
Northeast Parallel Architectures Center
at Syracuse University

Protocol Overhead in ATM networks

SCCS-678

Mahesh Subramanyan

Northeast Parallel Architectures Center

111 College Place

Syracuse University

Syracuse, NY 13244-4100

Abstract

This report discusses the performance and sources of protocol overhead in ATM networks. It �rst in-

troduces ATM followed by a description of the inhouse ATM network. Our primary goal was to study the

performance tradeo� of chosing TCP/IP versus ATM API in a local ATM network.



1 Introduction

While networks, especially local area networks, have been getting faster, perceived throughput at the appli-

cation has not always increased accordingly. Various performance bottlenecks have been encountered, each

of which has to be analyzed and corrected. The layer most often suspected of contributing to low throughput

is the transport layer of the protocol suite. This layer has considerable functionality and is typically executed

in software by the host processor at the end points of the network. It is thus a likely source of processing

overhead.

TCP is the transport protocol from the Internet protocol suite. In this set of protocols, the functions

of detecting and recovering lost or corrupted packets, ow control, and multiplexing are performed at the

transport level. TCP uses sequence numbers, cumulative acknowledgment, windows, and software checksums

to implement these functions. TCP is on top of a network protocol called Internet Protocol (IP). This

protocol, which is connectionless or datagram packet delivery protocol, deals with host addressing and

routing, but the latter function is almost totally the task of the internet level packet switch, or gateway.

Our Primary goal was to study the performance tradeo� of choosing di�erent APIs in a local ATM

environment [LHD+95]. In our test environment, several workstations were connected via a Fore's ASX-100

ATM switch. The details of this local ATM environment will be discussed in Section 2. We consider the

following two APIs:

� Fore's API [For93],

� BSD socket programming interface [SLQ90, Sun90].

Fore's API provides several capabilities which are not normally available in other APIs, such as guar-

anteed bandwidth reservation, selection of di�erent ATM adaptation layers (AAL), multicasting, and other

ATM speci�c features. The BSD socket interface provides facilities for Interprocess Communication (IPC).

It was �rst introduced in the 4.2BSD Unix operating system. For interprocess communication, any API can

be used. However, the performance of the application may be a�ected by the decision made. Each layer

may also represent communicationg in a di�erent protocol layer. In the socket interface, application can

choose di�erent transport protocol combinations such as Transmission Control Protocol/Internet Protocol

(TCP/IP), User Datagram Protocol/Internet Protocol (UDP/IP), or even raw sockets for interprocess com-

munication. ATM can use either ATM Adaptation Layer 3/4 or 5 for IP. In this study we focus on the

communication e�ciency. An echo program is used to measure end-to-end communication characteristics

and to explore the underlying communication capabilities of di�erent APIs over local ATM and Ethernet

networks.

The next section gives an overview of ATM technology. Section 3 presents a description of the two APIs.

The con�guration of our experimental hardware and software is discussed in section 4.

2 Overview

In this section, we give an overview of ATM technology.

2



Figure 1: BISND Protocol Reference Model

ATM is a best e�ort delivery system. Flow control is to be provided by the user. A sequence of cells in

an ATM connection will be received in the same order as it was transmitted. ATM guarantees that cells will

not be disordered.

The foundation elements of ATM were synthesized by researchers at AT&T Bell Laboratories and France

Telecom's Research Center in the early to mid-1980s. Fast packet switches di�er from X.25-like packet-

switching in that they minimize storing, processing, and storing activity at each link. For example, error

control and ow control are performed on an end-to-end, rather than on a link-by-link basis. By reducing

the activities at each link, additional throughput is possible.

ATM is a cell-switching and multiplexing technology designed to combine the bene�ts of circuit switching

(constant transmission delay, guaranteed capacity) with those of packet switching (exibility, e�ciency of

intermittent tra�c).

Technologies that fragment data into small pieces can have disastrously low performance if any of the

3



Figure 2: STM and ATM Channels

In STM, time-division multiplexing are employed to preassign users to time slots. ATM time slots are

made available on demand with labels identifying the source of transmission in each cell. TDM is ine�cient

relative to ATM because, if a station has nothing to transmit when its time slot comes up, that time slot is

wasted. The converse situation, where one station has lots of information to transmit, is also less e�cient.

In this case, the station can only transmit when its turn comes up, even though all the other time slots may

be empty. STM services dedicate a physical path to a voice call for the duration of the call. No other call

4



can use this facility. Once the call is completed, everything is torn down and made available for use by the

next call. ATM - asynchronous transfer millennium is a sophisticated well conceived technology.

The ATM-adaptation Layer (AAL) maps information into cells and performs segmentation and reassem-

bly. The services provided by this layer can be classifed into four types depending on whether a timing

relationship must be maintained between source and destination, whether the application requires a con-

stant bit rate, and whether the transfer is connection-oriented or connectionless. Recently the ATM Forum

speci�ed a new type of AAL, called AAL 5. The objective is to o�er a service with less overhead and better

error detection. This layer is also referred to as Simple and E�cient AAL.

3 Application Programming Interface

This section describes two APIs: Fore Systems' ATM API, and BSD's socket interface.

3.1 Fore Systems ATM API

Fore Systems' user-level ATM library routines provide a portable interface to the ATM data link layer. It

ia an ATM adaptation layer based programming interface, allowing software designers to create applications

without the TCP/IP protocol stack and the socket layer bu�ering mechanisms. The library routines for

SunOS and IRIX platforms are STREAMS-based.

The ATM library provides a connection-oriented client and server model. Before data can be transferred

a connection has to be established between client and server. Once the connection is established, the network

makes a \best e�ort" to deliver the ATM cells to the destination. The cells may be dropped depending on

the network resources remaining. End-to-end ow control and retransmission are left to the application.

Applications �rst open a �le descriptor with atm open() and then bind a local ASAP to the �le descriptor

with atm bind. The local NSAP is also implicitly bound to the same �le descriptor. The remote ASAP and

NSAP are associated with the �le descriptor when a connect indication or a connect con�rmation is received.

Connections are established using atm connect() in combination with atm accept(). These operations allow

the data transfer to be simplex, duplex, or multicast. ATM Virtual Path Identi�ers (VPI) and Virtual

Channel Identi�ers are assigned by the network during connection establishment. The ATM device driver

associates the VPI/VCI with an ASAP which is in turn associated with a �le descriptor. When a connection

is duplex, both an incoming and an outgoing VPI/VCI are associated with the ASAP; the two need not be

the same.

It provides guaranteed bandwidth reservation for each connection. The network uses the bandwidth

information, and will refuse connection if the requested bandwidth is not available. Applications can also

select the kind of ATM Adaptation Layer (AAL) to be used for data exchange. In the current implementation

of Fore, AAL type 1 and 2 are not supported, and types 3 and 4 are treated identically. The main di�erence

between AAL 3/4 and AAL 5 lies in their multiplexing and error detection capabilities as well as in the

amount of overhead generated by each of them and reducing the e�ective avaialabe bandwidth.

5



atm send() and atm recv() are used to transfer user messages. One Protocol Data Unit (PDU) is trans-

ferred on each call. The maximum size of the PDU depends on the AAL chosen for the connection and the

constraints of the underlying socket-based or stream-based device driver implementation.

3.2 BSD Socket-Based Programming Interface

The 4.2BSD kernel introduced an Interprocess Communication mechanism (sockets). A socket is an end-

point of communication referred to which a name may be bound. Two processes each create a socket,

and then connect to those two end-points to establish a reliable byte stream or unreliable datagram. Once

connected, the descriptors for the socket can be read from or written to by user processes similar to regular

�le operations. The transparency of sockets allows the kernel to redirect the output of another process

residing on another machine.

Sockets exist within communication domains. Domains are abstractions which imply both an addressing

structure and a set of protocols which implement various socket types with the domain. BSD socket supports

the Unix domain, the Internet domain, and the NS domain. In our environment, we are limited to use the

Internet domain for communication over local ATM networks. A connection is a mechanism used to avoid

having to transmit the identity of the sending socket with each packet of data. Instead, the identity of each

end-point of communication is exchanged prior to transmission of any data, and is maintained at each end

so that it can be referred to at any time when sending or receiving messages. In the Internet domain, stream

sockets and datagram sockets use TCP/IP and UDP/IP as the [Sun90] as the underlying protocols. A stream

socket provides for the connection-based, bidirectional, reliable, sequenced, and unduplicated ow of data

without record boundaries. A datagram socket on the other hand supports connectionless, bidirectional ow

of data that is not promised to be sequenced, reliable, or unduplicated. In the experiments presented here,

4 Environment

The experiments were performed on a pair of Sun IPX connected by a Fore ASX-100 ATM switch. The ATM

environment was provided by the NYNET (NewYork NETwork). This is a part of the NPAC network as

shown in Figure 3. Fore Systems, Inc. host adapters and local area switches were used. The host adapters

were SBA-200 adapters for the SUN SBus. The physical media is the 140 Mbits/sec TAXI interface.

4.1 ATM SBus Adapter

The SBA-200 host adapter is Fore's second generation interface and uses an Intel i960 as an onboard proces-

sor. The i960 takes over most of the AAL and cell related tasks including the SAR functions for AAL 3/4

and AAL 5, and cell multiplexing. With the Series-200 adapter, the host interfaces at the packet level feeds

lists of outgoing packets and incoming bu�ers to th i960. The i960 uses local memory to manage pointers

to packets, and uses DMA to move cells out of and into host memory. Cells are never stored in adapter

memory. The SBA-200 currently supports a Fore Systems proprietary signalling protocol (SPANS). The

next signalling release will be based on ATM Forum signalling.

6



PCs

DEC 
WSs Sun 

WSs

Front 
Ends

FDDI 
switch FDDI 

concentrator

DECmpps

NYNET 
OC3/OC12

FORE 
switch

SGI 
Network 
Server

Allnode 
switch

DECNIS 
Router

SP1

CM-5

nCUBE

FDDI
Ethernet
HiPPI
ATM

Allnode
DS3/ATM

X terminal 
server

Xterminals

IBM R/6000 
cluster

Alpha 
Cluster

File Servers 
(50 GB+)

* This diagram doesn't reflect the details of the actual network topology.

Figure 3: NPAC Networking Infrastructure

4.2 ATM Switch

The ASX-100 local ATM switch is based on a 2.4 Gbps switch fabric and a RISC control processor. The

switch supports fore network modules with each module supporting upto 622 Mbps. Modules installed in

the NPAC ATM switch include two four-port 140 Mbps TAXI modules, and one two-port 155 Mbps SONET

OC-3c module. This ATM switch is connected to other ASX-100 ATM switches in Rome Labs and Cornell.

The ASX-100 supports Fore's SPANS signalling protocol with SBA-200 series adapter, and can establish

Switched Virtual Circuits (SVCs) or Permanent Virtual Circuits (PVCs). All of the experiments ignored

circuit setup time and thus the ATM circuits can be viewed as PVCs.

4.3 Multi-mode Fiber

The multi-mode �ber [Cav94] interface is based on the physical medium used for FDDI. It uses 62.5 micron

optical �ber with a 125 or 175 Mbps line rate and a 4B/5B encoding, yielding rates of 100 or 140 Mbps. The

multi-mode �ber interface is sometimes referred to as the TAXI interface, after a chipset used in FDDI (and

multi-mode �ber) interface implementations. The 4B/5B encoding of the multi-mode interface provides 32

5-bit codes. Sixteen of these are used to indicate 4-bit nibbles of data. Some of the remaining sixteen are

used as command symbols. Three pairs of these command symbols have special signi�cance in the multi-

mode interface. They are JK, the sync (or idle), code, TT, the the start of cell code, and QQ, the the loss

of signal code.

The overhead of the multimode �ber interface consists of a single single start of cell code inserted at the

7



Table 1: Bandwidth Available after Protocol Overhead (Multi-mode Fiber).

140Mbps

MTU=576 MTU=9,180 MTU=65,527

Line rate 140.000

To ATM 134.909

To AAL 122.182 122.182 122.182

To IP 114.350 121.811 122.120

To Transport 108.867 121.439 122.068

To appl. via TCP 104.951 121.174 122.031

start of each cell and a single idle code between each pair of cells. At 100 Mbps, this overhead amounts to

3.636 Mbps, leaving 96.364 Mbps for the next higher layer. The format of an ATM cell stream on multi-mode

�ber is shown in Figure 4

ATM CELLJK TT JKTT ATM CELL

53 bytes 53 bytes1 1 1

Figure 4: Multi-mode Fiber Transmission Format

Table 1 shows the amount of bandwidth that remains after each successive layer has claimed its share

of the overhead [Cav94]. We assume that IP contributes 20 bytes of overhead per datagram and TCP

contributes 20 bytes of overhead per segment. MTU is the size of the IP datagram. We consider three

MTUs: 576 (the Internet inter-network default), 9,180 (the proposed default for IP over ATM), and 65,527

(the maximum for IP over AAL5).

5 Experimental Results

The experimental results are shown in Table 2. This section provides measurements from a real environment

showing performance gain using the Fore SBA-200 SBus ATM TAXI adapter. The workstations are SUN

Sparcstation IPX, runing SUN OS 4.1.3. The target of these measurements was to get an idea of the

throughput that can achieved using Fore ATM API. The SBA-200 is a follow up of the SBA-100 and

features an on-board processor (i960) as well as DMA transfer capabilities via the SBus. The throughput

of the SBA-200 is more ethan �ve times as high as the one on SBA-100 allows depending on the size of the

transmission unit. This is due to the architecture of the SBA-200, which performs AAL and ATM layer

computing onboard. The SBA-100 is particularly slow when using AAL 5, because the CRC-32 computing

at CS layer is done in software.

From the above table we observe that using ATM API we can obtain a throughput of around 34.2 Mbps

(for TU=4092 bytes) where as using TCP/IP we get a throughput of about 15 Mbps. However one point to

8



Table 2: Fore API Throughput results using 140Mbps TAXI adapter (Timings in microsec and TU in bytes).

140Mbps TU=1 TU=1024 TU=2048 TU=4092

Using API 0.35 278 523 958

Using TCP/IP 0.614 587 1120 2184

be noted is that TCP/IP has error recovery and ow control built into it whereas in ATM API these need

to be implemented at the application level.

6 Conclusions and Future Work

We studied the performance of two di�erent APIs. The experimental results demonstrate that local ATM

networks are very promising. The two APIs presented in this report present a distributed programming

environment over a di�erent communication layer in the protocol hierarchy. Fore API provides better

communication performance, but lacks distributed programming support. The users will then have to put

extra e�ort to develop distributed applications. Fore's API has a maximum transfer unit of 4 Kbytes. Thus

a user level message segmentation/reassemble is required The data transmission is also a best e�ort delivery

system. Hence message retransmission and ow control is left to the application. The communication

interface of Fore's API is similar to that of a socket interface. The current implementation of Fore API does

not support a concurrent server model. We are currently developing a multimedia communication protocol

for NYNET which will provide low latency and high throughput.

7 Acknowledgement

I like to thank Dr. Marek Podgorny and Prof. Salim Hariri, and Dr. Roman Markowski for their invaluable

guidance and encouragement during the course of this study.

9



References

[Cav94] John David Cavanaugh. Protocol Overhead in IP/ATM Networks. Technical Report 1994-08-12,

Minnesota Supercomputer Center, Inc., 1994.

[For93] Fore Systems, Inc., 174 Thorn Hill Road, Warendale, PA 15086-7535. ForeRunner SBA-200 ATM

SBus Adapter User's Manual, 1993.

[LHD+95] Mengjou Lin, Jenwei Hsieh, David Du, Joseph Thomas, and James McDonald. Distributed Net-

work Computing over Local ATM Networks. IEEE Journal on Selected Areas in COmmunications

Special Issue of ATM LANs: Implementations and Experiences with an Emerging Technology,

Early '95. Accepted to appear.

[SLQ90] M. Karels S. Le�er, M. Mckusick and J. Quaterman. The Design and Implementation of the 4.3

BSD Unix Operating System. Addison-Wesley, 1990.

[Sun90] Sun Microsystems, Inc. Network Programming Guide, March 1990.

10


