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Abstract

The Numerical Aerodynamics Simulation (NAS) group at NASA Ames has

developed a "pencil and paper" benchmark for Computational Fluid Dynam-

ics (CFD) Applications. A set of synthetic Partial Di�erential Equations

(PDE's) and the solution methodology, embodying many salient features of

a typical application code, are speci�ed. In the benchmark speci�cation, the

derivation of the discretized equations and the solution algorithm are not

considered. Here, these equations are derived beginning with the di�erential

form of the Navier-Stokes equations. Discrepancies between the resulting

equations developed here and those speci�ed in the NAS benchmark are de-

lineated, and the correspondence of the synthetic set of PDE's to those in a

"real" CFD code is discussed. This report is targeted to an audience that

has an interest in establishing the physical signi�cance of various variables

that appear in the set of synthetic PDE's in the NAS benchmark.

1 The Compressible Navier-Stokes Equations

The compressible Navier-Stokes equations in conservative form are given by
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��: density

u�i : i
th velocity component, i = 1; 3

p�: pressure

F �i : i
th component of the external force

E�: total internal energy = e�+
u�
i
u�
i

2
, where e� is the speci�c internal energy

H�: total enthalpy = h� +
u�i u

�

i

2
, where h� is the speci�c enthalpy

T �: temperature

k�: thermal conductivity

��: absolute (or dynamic) viscosity

��: second coe�cient of viscosity (= �

2
3
�� upon invoking Stokes assump-

tion)

_q�: volumetric heat generation

The speci�c enthalpy is related to the speci�c internal energy by

h� = e� +
p�

��
) H� = E� +

p�

��
: (3)

A perfect gas is assumed, in which case,
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Furthermore, for a perfect gas, p� = ��R�T �. Hence,
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where

C�v : speci�c heat at constant volume

R�: gas constant


: ratio of speci�c heats =
C�p

C�v

C�p : speci�c heat at constant pressure

2 Nondimensional Form of the Equations

We non-dimensionalize the equations by de�ning the following reference val-

ues:

U�
1
: reference velocity

L�
1
: reference length scale

��
1
: reference density

��
1
: reference absolute viscosity

k�
1
: reference thermal conductivity

C�v1: reference speci�c heat
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All non-dimensional quantities are denoted without the superscript `*'.

Hence,
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In addition, we non-dimensionalize the other quantities in equations (1){(4)

as follows:
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Upon substituting equations (6) and (7) into equations (1){(2) and using

equation (4), it may be easily shown that
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Here, Re and Pr denote the Reynolds and Prandtl numbers, respectively.

Finally, the non-dimensional form of equations (3) and (4) are given by

H = E +
p

�
; (10)
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Note: The Stokes' assumption has been invoked in equation (9).

3 Comparison with the NAS Benchmark

Let the system of equations (8) be written as
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The quantities �i, i = 1, 3 are given by
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Let

U = UI +UE ;

V = VI +VE ;

W =WI +WE ;

so that @UI

@x1
, @VI

@x2
, and @WI

@x3
involve no cross derivatives, and @UE

@x1
, @VE

@x2
,

@WE

@x3
do involve cross derivatives.

As demonstrated in the development of the Beam and Warming algo-

rithm, only those terms which do not involve cross-derivatives are handled

implicitly. Cross-derivative terms are handled explicitly. The focus of the

NAS benchmark is on the implicit solution algorithm, and not on the evalu-

ation of the right-hand side. Therefore, in e�ect, a solution of the following

equation is sought:
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In a real CFD application, equation (4) would be evaluated at each time

step (for reference, see equation (22) of BW). However, in the NAS bench-

mark, the individual contributions to H� are ignored, but in order to guar-

antee the existence of a steady-state solution, the function H� is speci�ed

in the following manner. Let q� denote the steady-state solution (which, for

the NAS benchmark, is given). Then at steady state,
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If H� is speci�ed according to the above identity, a steady-state solution of

equation (13) exists. Thus, for the NAS benchmark, we need to consider

only those terms that do not involve cross-derivatives.

First consider the solution q and the inviscid 
uxes (for reference, see

page 46 of NAS benchmark).
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Present Notation NAS Benchmark Notation
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Next, consider the momentum equations. It follows from equation (9)

that
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where `c.d.' denotes cross-derivative terms. Next, consider the energy equa-

tion. Upon substituting for �ij from equation (9), it may be shown that
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where Cv is assumed const. (18)

Now we can construct the functionsUI , VI , andWI using equations (17)

and (18).
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Present Notation NAS Benchmark Notation
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Similarly, the correspondence between VI and V, and, WI and W, may

be constructed.

4 Discussion of the Discrepancies

4.1 Physical Properties

� Comparison of elements 2{4 (i.e., the momentum equations) indicates

that

k3k4 = Re�1� : (19)

10



� Comparison of the energy equation indicates inconsistencies. The two

forms may be reconciled if t(5) is correctly rewritten as

t(5) = k3k4
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where

k1k5 =

k

Pr�Cv

: (20)

Note: Although the above factor of k3k4 is missing in the de�nitions of

t(5), v(5), and w(5) (c.f. see pages 47{48 NAS-BM), it is correctly taken into

account subsequently in the analytical evaluation of the various Jacobian

matrices (c.f., see n51 : : : n55; q51 : : : q55; s51 : : : s55 on pages 55{56 NAS-BM).

4.2 Discussion of the values of ki, i = 1; 5

Although the values of ki are immaterial insofar as the parallel implementa-

tion of the computational algorithm is concerned, we discuss here how well

these values correspond to those encountered in a \real" CFD application

code.

The suggested values in the NAS benchmark are as follows:

k1 = 1:4; k2 = 0:4; k3 = 0:1; k4 = 1:0; k5 = 1:4:

However, the above appear in only three groups, viz., k2; (k1k5) and (k3k4).

The �rst constant k2 was found to be k2 = 
 � 1 (c.f. equation (16)). Since

the ratio of speci�c heats, 
, for a diatomic gas is 1.4 (such as air which is

composed mainly of N2 +O2), the above value for k2 is appropriate.

Next, consider k1k5 which is given by equation (20). Recall that Pr =
��
1
C�p1

k�
1

, and, hence,

k1k5 =



Prlocal
;
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where

Prlocal =
��C�p
k�

:

For a very wide range of temperatures, Pr ' 0:72 (for air). Since Pr�1 '

1:4, then the values of k1 and k5 speci�ed by the NAS benchmark are appro-

priate.

On the other hand, for most 
ows of interest, Re � O(106) or higher.

Hence, the relatively high values of k3k4 does not correspond well to the

values in a typical \real" CFD code. However, since second-order central

di�erences are used to discretize the governing equations, a low value of k3k4
would produce non-physical oscillatory solutions. Therefore, a relatively high

value of k3k4 is chosen to circumvent such numerical di�culties in the solution

of the synthetic PDE's.

4.3 Discussion of Additional terms in the NAS bench-

mark

All such terms are associated with the constants d
(m)

� , d (m)
� and d

(m)

� , m =

1; 5. An exact correspondence with the original N-S equations would be pos-

sible if the above constants are all zero; however, they are O(1) in the NAS

benchmark. Upon inspection of these terms, it is clear that they all repre-

sent an added second-order dissipation although this has not been explicitly

stated in the text of the NAS-BM. In practice, a blend of second and fourth-

order dissipation functions are usually incorporated into the discretized equa-

tions to suppress high-frequency, non-physical oscillations. However, such

a second-order dissipation function with constants of O(1) would produce

incorrect (excessively di�used) solutions in a real CFD application. Note,

however, that the inclusion of these terms does not alter the computational

algorithm to solve these equations nor does it alter the communication pat-

tern.
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