systems of

coupled algebraic equations which inherently resist parallelism. Two common forms of

parallelism are spatial and functional. In spatial parallelism, each subdomain interacts

weakly with its neighbors, and can be assigned to a di�erent processor for updating.

Parallelism in the multi-block Euler solver is spatial and is obtained from domain de-

composition. All blocks can be updated concurrently with exchange of boundary data

at each time step. Typically for CFD applications, a signi�cant part of the computation

time is spent in setting up the sti�ness matrix, constructing the RHS and evaluating

boundary conditions. E�cient implementation of the discretization process along with

the solution process is therefore necessary to obtain high performance from parallel

implementation of the 
ow code.

Here, a version of REDCOON [1] is used as a model CFD application. In this code

the 2-D Euler equations in general body �tted curvilinear coordinates are solved using a

�nite volumemodel. An implicit �rst or second order temporal and second order upwind

spatial discretization of the resulting system is used. The left hand side of the system

resulting from a time linearization of the 
ux terms is constructed using 
ux vector

splitting. The 
uxes through cell faces are evaluated using a high resolution approximate

Riemann solver. A two pass scheme is used to solve the triangular systems resulting from

an approximate factorization of the left hand side. Boundary conditions are implemented

through phantom points using characteristic variable boundary conditions.

The original sequential code is written to solve the three dimensional Euler equations

in general time dependent curvilinear coordinates. The total memory requirement of the

code is about 220 times the total grid size. Further, at each time step 5 � imax-1 �

jmax-1 � kmax-1 coupled equations are solved to obtain the solution vector for that

time step. Here, imax, jmax, kmax are the maximum grid indices along the three co-

ordinate directions. Further, signi�cant computations on each cell are involved to set

up the sti�ness matrix, construct the RHS and implement BCs. For many real world

applications, grid sizes can be very large (� 500 000 points in 3D). For such applications

both memory and computational demands require the use of supercomputers. The se-

quential code is therefore written for the CRAY line of supercomputers and makes use

of some intrinsic vector functions and the extended memory on these machines. Sub-

stantial modi�cations had to be made to the code to implement it on a Sun workstation

for the two dimensional case being studied here. Further modi�cations were made to

make it easier to implement the code in parallel using message passing. These changes

are detailed in later sections.
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4.1 Numerical Algorithm

The governing equations of 
uid motion are the Navier-Stokes equations; the physical

laws that constitute these equations are (i)Conservation of mass (ii) Conservation of

momentum and (iii) Conservation of energy. Mathematically, these equations represent

a nonlinear second order hyperbolic-parabolic system of partial di�erential equations

(PDEs). Under the assumption of inviscid 
ow these equations reduce to the Euler

equations which now describe a nonlinear �rst order hyperbolic system of PDEs. This

simpli�cation of the governing equations by one order leads to substantial savings in

computational expense. For many applications viscous e�ects are negligible, for such

cases the Euler equations form a good model to study the 
ow phenomena.

The 2D Euler equations are solved in general time dependent curvilinear coordinates

using a �nite volume approach. The governing equations in the transformed coordinate

system are presented in APPENDIX-A. The discretized form of the original PDEs is

given in APPENDIX-B. The RHS of the equations is formulated using Roe's 
ux di�er-

ence scheme. The development of the 
ux terms using this approach and certain features

of the computation of these terms are detailed in APPENDIX-C. A time linearization of

the original �nite volume equation yields 
ux Jacobians that appear in the LHS of the

linearized equations. Computation highlights in the evaluation of these terms is given

in APPENDIX-D. The numerical scheme used to solve the linear algebraic system that

arises from the discretization process is a two-step forward and backward sweep through

the computational domain. The equations that arise using this method are presented in

APPENDIX-E. Boundary conditions that arise in a multi-block Euler solver are outlined

in the following section.

4.1.1 Implementation of Boundary Conditions

� The three di�erent types of boundary conditions are (i)Solid boundaries (ii)Far�eld

boundaries(in
ow/out
ow) and (iii)Internal boundaries(block interfaces).

� Boundary conditions computed only at boundary cells.

� Boundary conditions for (i) and (ii) implemented by updating variables in phantom

cells[3].

� Boundary conditions of type (iii) involve communication of qn and dqn values from

1 or 2 cell deep layer in adjacent block.

4.2 Parallel Implementation

The computations associated with data parallel PDE solvers that preserve the ordering

of the corresponding sequential computations is loosely synchronous [13]. The program-

ming model for loosely synchronous computations is SPMD (single program multiple

data) where parallelism is achieved by partitioning the underlying geometric data of

the PDE problem and allocating the smaller subsets of data to the processors. E�cient
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parallel implementation requires extraction of maximumparallelism with negligible com-

munication overhead. This requires partitioning of the data across processors such that

the load is evenly balanced and communication overhead is kept to a minimum. The

data mapping algorithm used here minimizes the inter subdomain communication while

maintaining an even load balance between processors.

New data structures are introduced at subdomain interfaces to obtain more e�cient

communication of boundary data between adjacent subdomains. Overlapping compu-

tation with communication is imperative to achieve high performance from a parallel

implementation of the 
ow code. Asynchronous message passing is used to achieve this

overlap; computation is bu�ered between the points in the execution where a send is ini-

tiated and the message is received, i.e. computation is overlapped with communication.

The P4(Portable Programs for Parallel Processors)environment is used as the message

passing interface to ensure portability across di�erent platforms. In the following sec-

tions, some details on the parallel implementation of the CFD code are presented.

4.2.1 Code Modi�cations

As mentioned earlier the original Fortran sequential code is written for the CRAY vector

supercomputers. For e�cient implementation the code uses the CRAY extended memory

- SSD (Secondary Storage Devices). Further, all data structures are declared global

through the use of the COMMON directive. The program was originally developed for

use with equal sized blocks. This imposes constraints on the range of geometries that

can be modeled using this software. Modi�cations were therefore necessary to both

implement the code on a Sun workstation and to develop a parallel version that would

have the additional 
exibility to handle arbitrary sized blocks.

For this purpose a C-driver program was written and the Fortran routines are called

fromwithin this program. Dynamic memory allocation for the arrays is used in the driver

program to allow for variable sized blocks. All variables, block dimensions and pointers

to arrays are passed as arguments to subroutine calls. The arrays are dimensioned within

the subroutine; all arrays are therefore now local and are passed wherever necessary to

other modules called from within the Fortran routines.

Application of the code will be initially performed on an isolated airfoil, followed

by more complex geometries involving a 2-element airfoil con�guration, a SCRAMJET

engine section and the airframe-propulsion interference geometry in two dimensions.

4.2.2 Data Partitioning

The methodology used for solving the discretized PDEs in parallel on DM-MIMD ma-

chines is based on decomposing the computational domain into non-overlapping sub-

domains. This decomposition is carried out such that local communication between

subdomains is minimized and an even load balance is maintained between processors.

The PDEs described on each subdomain are now solved with continuity of the solution

across subdomain interfaces ensured by communicating boundary data from adjacent

subdomains.
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The data partitioning heuristics can be based either on the algebraic data structures

(coe�cientmatrix describing the discrete Euler operator) or on geometric data structures

(geometric domain on which the Euler equation is de�ned) [8]. Heuristics based on the

former approach require : (a) the sequential generation of the computational grid (b)

the sequential discretization of the Euler operator (c) the data mapping of a large set

of data (d) the loading of large amounts of data, (e) and �nally the parallel solution

of large linear system. In the geometric data partitioning approach the corresponding

steps are (a) the data mapping of smaller sets of data (blocks) (b) the loading of smaller

amounts of data (c) the parallel generation of the computational grid (d) the parallel

discretization and (e) parallel solution to the linear system. [7]

The advantage o�ered by the algebraic data partitioning method is that the linear

system can be generated sequentially and therefore requires no extra work in this di-

rection. However, for large problems (three-dimensional viscous solutions) memory con-

straints can be inhibitive and this approach does not solve this problem. Further, it o�ers

only a limited amount of freedom in data mapping methods, namely (i) row/column par-

titioning and (ii) cyclic block (i.e., block round robin) technique. For adaptive methods

scalability cannot be achieved with this approach. The geometric data mapping ap-

proach o�ers several advantages over the algebraic data partitioning method; memory

requirements can be largely cut down by suitable decomposition of the domain. It also

o�ers greater 
exibility in mapping. For applications requiring updating of the mesh

during the solution process (as in adaptive methods) this approach o�ers an advantage

since the grid is generated in parallel and can therefore lead to some savings in total

time required for the solution. It is also easier to optimize certain criteria related to

communication costs using this approach [8]. Further, scalable adaptive methods can

be developed with this technique.

Here the partitioning approach used is geometric data partitioning; the algorithm

used in this approach is described in [8]. For the case of structured grids, however,

any geometric partitioning of the grid can be mapped into the algebra. A software has

been developed for the case of a C-grid around an isolated airfoil that decomposes the

domain into an arbitrary number of blocks along the �- axis. The code then generates

appropriate boundary conditions on the subdomain boundaries based on the boundary

conditions on the original grid de�ned over the complete domain. For each grid element

and node, neighboring nodes and elements are identi�ed. This data is then used by the

partitioning algorithm to generate an optimal partitioning of the domain.

4.2.3 Data Structures

Data dependencies in evaluating the RHS are di�erent than those that arise during the

solution to the system of equations. Constructing higher order 
ux terms at subdomain

interfaces requires qn data from the two neighboring cells in the adjacent block (refer

to section on evaluation of Rn ). Solution to the linear system requires dqn data from

neighboring cells in adjacent blocks(refer to section on solution scheme). Here, qn is the


ow variable vector at time step n and dqn is change in qn between time step n and n+1.
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The high performance of the 
ow solver on message passing MIMD machines depends

on the minimization of the local and global communication time. New data structures

are therefore introduced at subdomain interfaces to obtain more e�cient communication

of boundary data between adjacent subdomains. The original data structure for qn was

split into one for the interior region of the subdomain and two smaller data structures 4

cells deep along the � and the �-coordinate directions for the boundary regions. The data

structure for dqn was similarly decomposed into one for the interior cells and two smaller

data structures 2 cells deep along the � and the �-coordinate directions for the boundary

regions. The interface data can now be communicated to neighboring processors without

any copy at the sending node. The pointer to the interface data structure is passed to

the processor holding the adjacent subdomain. At the receiving node, use is made of

the e�cient C block copy function to load the data into the interface bu�er for that

subdomain.

4.2.4 Communication

The basic steps of the parallel multi-block Euler solver at each time step can be expressed

as :

for n=1, maxblock

1. Parallel discretization

1.1 Local communication

1.2 Block Interface Continuity /* Local Communication (inter-subdomain)*/

2. Parallel iterative solution to the system of equations :

for i=1, maxiter

2.1 Matrix-vector product /* Local Communication (inter-subdomain) */

2.2 Vector-vector product /* Global Communication */

2.3 Convergence tests /* Global Communication */

end for

3. Block Interface Continuity /* Local Communication (inter-block) */

end for

The linear system is generated in the discretization module; an e�cient parallel

implementation of both the discretization and the solver modules is required. This is

because the coe�cient matrix, the residual vector and boundary conditions are updated

during the solution process and hence a new system is solved at every time step. (re-

fer to sections on evaluation of Rn, evaluation of 
ux jacobians and solution scheme).

Communication of data across block interface boundaries is required during both the

discretization and the solver steps. As previously mentioned in preceding sections, in the

discretization process communication of qn is required to construct the 
uxes at block

boundaries and to compute the 
ux jacobians at these faces (refer to earlier sections on

evaluation of Rn and evaluation of 
ux jacobians). In the solver module communication

of dqn is required since the computational stencil at the boundary involves cells on the

boundary layer of the adjacent block.

With the new interface data structures local communication now involves sending
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and receiving the interface data structures for qn and dq
n. Overlap of communication

with computation is obtained by bu�ering computation between the point where a send

is initiated and data is received. Asynchronous send and receive is used to allow for

computations to overlap communication. The points in the algorithm where data is sent

and received is shown more clearly in the following section.

4.3 Computation Algorithm

The basic steps in the solution algorithm are as follows:

1. Read input parameters

� Startup solution process

for n=1, maxblock

2. Allocate memory for each array

2. Read grid for subdomain into processor

3. Set initial conditions for qn

4. Send interface qn data to neighboring processors

5. Compute grid metrics

6. Implement boundary conditions

end for

� Enter time iteration loop

for time=1, maxtime

for n=1, maxblock

7. Receive interface qn data from neighboring processors

8. Construct the residual vector Rn

i;j

6.1 Compute the eigensystem for Ai;j and Bi;j

6.2 Evaluate the 
uxes Fi�1=2;j, Gi;j�1=2 and store in dqn

9. Send interface dqn data to neighboring processors

10. Compute the time step �� i;j using local time stepping

10. Convergence test. Calculate the l2-norm of the residual vector Rn

i;j

11. Evaluate the Flux jacobians A�
i;j
; B

�

i;j
and C�

i;j

12. Construct Di;j

13. Receive interface layer dqn data from neighboring processors

14. Solve the triangular linear systems for the forward and backward passes

15. Update qn

16. Send interface qn data to neighboring processors

17. Update boundary conditions.

end for

end for
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4.4 Parallel Iterative Solver

A signi�cant amount of computation time in a typical CFD code is spent in the solver

module. An e�cient implementation of these routines is therefore imperative to achieve

good performance from the parallel code. The PIM (Parallel Iterative Methods) routines

were surveyed for a suitable solver. Routines based on the CG(Conjugate Gradient)

method are not suitable here since they require that the coe�cient matrix be positive

de�nite. This condition is not satis�ed by the coe�cient matrix in a CFD application.

The PIM routine GMRES is therefore chosen as the solver for the linear systems for the

forward and backward substitution steps given. Details about this method are presented

in a later section.

PIM o�ers the iterativemethods, Conjugate-Gradients (CG), Bi-Conjugate-Gradients

(Bi CG), Generalized minimal residual (GMRES), Generalized conjugate residual (GCR),

to name a few.

PIM was developed with two main goals: (i) To allow user complete freedom with

respect to matrix storage, access and partitioning. (ii) To achieve portability across a

variety of parallel architectures and programming environments.

These are achieved by hiding from the PIM routines the speci�c details concerning

the computation of the following three linear algebra operations, that is, these routines

are provided by the user,

1. Matrix-vector (and transport-matrix-vector) product.

2. pre-conditioning step.

3. Inner-products and vector norm.

The solution scheme adopted for the discretized PDE leads to sparse banded block

triangular systems for the forward and backward substitution steps. An important fea-

ture of the coe�cient matrix in typical computational 
uid dynamics (CFD) applications

is that it is nonsymmetric. The generalized minimal residue method has been chosen

due to its property of being a very robust method to solve nonsymmetric systems. The

following sections deal with, details about the Generalized minimal residue method, the

structure of the matrix, the enumeration sequence used for the equations, the matrix

structure resulting from it and the partitioning of the matrix resulting from the parti-

tioning in the geometry.

4.4.1 Generalized Minimal Residue

This method is used to solve a non-singular system of n linear equations of the form,

Q1AQ2x = Q1b

where Q1 and Q2 are the preconditioning matrices.

The Generalized Minimal Residue method is very robust for non-symmetric systems.

The method uses Arnoldi process to compute an orthonormal basis v1; v2; ::::; vk of the

Krylov subspace K(A; v1). The solution of the system is taken as x0+VkyK where Vk is a

matrix whose columns are the orthonormal vectors vi, and yk is the solution of the least
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squares problem Hkyk = kr0k2e1, where the upper Hessenberg matrix Hk is generated

during the Arnoldi process and e1 = (1; 0; 0; :::; 0)T . This least-squares problem can be

solved using a QR factorization of Hk.

A problem that arises in connection with generalized minimal residue is that the

number of vectors of order n that need to be stored grows linearly with k and the

number of multiplications grow quadratically. This may be avoided by using a restarted

version of generalized minimal residue.

4.4.2 Matrix Structure

The method used for enumerating the equations re
ects in the bandwith of the block

matrix for a domain. The e�ciency of the algorithm for banded matrix-vector multipli-

cation (Parallel BLAS routine) is a function of the bandwith of the coe�cient matrix;

higher performance from this algorithm is realized for smaller bandwith systems. The

equations are therefore enumerated along the smaller index (i or j in 2D) for a domain.

Further the enumeration is carried out for the interior cells �rst, followed by the interface

cells. This enumeration is illustrated in Figure 2. for one domain in a simple rectangular

domain. The structure of the global coe�cient matrix resulting from this enumeration

is shown in Figure 3. In Figure 4, the structure of the matrix for the interior of a do-

main for the forward substitution step is shown. The regular structure of the matrices

is exploited to store only the non-zero elements. Each of the elements A�; B� and D is

a 4 � 4 matrix.

4.4.3 Programming Model of PIM

PIM uses the Single Program, Multiple data (SPMD) programming model. The main

implication of using this model is that certain scalar values are needed in each processor.

With PIM, the iterative method does not have access to the user mode of data storage.

The assumption made is that each processor knows the number of elements of each

vector stored in it and that all vector variables in a processor have the same number

of elements. This allows di�erent data partition schemes, including contiguous, cyclic

and scattered partitioning. Owing to this freedom of storage by the user, operations

involving matrices and vectors which require individual indices of vectors are handled

by the user: matrix vector product and norm or vector being some. The Generalized

minimal residue method uses its own stopping criterion which is equivalent to the 2-norm

of the residual. So user supplied stopping criterion is not required.

The Global sum and vector norm routines supplied by the p4 environment is used.

The main routine we have supplied here is with regard to data storage and access of

matrices, apart from matrix-vector and vector-vector product.

In the current implementation, The coe�cient matrix is partitioned by columns (by

rows in version 2) among P processors, which are considered to be logically connected

on a grid. Each processor stores at most [N=P ] columns of the matrixA. Each processor

computes a vector with the same number of elements as that of the target processor which

holds the partial sums for each element. This vector is sent across the network to be
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tion step

summed in a recursive-doubling fashion until the accumulated vectors are then summed

together with the partial sum vector computed locally in the target processor, yielding

the elements of the vector resulting from the matrix-vector product. This process is

repeated for all processors. The storage of the vectors(banded matrix) is also optimized

by having a vector to specify range, and only few zero elements are stored and they are

never operated on.

The two other methods for mapping the data to the processors are algebraic data

partitioning and geometric data partitioning (see section on Data partitioning). In the

former method the global coe�cient matrix is partitioned either by rows or by columns

and a set of these rows/columns is allocated to a processor to perform the computations.

For the case of a N � N matrix and P processors, each processor in the simplest

case would be allocated N=P rows or columns. Here, geometric data partitioning is

used; in this approach a set of domains is allocated to a processor for local operations

involved in the discretization and the solution steps. The mapping of the global matrix

resulting from this approach is illustrated by the shading in Figure 5. In a later paper,

a comparison of the two data mapping methods will be done.

5 Summary

The parallel grid generation system has been implemented through the p4 environment

and is currently portable to most of the parallel machines supported by p4. This code can

be run in IBM RS6000, TMC-CM5, and SUN clusters, by just changing the processor
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group �le to access the machine required. The Local communication time has been

reduced considerably, �rst by reducing the packing time and secondly by overlapping

computation with communication. This has been possible due to the data structure

introduced, active messages and asynchronous message passing protocols.

The block Euler solver has been implemented in sequential mode using the C-driver

program and block interface data structures. Currently message passing routines are

being included using the P4 message passing interface to implement the code on the

CM-5 and the SP1 platforms.
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6 APPENDIX-A: Governing Equations

The two dimensional Euler equations in Cartesian coordinates, neglecting body forces,

can be written in the vector form:

@q

@t

+
@f

@x

+
@g

@y

= 0 (1)

where

q =

2
6664

�

�u

�v

e

3
7775 f =

2
6664

�u

�u
2 + p

�uv

u(e+ p)

3
7775 (2)

g =

2
6664

�v

�uv

�v
2 + p

v(e+ p)

3
7775 (3)

and all variables are non-dimensionalized with free-stream parameters as shown below:

� = �

�
1

, u = u

a1
, v = v

a1
, x = x

L
, y = y

L
, a = a

a1
,

p = p

�
1
a
2

1

, e = e

�
1
a
2

1

, t = a1t

L

Here � is the density, u and v are the velocities along the x and y directions, a is

the speed of sound in the medium, p is the pressure, e is the energy, t denotes time and

L represents a characteristic length of the problem.

To preserve generality, Eqs.1 are transformed to the 2-D time-dependent curvilinear

coordinate system de�ned as:

� = �(x; y; t) (4)

� = �(x; y; t) (5)

� = t (6)
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The resulting equations are:

@Q

@�

+
@F

@�

+
@G

@�

= 0 (7)

where

Q = J

2
6664

�

�u

�v

e

3
7775 F = J

2
6664

�U

�uU + �xp

�vU + �yp

U(e+ p) � �tp

3
7775 (8)

G = J

2
6664

�V

�uV + �xp

�vV + �yp

V (e+ p) � �tp

3
7775 (9)

�x = J
�1(y�z� � z�y�) �x = J

�1(z�y� � y�z�)

�y = J
�1(z�x� � x�z�) �y = J

�1(x�z� � z�x�)

�t = �x��x � y��y �t = �x��x � y��y

are the metrics of the transformation and the contravariant velocities are

U = �xu+ �yv + �t

V = �xu+ �yv + �t

with the Jacobian of the transformation given by

J = x�(y�z� � z�y�)� y�(x�z� � z�x�) + z�(x�y� � y�x�) (10)
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7 APPENDIX-B: Discretization

An implicit �rst order temporal and second order spatial �nite volume discretization

of Eq.7 yields the following di�erence expression for the original PDE [6]:

[I +�� (�iA:+ �jB:)]�Q
n

i;j
= ���Rn

i;j
(11)

where the 
ux jacobians

A = (@F
@Q
)n

B = (@G
@Q
)n

R
n is the residual vector

R
n

i;j
= �iF

n + �jG
n

Q
n+1
i;j

is the required solution vector and is obtained from

�Qn

i;j
= Q

n+1
i;j �Q

n

i;j

and the 
uxes, F n+1 and Gn+1, have been linearized about time level n.

There are several ways to solve Eq.11. The method followed in the code under study

uses 
ux vector splitting to construct the left hand side of the equation and the right

hand side is evaluated using Roe's approximate Riemann solver. One form of 
ux vector

splitting is described in Appendix-B of [6]; application of this technique leads to the

following form for Eq.11:

[I +�� (�iA
+
:+ �iA

�
:+ �jB

+
:+ �jB

�
:)]�Qn

i;j
= ���Rn

i;j
(12)

The interested reader is referred to Appendix-B of [2] for a development of the 
ux

jacobians A�, B� and C�. Eq.12 can now be solved for the Cartesian variable vector

�qn as:

[I +�� (�iA
+
:+ �iA

�
:+ �jB

+
:+ �jB

�
:)]�qn

i;j
= ���Rn

i;j
(13)

where

�� = ��
J
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8 APPENDIX-C: Evaluation of Rn

Rewriting Eq. 7

R
n

i;j
= (F n

i+1=2 � F
n

i�1=2) + (Gn

j+1=2 �G
n

j�1=2) (14)

where (i� 1=2) and (j � 1=2) indicate cell face indices for cell (i; j).

8.1 Formulation

The evaluation of the 
uxes in Eq. 14 requires the solution to a Riemann problem

at each cell interface that arises in the �nite volume context from the assumption of

uniform properties within each computational cell. The approach followed here is the

approximate Riemann solver due to Roe and its extension to second and third order

spatial accuracy. Details about this technique are given in Appendix A of [15] and will

not be repeated here.

Application of this method leads to the following formulations for the 
uxes:

F

(1)

i+1=2 = Fi + �m
j=1�j;i+1=2�

(�)j

i+1=2r
j

i+1=2 (15)

F

(2)

i+1=2 = F

(1)

i+1=2 + F

(c)

i+1=2 (16)

where F
(c)

i+1=2 is the higher order correction

F

(c)

i+1=2 = �m
j=1(

1�  

4
[L

(+)
j

(�1; 1)�L
(�)
j

(3; 1)]+�m
j=1

1 +  

4
[L

(+)
j

(1;�1)�L
(�)
j

(1; 3)])r
j

i+1=2

(17)

The various terms appearing above are de�ned as

L

(�)
j (l; n) = minmod(�

(�)

j;i+1=2; b�
(�)

j;i+n=2)

minmod(x; y) = sign(x)max(0;min[jxj; ysign(x)])

�

(�)

j;i+p=2
= �

(�)j

i+1=2
�j;i+p=2

�j = l
j
:dQ

�j;i�1=2 = l

j

i+1=2:(Qi �Qi�1) (18)

�j;i+1=2 = l

j

i+1=2:(Qi+1 �Qi) (19)
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�j;i+3=2 = l

j

i+1=2:(Qi+2 �Qi+1) (20)

b = 3� 

1� 

and  = 1=3 yields a third order scheme whereas  = �1 is used to obtain a sec-

ond order formulation for the 
uxes. Here, the variables lj(2 R
1�4), rj(2 R

4�1) are

the left and right eigenvectors of Roe's matrix A, �(�)j are the eigenvalues of A and m

for the 2-D Euler equations equals four. The superscripts (1) and (2) above indicate

�rst and second order 
uxes respectively and the subscripts i� 1=2 indicate metrics are

evaluated at these cell faces. Equations similar to Eq.15 and Eq.16 can be written for

the �rst and second order 
uxes, G
(1)

j+1=2 and G
(2)

j+1=2 along the � -direction.

8.2 Computation Methodology

� The computational stencil associated with cell (i; j) can be identi�ed from Eq.16;

evaluation of the 
ux through cell (i; j) requires q-variables at time level n, from

two-neighboring cells along the � and � coordinate directions. This is more clearly

illustrated in Figure 6 which shows the computational stencil used in constructing

the 
ux through cell (i; j).

� At block boundaries, q-variables at the previous time level n, from a two-cell deep

(i, j)(i-1, j)(i-2, j) (i+1, j) (i+2, j)

(i, j-1)

(i, j-2)

(i, j+1)

(i, j+2)

Figure 6: Computational stencil for evaluating 
ux through cell (i,j)
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layer in adjacent blocks will be required to calculate the 
uxes at the boundary

cells. This is illustrated in Figure 7 for an arbitrary arrangement of blocks. This

�gure shows the outermost layer of cells for block 2 and the shaded area represents

the two cell thick layer in block 1 required to construct the 
ux in this outermost

layer of cells.

� The left and right eigenvectors, lj and rj respectively, and the eigenvalues �(�)j are

evaluated using Roe's averaged variables at each cell interface i+1=2 and j+1=2.

Calculation of these averaged properties requires q-data at time step n, to the left

and right of the interface.

� The residual vector Rn is constructed at each time step

BLOCK 1 BLOCK 2

Figure 7: Block interface communication
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9 APPENDIX-D: Evaluation of 
ux jacobians

� Flux jacobians computed using analytical expressions for all cells from i=1 to imax

and j=1 to jmax for A� and B� respectively.

� Calculations require qn-values in cell for the 
ux jacobians associated with the

positive eigenvalues.

� Calculations require qn-values in cell (i+1,j) for the 
ux Jacobian, A�i;j associated

with the negative eigenvalues. Similarly qn-values in cell (i,j+1) are required for

the 
ux Jacobians B�
i;j
.

� All scalar operations.

� For steady problems, infrequent 
ux jacobian updating used. Typically updating

may be done every 10 cycles.

� A
� , B� 2 R4�4 in 2D.
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10 APPENDIX-E: Solution scheme

10.1 Formulating the Linear System

Expanding the di�erence operators in Eq. 12 and approximately factorizing the re-

sulting expression leads to the following two-pass scheme [6]:

Forward Pass:

This is a forward substitution sweep through the computational domain

Di;j;kX
1
i;j;k

� [A+
i�1;j;kX

1
i�1;j;k +B

+
i;j�1;kX

1
i;j�1;k + C

+
i;j;k�1X

1
i;j;k�1] = �R

n

i;j;k
(21)

Backward Pass:

This is a backward substitution sweep through the computational domain

Di;j;kX
3
i;j;k

+ [A�
i+1;j;kX

2
i+1;j;k +B

�

i;j+1;kX
2
i;j+1;k + C

�

i;j;k+1X
2
i;j;k+1] = 0 (22)

X
2
i;j;k

= X
3
i;j;k

+X
1
i;j;k

(23)

where

Di;j;k = A
�

i;j;k
+B

�

i;j;k
+ C

�

i;j;k
(24)

and

�qn
i;j
= X

2
i;j;k

This yields block sparse banded matrices for the forward and backward sweeps respec-

tively.

10.2 Computational Highlights

� 4� (imax�1)� (jmax�1) nonlinear coupled equations solved at every time step.

� Iterative techniques used to solve the system of equations

� The partitioning of the system of equations with a multi-block approach can be

represented as in Figure 8. The o�-diagonal blocks involve communication with

contiguous blocks. Figure 9 shows the sequence of operations in obtaining a solu-

tion for the entire �eld using domain decomposition.

32



I +      LI,I

L II,I

X I

X I

Forward pass:

Backward pass:

I +      LII,II

0

0

I,II +      U

I +      UII,II

UI,II

X II

IQ

Q II X II

IR

R II

Figure 8: Matrix partitioning with domain decomposition
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1 2 3 4 5
6

12111098
7

Block 1 Block 2 Block 3

Block 4 Block 5 Block 6

Figure 9: Sequence of operations for entire �eld using domain decomposition
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11 APPENDIX-F: C-driver for the Grid Modules
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12 APPENDIX-G: C-driver and code for the Euler

Module
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