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Abstract

The Beam and Warming algorithm for solving the compressible Navier-Stokes
Equations is derived here for a target audience not familiar with Computa-
tional Fluid Dynamics (CFD). Starting with the differential form of the equa-
tions in conservative form, the algorithm is derived with particular emphasis
on the various simplifications which are necessary for an efficient implemen-
tation. In order to highlight the important aspects of the algorithm, only
the two-dimensional equations are considered with simple central differencing
and no artificial dissipation.

1 Introduction

The Navier-Stokes equations in conservative form are given by



dip+0;(pu;) = 0,

O (pui) + 05 [puju; + pdi; — 5] = pky
at(pE) —|— 6j [pu]H — um’ij — kajT] = puzFZ —|— q, (1)
where
7ij = pl0jui + O] + N oij Duy (2)
p: density

u;: velocity component in 2
p: pressure
F:: external force in 1

E: total internal energy = ¢ + *5*, where ¢ is the specific internal energy

H: total enthalpy = h + “2%, where h is the specific enthalpy
T temperature
k: thermal conductivity

p: absolute viscosity

A: second coefficient of viscosity (= —%,u upon invoking Stokes assumption)

A perfect gas is assumed, in which case,

Ui Us 1 U Uy
=F - ZZ:CUT:>T:—[E— 22]. 3
e o 5 (3)
Furthermore, since p = pRT', then
p=phk pcv[ 2] (v )p[ 2] (4)



To simplify the subsequent development of the Beam and Warming Algo-
rithm, consider a two-dimensional flow in cartesian coordinates. Expanding
the Navier-Stokes equations gives

pe+ (pu)e £ (pv)y =0,
(pu)e + (pu?), + (puv)y + po — [(20 + Mug + Avy], — [p(uy +v2)], = ol
(pv)e + (puv)e + (pv?), + py — [ (wy +v)], = [(20 + Ny + Mg, = pFy
(PE)e + (puH)e + (poH)y — 2pung + po (uy + vp) + X (ug + vy) + kT3],

— [2pvvy + pu (uy + v.) + Ao (uy + vy) + kTy]y = puly + pvF,+q .

Rearrange the above equations according to

pi 4 (pu)e +(pv), = 0,

(pu)i+ (pu? +p) +(puv)y — 20+ Nua], — Doy,
— o], = lpuy], = pFy

(pv)e + (puv)s + (pv* + p)y — [pvs], = lpuy],
D, — (@04 A, = oF
(pE): + (puH), + (pvH), — [Rpuuy + povy + duu, + K1)
pouy, + )\uvy]x
UV, + )\vuw]y
2pvvy + put, + Avv, + kTy]y
= puly+pvFy+q. (5)
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Next, define the following vector functions:



p pu pv

2
a=|" | O ; G=|") ;
pv puv pue +p
pl puH pvH
0 0
U, - (20 + Nu, ; Up = AUy ;
HUz Hty
2uuu, + pov, + Auu, + kT, poty, + Auv,
0 0
| MUy ) _ | HUs .
Vi= (21 + Ao, ’ Vi = Ay ’
2pvvy, + puny, + Avvy, + kT, puv, + Avuy,
and, finally,
0
pl
H= ) 6
oF, (6)

pul’, + pvly, + ¢

With the above definitions, the Navier-Stokes equations may be written as

— ta+t5 = + + + +H 7
ot dx Oy oz oz dy dy (7)
Note: aatif, 88\;1 do not contain cross-derivatives, and ang, 8;;15 do contain

cross-derivatives.
From equation (6), it follows that

F=F(q), G = G(q),
U;=U; (q7 Qx) s Ug =Ug (qv qy) ’
Vi=Vi(q,qy) , VE=Vg(q,q,) .



2 Second-order Temporal Discretization

Let the equations be discretized at ¢t = (n 4+ 1)At. A Taylor series expansion
about t + At (or (n + 1)At) yields

dq At? 9%q
"= — At — — A?
2
gl = gt —an 2] onp 2 | TO? (8h)
Uit o

Subtracting equation 8(b) from four times equatlon 8(a) yields

AqT — " = 3qnT! — 2A1 22 %99 Lo (ar)
n+1
or, upon rearranging the above,
Jq 1
gt = —At— —q" =g + 0 (AP) . 9
q 8tn+1+3[q q ]+ ( ) (9)
Denote
Aq"= g —q",
0 8q 8q
A
ot = Gl
Upon substituting the above into equation (9),
0 Jq
Aq" ——At—A At— A”l A?) . 1
gddt+3Ar T+ +0 (Ar) (10)

Note: (1) Equation (9) indicates that 24 . is second order accurate in 7.

Bt
(2) To achieve the above second-order accuracy, the time steps At must be

uniform.

A general form of the temporal discretization which encompasses equa-
tion (10) is given by



OAt 0O At dq o
An — —_An i | An—l
q 1—|—0z8t( q)—l_l—l-oz atn—l_l—l—oz 4
1
+ 0((9—§—a)m2, At3). (11)

The choice § = 1, a = 1/2 recovers the second-order accurate equation (10).

We now work with the general form equation (11). Upon substitution of
equation (7) into equation (11) yields

. INE. . . .
Aq* = 1+ala—x{—AF + AU} + AUL}

9
+ —{-AG" + AV} + AV} } + AH" ]
dy

s e o e v e
n ﬁAq”‘l +0 ((9 - % - a)AtQ, At3) : (12)

where the following notation is adopted:

AF" = F(q"')—F(q") . (13)

Similarly, the same notation is used for the other vector functions.

Note: Equation (12) is a nonlinear equation in Aq”. Once an appropriate
spatial differencing scheme is employed, the equations could be solved by
using a Newton-Raphson method; however, this is an expensive iterative
procedure.

Three simplifications to equation (12) are now made to allow for an effi-
cient solution procedure.

Step 1:



From equation (12), it follows that Aq" ~ O(At). Also,

AqT, = @ — '] =it @ = [Aq)" ~ O(AL) .

Similarly, for the y-derivative. Let
Aq; =[Aq"], = [Aq.]" ,

Aqy =[Aq"], =[Aq,]" ,
and expand the vector functions F and G about q”. Thus,

OF
Fn—l—l — Fn ‘I’Aqn_
dq

+0(Aq")?

0G

n

Using the notation in equation (13) and Aq" ~ O(At?),
AF" = A"Aq"+ O (A#?)

AG" = B"Aq"+ O(AtQ) ,
where

_IF| . 0G
CIqls - 0q
Similarly, the functions U; and V7 are expanded according to

An

n

U;

0 oU;
n+1 _ n n n 2
Ut = U+ Aq Ja . xaqm+o(m),
A A
n+1 n n n 2
Vith = Vi4+Aq aq . yaqyn+O(At),

or

AU} = PAq"+RAqQ+0 (A2)
AV] = QAQ"+SAq)+0 (Ar)
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(14)

(15a)

(15b)

(16)

(17)

(18)



where

aU[ aV—I
P = — : = —
aq . 9 Q aq . 9
aU[ aV—I
R = ;S = . 19

Substituting equations (15)—(19) into equation (12) gives

oAt [ 0
Aq" = [a_x {—A"Aq" + PAq" + RAQ" + AU}

1+«

9
+ 5 [~B"Aq" + QAQ" + SAq! + AVE} + AH”]

At 8 d
1_+O{[ x{ +U;+ E}+‘ay{ +Vi+ Vel + ]
o 1
O N (9——— A2 At3) . 9
S ptal SR ( 5 ) At?, (20)

Note: AU} and AV} are left unchanged and are not linearized like the
other functions for the following reason:

Suppose indeed that AU% and AVE were linearlized in the same fashion
as in equation (18). Then, upon transferring the first term, i.e., 19_%[ ],
from the right-hand side to the left-hand side, an implicit system of equa-
tions for the unknown Aq™ would be set up. Furthermore, suppose a simple
second-order central difference scheme is employed to discretize the system
of equations. Then, for all terms other than - [AUg|" and aa_y [AVE]", a
five-point stencil would result; however, since the two terms above involve
cross-derivatives, a nine-point stencil is created. (In three dimensions, it
would be a nineteen-point stencil). The solution procedure would then be
quite expensive. In order to circumvent this difficulty, the terms AU?%, and
AV are treated in the following manner:

Step 2:
A Taylor series expansion about ¢ gives

ou
Upt = U + AL =

+0 (Aa82) |



U
Uy = U — At 8—tE

+0(Aar?) .

n

Hence, for a uniform time step,
AU}, = AU + 0 (A2)

and, similarly,

AV = AV 40 (A2) (21)
In effect, the cross-derivative terms are handled “explicitly.” With the sim-
plification in equation (21), equation (20) now takes the following form:

oA
Aq — g{—A”Aq” L PAG A+ RAq;}
1+a|dx

+ aa—y [-B"Aq" + QAq" + SAqZ}]

1
— H" 4 0 ((9 - a)Ar, At3) , (22a)
where
OAt | O 0
H*n — 7 AUn_l i Avn—l AHn
1—|—0z[6:1;( E)—I_ay( E)+ ]
At o
H" Aq"t. 22b
+ 1+« + 1+« 4 ( )

Note: The forcing function H** of the temporally discretized equations is
not the same as the physical forcing function H”.

An expansion of equation (22a) gives

AL
Aq" — TTal” A"'Aq" — A"Aq, + PIAq" + P"Aq,
+ RJAq; + R"Aq;, - BjAq" - B"Aq;,
+ Q,Aq" +Q"Aq, + S;Aqy +S"Aq,, | = H™ .

Denote



- . generic first-order derivative
Oy, 6 first-order d t
Oyy, Ouy ¢ generic second-order derivative

With the above notation, the discretized equation may be written compactly
according to

[I N OAL
1+«

+ (Bi-Qp)+(B"—Q" -85, snéyyHAq”:H*n. (23)

[(AZ —PI)+ (A" —P" — RI) 6, — R"6,,

If three-point differences are used, the above discretization would lead to a
block pentadiagonal system of equations.

Step 3: Approximate Factorization
Denote the operators L, and L, according to

L,= (A7 —P")+ (A" —P" —R") &, — R"6,,

L, = (B} - Q) + (B" - Q" —8}) 6, 8",

Then, equation (23) may be written as

OAL 0 rpen 1 2 3)
{I—|—1+a(Lx—|—Ly)}Aq ~H —|—O<(9—2—oz)At,At (24

But

Y

AL AL AL ,
{I—|—1_|_—aLx {]+1+aLy}_{I+1+Q(Lx+Ly)}+O(At) :

Since AQ" ~ O(At), equation (24) may be written as

OA1 OA1 o 1 ) 3)
{I+1+aLx}{J+1+aLy}Aq —H +0((0—2—a)m AR
(25)
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Equations (24) and (25) have the same formal temporary accuracy.

The factorization in equation (25) permits an efficient solution proce-
dure consisting of a set of two block-tridiagonal system which is solved very
efficiently by the Block Thomas algorithm. Specifically, solve

OAt
T+ = VA =1 |
{+1+a } .

followed by

3

OAt
I+ —L,; Aq" = Aq™.

Summary

Cross-derivative terms are expensive to handle implicitly.

If possible, it is best to handle them “explicitly” by moving them over
to the right-hand side as demonstrated by the Beam and Warming
Algorithm.

A linearized (frozen coefficient assumption) stability analysis has shown
the above algorithm to be stable for @ = 1/2. However, stable calcu-
lations for nonlinear equations is not guaranteed. This is usually a
problem when nonorthogonal grids are used where the cross-derivative
terms may not be small. Furthermore, stability requirements are far
more stringent in three dimensions.

The calculations at the first time step cannot be O (A#?).

Typically, the introduction of artificial dissipation is necessary to stabi-
lize the calculations and suppress non-physical oscillations in the solu-
tion. The discussion of these models is beyond the scope of this article.
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