
Parallel Direct Methods for Block-Diagonal-Bordered Sparse

Matrices

D. P. Koester, S. Ranka, and G. C. Fox

School of Computer and Information Science and

The Northeast Parallel Architectures Center (NPAC)

Syracuse University

Syracuse, NY 13244-4100

dpk@npac.syr.edu, ranka@top.cis.syr.edu, gcf@npac.syr.edu

NPAC Technical Report | SCCS 679

October 11, 1995

Contents

1 Introduction 1

1.1 Block-Diagonal-Bordered Power System Matrices : 1

1.2 Block-Diagonal-Bordered Direct Linear Solvers : 2

1.3 Active Messages : 3

1.4 Embedded Software Applications : 3

1.5 Overview : 4

2 Power System Applications 4

2.1 Load-Flow Analysis : 4

2.2 Transient Stability Analysis : 5

2.3 Power System Network Matrices : 6

2.4 Direct Methods and Applications : 9

3 Direct Linear Solvers 9

3.1 LU Factorization : 9

3.2 Choleski Factorization : 11

3.3 Ordering Sparse Matrices : 13

3.4 A Survey of the Literature : 14

4 Available Parallelism in Block-Diagonal-Bordered Form Matrices 16

5 The Three-Step Preprocessing Phase 21

5.1 Ordering : 22

5.2 Pseudo-factorization : 23

5.3 Load Balancing : 24

6 Node-tearing Nodal Analysis 25

6.1 The Node-tearing Algorithm : 25

6.2 The Node-tearing Implementation : 28

7 Sparse Matrix Solver Implementations 29

7.1 The Hierarchical Data Structure : 30

7.2 The Parallel Blocked-Diagonal-Bordered LU Factorization Algorithm : : : : : : : : : 33

7.3 Forward Reduction and Backward Substitution Algorithms : : : : : : : : : : : : : : 40

8 Empirical Results 44

8.1 Empirical Results | Ordering Power Systems Network Matrices into Block-Diagonal-

Bordered Form : 47

8.2 Empirical Results | Parallel Direct Sparse Solver Performance : : : : : : : : : : : : 66

8.2.1 Selecting Partitioned Matrices with Best Parallel Solver Performance : : : : : 67

8.2.2 Comparing Timing Performance for Direct Solver Implementations : : : : : : 69

8.2.3 Examining Speedup : 72

1

8.2.4 Analyzing Algorithm Component Performance : : : : : : : : : : : : : : : : : 75

8.2.5 Comparing Communications Paradigms : 81

8.3 Empirical Results | Conclusions : 84

8.3.1 Algorithm Performance on an IBM SP1 and SP2 : : : : : : : : : : : : : : : : 84

8.3.2 Algorithm Performance on Future SPP Architectures : : : : : : : : : : : : : : 84

9 Conclusions 87

A Minimum-Degree Ordering 94

B A Node-tearing Example 96

2

Abstract

This paper presents research into parallel direct methods for block-diagonal-bordered sparse matri-

ces | LU factorization and Choleski factorization algorithms developed with special consideration

for irregular sparse matrices from the electrical power systems community. Direct block-diagonal-

bordered sparse linear solvers exhibit distinct advantages when compared to general direct parallel

sparse algorithms for irregular matrices. Task assignments for numerical factorization on distributed-

memorymulti-processors depend only on the assignment of data to blocks, and data communications

are signi�cantly reduced with uniform and structured communications. Factorization algorithms for

block-diagonal-bordered form matrices require a specialized ordering step coupled to an explicit load

balancing step in order to generate this matrix form and to uniformly distribute the computational

workload for an irregular matrix throughout a distributed-memory multi-processor. This ordering

relates to more general sparse direct solver algorithms that use elimination trees | however, this

algorithm develops an elimination tree with only two-levels of supernodes. Matrix orderings are

performed using a diakoptic technique based on node-tearing-nodal analysis, with load balancing to

optimize performance when factoring the diagonal blocks and borders, the lower layer of supern-

odes in the elimination tree. Empirical performance measurements for real power system networks

are presented for implementations of a parallel block-diagonal-bordered LU algorithm and a similar

Choleski algorithm run on a distributed memory Thinking Machines CM-5 multi-processor. The

algorithms presented here requires active message remote procedure calls in order to minimize com-

munications overhead and obtain good relative speedup. The paradigm used with active messages

greatly simpli�ed the implementation of these sparse matrix algorithms.

1 Introduction

Solving sparse linear systems practically dominates scienti�c computing, but the performance of

direct sparse matrix solvers have tended to trail behind their dense matrix counterparts [20]. Parallel

sparse matrix solver performance generally is less than similar dense matrix solvers even though

there is more inherent parallelism in sparse matrix algorithms than dense matrix algorithms. This

additional parallelism is often described by elimination trees [14, 15, 16, 20, 37, 38, 39, 40, 41,

45], graphs that illustrate the dependencies in the calculations. Parallel sparse linear solvers can

simultaneously factor entire groups of mutually independent contiguous blocks of columns or rows

without communications; meanwhile, dense linear solvers can only update blocks of contiguous

columns or rows each pipelined communication cycle. The limited success with e�cient sparse

matrix solvers is not surprising, because general sparse linear solvers require more complicated data

structures and algorithms that must contend with irregular memory reference patterns. The irregular

nature of many real-world sparse matrices has aggravated the task of implementing scalable sparse

matrix solvers on vector or parallel architectures: e�cient scalable algorithms for these classes of

machines require regularity in available data vector lengths and in interprocessor communications

patterns [8, 18, 32].

We have focused on developing parallel linear solvers optimized for sparse matrices from the

power systems community | in particular, we have examined linear solvers for matrices resulting

from power distribution system networks. These matrices are some of the most sparse matrices

encountered in real-life applications, and these matrices also are irregular. Recently, [18, 22] have

reported scalable Choleski solvers, but they are for matrices that have more row/columns, that have

more nonzero elements per row/column, and that are more regular than power systems matrices.

When scalability of sparse linear solvers is examined using real, irregular sparse matrices, the avail-

able parallelism in the sparse matrix and load-imbalance overhead can be as much the reason for

poor parallel e�ciency as the parallel algorithm or implementation [26, 32].

1.1 Block-Diagonal-Bordered Power System Matrices

Power system distribution networks are generally hierarchical with limited numbers of high-voltage

lines transmitting electricity to connected local networks that eventually distribute power to cus-

tomers. In order to ensure reliability, highly interconnected local networks are fed electricity from

multiple high-voltage sources. Electrical power grids have graph representations which in turn can

be expressed as matrices | electrical buses are graph nodes and matrix diagonal elements, while

electrical transmission lines are graph edges which can be represented as non-zero o�-diagonal matrix

elements. We show that it is possible to identify the hierarchical structure within a power system

matrix using only the knowledge of the interconnection pattern by tearing the matrix into partitions

and coupling equations that yield a block-diagonal-bordered matrix. Node-tearing-based partition-

ing identi�es the basic network structure that provides parallelism for the majority of calculations

within the direct solution of a linear system.

In this paper we examine the applicability of parallel direct block-diagonal-bordered sparse solvers

for real power system applications that require either the solution of symmetric positive de�nite

1

sparse matrices or location symmetric sparse matrices that result from solving problems relating to

power systems networks. Variations of this technique could be used to solve other power system

sparse linear systems such as those that result from solving linearized di�erential-algebraic equations

that result from transient stability analysis or small-signal stability assessments. The implementa-

tions we describe in this paper work directly with the equations resulting from the power systems

network, the smallest class of power system matrix.

The implementations we developed can be used to solve symmetric positive de�nite load
ow

analysis Jacobian matrices or position symmetric network matrices from transient stability analysis.

In spite of only examining direct linear solver implementations that solve relatively small network-

related matrices, we have been able to obtain good parallel speedups. We expect that even better

performances would be possible for parallel implementations designed to solve a single system of

linear equations that represent a combination of the generator dynamical equations and network

equations in a linearized form of the di�erential-algebraic equations from transient stability anal-

ysis or small-signal analysis. For these problems, there is additional parallel calculations with no

additional parallel communications overhead.

1.2 Block-Diagonal-Bordered Direct Linear Solvers

Block-diagonal-bordered sparse matrix algorithms require modi�cations to the normal preprocessing

phase described in numerous papers on parallel Choleski factorization [14, 15, 16, 20, 37, 38, 39,

40, 41, 45]. Each of the numerous papers referenced above use the paradigm to order the sparse

matrix and then perform symbolic factorization in order to determine the locations of all �llin values

so that static data structures can be utilized for maximum e�ciency when performing numerical

factorization. We modify this commonly used sparse matrix preprocessing phase to include an

explicit load balancing step coupled to the ordering step so that the workload is uniformly distributed

throughout a distributed-memory multi-processor and parallel algorithms make e�cient use of the

computational resources.

Parallel block-diagonal-bordered sparse linear solvers o�er the potential for regularity often ab-

sent from other parallel sparse solvers [23, 24, 25, 27]. Our research into specialized matrix ordering

techniques has shown that it is possible to order actual power system matrices readily into block-

diagonal-bordered form, and load-balancing is su�ciently e�ective that relative speedups greater

than ten have been observed in empirical performance measurements for 32 processors on a Think-

ing Machines CM-5 multi-processor.

In addition to the promising speedup encountered for only the parallel direct linear solver, other

dimensions exist in electrical power system applications that can be exploited to e�ciently make use

of multi-processors with greater than 32 processors. We believe that this research also has utility for

other irregular sparse matrix applications where the data is hierarchical, very sparse, and irregular.

Other sources of hierarchical matrices exist, for example, electrical circuits, that have the potential

for larger numbers of equations than power system matrices.

2

1.3 Active Messages

The algorithms we developed require active message remote procedure calls in order to minimize

communications overhead and obtain good relative speedup. Active message remote procedure calls

(RPCs) provide protocol-less access to the transport layer of the communication network on the

CM-5. The user must assume responsibilities for all aspects of communications | as a result,

active message RPCs provide very low-latency communications. Active messages provide extremely

fast interprocessor communications, and also permit a parallel-code development paradigm that

greatly simpli�es the implementation of these sparse matrix algorithms. Empirical data has been

collected on both active message-based implementations and more traditional cooperative bu�er-

based message passing commands in order to illustrate the need for low latency communications

when solving matrices that are as sparse and irregular as power systems matrices.

Active messages are an example of a distributed-memorymultiprocessor message-passing paradigm

that has been developed by the supercomputer community to provide extremely low latency com-

munications. All other CM-5 message-passing software is built upon this low latency protocol-less

remote procedure call. The empirical data presented in this paper clearly shows that low-latency

communications are required for direct linear solvers for power systems network matrices. This re-

search has been performed on a small version (only 32 processors) of a massively parallel processing

(MPP) architecture, the Thinking Machines CM-5. We believe that scalable parallel processing

(SPP) architectures, like the IBM SP2, may eventually provide similar low-latency communications

for short messages, in addition to expanded network bandwidth, because there are many parallel

algorithms that can only be implemented e�ciently with this type of interprocessor communications

support. SPP hardware developers recognize that low-latency communications increase the utility

of their computer and, consequently, improve market potential.

1.4 Embedded Software Applications

Our research has examined the performance of a block-diagonal-bordered direct solvers, with im-

plementations of both Choleski and LU factorization, to be incorporated within electrical power

system applications. Because we are considering software to be embedded within a more extensive

application, we examine e�cient parallel forward reduction and backward substitution algorithms

in addition to parallel factorization algorithms. Due to the reduced amount of calculations in the

triangular solution phases of solving a system of factored linear equations, these algorithms are often

ignored when parallel Choleski or LU factorization algorithms are presented in the literature.

In our research, we have found that the development of parallel factorization algorithms must

consider forward reduction and backward substitution, because the choice of the order of calculations

in factorization can greatly in
uence the performance of the parallel triangular solutions. Data

structures are dependent on the order of calculations, in order to ensure cache coherency, and the

amount of communications in parallel forward reduction and backward substitution is dependent

on the data layout. We have found that the results of additional communications overhead can

eliminate any potential speedup for parallel forward reduction with column oriented data storage.

This communications overhead cannot be eliminated for Choleski factorization, where either forward

reduction or backward substitution must be performed with an implicit transpose of the factored

3

matrix. Fortunately, the LU factorization algorithm can be implemented in a manner to eliminate

this communications overhead problem.

1.5 Overview

This paper is organized as follows. In section 2, we describe the electrical power system applications

that are the basis for this work. In section 3, we brie
y review direct solution techniques for

factorization and forward reduction/backward substitution, and we review the literature concerning

general parallel LU and Choleski factorization algorithms. This is followed by a theoretical derivation

of the available parallelism in both the factorization and forward reduction/backward substitution

phases when solving block-diagonal-bordered form sparse matrices. Paramount to exploiting the

advantages of this parallel linear solver is the process of ordering the irregular sparse power system

matrices into this form in a manner that balances the workload amongmulti-processors. In section 5,

we describe the three-step preprocessing phase used to generate matrix ordering for block-diagonal-

bordered matrices with uniformly distributed processing load. In this section, we introduce pseudo-

factorization and we review minimumdegree ordering and pigeon-hole load balancing algorithms. We

present the node-tearing algorithm developed to order matrices into block-diagonal-bordered form in

section 6. In section 7, we describe our block-diagonal-bordered sparse LU and Choleski algorithms

that has been implemented on the CM-5. Analysis of the performance of these ordering techniques

are presented in section 8 for actual power system network matrices from the Boeing-Harwell series,

the Electrical Power Research Institute (EPRI), and an electrical utility, the Niagara Mohawk Power

Corporation. We present our conclusions concerning parallel block-diagonal-bordered direct linear

solvers for electrical power system applications in section 9.

2 Power System Applications

The underlying impetuous for our research is to improve the performance of electrical power system

applications to provide real-time power system control and real-time support for proactive decision

making. Our research has focused on load-
ow and transient stability applications [2, 44]. Sparse

linear solvers are employed in both applications and linear solvers account for the majority of
oating

point operations encountered. Scalability, or the ability to apply more processors to larger problems,

is desired when developing multi-processor implementations because load-
ow and transient stability

applications have the potential to be utilized across di�erent sized geographical areas, from single

electrical power utilities to regional power authorities.

2.1 Load-Flow Analysis

Load-
ow analysis examines steady-state equations based on the positive de�nite network admit-

tance matrix that represents the power system distribution network. Load-
ow analysis is used for

identifying potential network problems in contingency analyses, for examining steady-state opera-

tions in network planning and optimization, and also for determining initial system state in transient

stability calculations [44]. Load
ow analysis entails the solution of non-linear systems of simulta-

neous equations, which are performed by repeatedly solving sparse linear equations. Load
ow is

4

calculated using the network admittance matrices, which are symmetric positive de�nite and have

sparsity de�ned by the power system distribution network. The size of these matrices is limited

because individual power systems generally use networks with less than 2,000 sparse complex equa-

tions in their operations centers, while regional power authority operations centers would also be

limited to sparse load-
ow matrices with less than 10,000 sparse complex equations. Power systems

planning studies often incorporate larger networks as lower voltage distribution lines are included in

these studies. Sparse matrices employed in planning studies can have from 10,000 to 50,000 sparse

equations. This paper presents data for power system networks with 1,723, 5,300, 6,692, 1,766, and

9,430 nodes.

2.2 Transient Stability Analysis

Transient stability analysis is a detailed simulation of the power system, that models the dynamic

behavior of the electrical distribution networks, electrical loads, and the electro-mechanical equa-

tions of motion of the interconnected generators [2]. Transient stability analysis can be used to

perform selective detailed analyses of generator commitment stability, and to support crisis decision-

making during network recovery. The transient stability problem is modeled by di�erential algebraic

equations (DAEs) with di�erential equations representing the generators and non-linear algebraic

equations representing the power system network that interconnects the generators. The DAEs are

in natural non-symmetric block-diagonal-bordered form, with diagonal blocks of generator equations

coupled by the power system distribution network. In this representation, there are as many coupling

equations as the entire sparse admittance matrix. However, it it possible to order the admittance

matrix to block-diagonal-bordered form in order to increase available parallelism. This is illustrated

in �gure 1. The size of the sparse matrices representing the DAEs have as many as 10,000 complex

equations for an individual power system, while regional power authorities could have as many as

50,000 sparse complex equations in the matrix formed from the DAEs.

It is also possible to solve the above equations by decoupling the generator equations from the

network equations. For decoupled transient stability analysis, the transient stability di�erential-

algebraic equation matrix is partitioned into the four submatrices. The generator equations are

solved independently of the network equations, then the sparse admittance matrix is modi�ed by the

matrix coe�cients in the sparse borders. Instead of the common practice of decoupling the generator

and network calculations in a transient stability simulation, we hope to continue this research and

eventually examine using more powerful di�erential-algebraic equation solvers for transient stability

analysis that do not decouple the generator and network equations. The fully-coupled di�erential-

algebraic equations will o�er more potential for good parallel performance because

� the matrices are larger,

� a large portion of these matrices are non-symmetric and require calculations in both the upper

and lower triangular portions of the diagonal blocks,

� pivoting will be required in the diagonal blocks containing the generator equations to ensure

numerical stability.

5

SPARSE

GENERATOR

SPARSE

BORDER

BORDER

BORDER

SPARSE

SPARSEEQUATIONS

BORDER

EQUATIONS

GENERATOR

MATRIX

ADMITTANCE0

0

0

(a) Original Matrix Configuration

into Block-Diagonal-Bordered Form

(b) After Ordering the Admittance Matrix

0

0

SPARSE

ADMITTANCE

MATRIX

SPARSE

0

Figure 1: Ordering the Admittance Sub-Matrix in the Transient Stability Di�erential-Algebraic

Equations

The amount of work available will be greater and the e�ects of load-balance overhead will be min-

imized, while the amount of communications overhead will remain the same as solving for the

decoupled transient stability equations.

2.3 Power System Network Matrices

Power system distribution networks are generally hierarchical with limited numbers of high-voltage

lines transmitting electricity to connected local networks that eventually distribute power to cus-

tomers. In order to ensure reliability, highly interconnected local networks are fed electricity from

multiple high-voltage sources. Electrical power grids have graph representations which in turn can

be expressed as matrices | electrical buses are graph nodes and matrix diagonal elements, while

electrical transmission lines are graph edges which can be represented as non-zero o�-diagonal matrix

elements.

Matrices representing power system networks are some of the most sparse matrices encountered

throughout the academic or industrial community. Figure 2 illustrates the proportion of graph nodes

with a particular number of graph edges or the number of non-zero values in a matrix row or column

for �ve separate power system matrices:

� Boeing-Harwell matrix BCSPWR09 | 1,723 nodes and 2,394 graph edges [10],

� Boeing-Harwell matrix BCSPWR10 | 5,300 nodes and 8,271 graph edges [10],

� EPRI matrix EPRI6K matrix | 6,692 nodes and 10,535 graph edges [11],

� Niagara Mohawk Power Corporation operations matrix NiMo-OPS | 1,766 nodes and 2,506

graph edges,

6

1 2 3 4 5 6 7 8 9 10
Number of Edges

0.0

0.1

0.2

0.3

0.4

0.5

R
el

at
iv

e
Fr

eq
ue

nc
y

BCSPWR09

BCSPWR10

EPRI6K

NiMo-OPS

NiMo-PLANS

Figure 2: Electrical Power System Networks | Relative Frequency Histogram of Edges per Graph

Node

� Niagara Mohawk Power Corporation planning matrix NiMo-PLANS | 9,430 nodes and 14,001

graph edges.

Matrices BCSPWR09 and BCSPWR10 are from the Boeing Harwell series and represent electrical

power system networks from the Western and Eastern US respectively. The EPRI-6K matrix is

distributed with the Extended Transient-Midterm Stability Program (ETMSP) fromEPRI. Matrices

NiMo-OPS and NiMo-PLANS have been made available by the Niagara Mohawk Power Corporation,

Syracuse, NY.

In this relative frequency histogram, the most frequently occurring number of edges per node is

only 2! Table 1 provides additional data to illustrate that power system matrices are both relatively

small in size and also have the fewest average edges per node of available matrices. In this table,

all data except that from EPRI and Niagara Mohawk are from the Boeing-Harwell series [10]. The

structural matrices, BCSSTK13 to BCSSTK32, are frequently used in papers to benchmark parallel

sparse linear algorithms [14, 15, 16, 18, 20, 22, 31, 32, 37, 38, 39, 40, 41, 45]. For power system

matrices, the average number of edges per node is less than two while for many of the structural

matrices, the average number of nodes per edge is greater than ten. Also the number of nodes in

power system matrices are limited when compared to the Boeing-Harwell structural matrices.

While power systems matrices are extremely sparse, they are also irregular, with the larger

matrices having some nodes with greater than twenty edges. The histogram presented in �gure 2

has been truncated at ten edges per node to emphasize the high incidence of edges with less than three

nodes. As a result of the degree of sparsity and irregularity in these matrices, developing parallel

sparse linear solvers for power systems application has proven to be a challenge [36, 4]. Nevertheless,

by developing parallel algorithms that actively address the irregular nature of the graphs with

explicit load-balancing and by making all necessary communications as balanced, regular, and as

asynchronous as possible, we will show in section 8 that our block-diagonal-bordered approach to

addressing linear solvers for power system applications can yield respectable speedups even for as

many as 32 processors.

7

Graph Number Number Average Edges

Name Description of Nodes of Edges per Node

BCSPWR09 Western US Power Network 1,723 2,394 1.39

BCSPWR10 Eastern US Power Network 5,300 8,271 1.56

EPRI6K Power Network 6,692 10,535 1.57

NiMo-OPS Eastern US Power Network 1,766 2,506 1.41

NiMo-PLANS Eastern US Power Network 9,430 14,001 1.48

BCSSTK13 Fluid Flow Generalized Eigenvalues 2,003 40,940 20.44

BCSSTK14 Roof of Omni Coliseum, Atlanta 1,806 30,824 17.07

BCSSTK15 Module of an O�shore Platform 3.948 56,934 14.42

BCSSTK16 Corp of Engineers Dam 4.884 142,747 29.23

BCSSTK17 Elevated Pressure Vessel 10,974 208,838 19.03

BCSSTK18 R.E.Ginna Nuclear Power Station 11,948 68,571 5.74

BCSSTK24 Calgary Olympic Saddledome Arena 3.562 78,174 21.95

BCSSTK25 76 Storey Skyscraper 15,439 118,401 7.67

BCSSTK28 Solid Element Model 4,410 107,307 24.33

BCSSTK29 Boeing 767 rear pressure bulkhead 13,992 302,748 21.64

BCSSTK30 O�-Shore Generator Platform 28,924 1,007,284 34.83

BCSSTK31 Automobile Component 35,588 572,914 16.10

BCSSTK32 Automobile Chassis 44,609 985,046 22.08

Table 1: Comparison of Power System Matrices and Boeing-Harwell Structural Matrices

8

2.4 Direct Methods and Applications

The parallel block-diagonal-bordered Choleski algorithm, presented in this paper, addresses the

most di�cult of these application to implement on multi-processors. Load-
ow has the smallest

matrices and the fewest calculations due to symmetry and lack of requirements for pivoting to

ensure numerical stability. Load-
ow calculations are included in decoupled solutions to transient

stability di�erential-algebraic equations. Parallel Choleski algorithms have the same amount of

interprocessor communications overhead as parallel LU algorithms; meanwhile, there are twice as

many
oating-point operations available in LU factorization. This means that relative speedup, or

the improvement in performance when a problem is solved on multiple processors, will be better for

LU factorization because there the additional calculations attenuate the many sources of overhead

in the parallel algorithm, especially communications overhead.

The parallel block-diagonal-bordered LU algorithm, also presented later in this paper, would

be appropriate to use for solving the position symmetric matrix that occurs in transient stability

analysis, when the di�erential equations representing the generator dynamics are solved decoupled

from the linear network equations. The system of linear equations in this application is similar

to that encountered in load
ow, but with the values at generator buses modi�ed to represent the

e�ects of the dynamic state of the generators. This matrix is position symmetric, with the same

structure as a load
ow matrix, but values in symmetric locations may not be equal. Decoupled

transient stability analysis encounters the same small matrix sizes of load-
ow analysis, but there

are nearly twice the number of calculations for double precision LU factorization and six times the

number of calculations for complex-variate LU factorization.

3 Direct Linear Solvers

We are considering the direct solution of the linear system

Ax = b; (1)

where A is an N � N sparse matrix. The sparse matrix A can be numerically factored into two

separate triangular matrices, one sparse matrix being lower triangular, L, and the other sparse

matrix being upper triangular, U :

Ax = LUx = b; (2)

A lower triangular matrix, L, has all zeros above the diagonal and an upper triangular matrix, U ,

has all zeros below the diagonal [9].

3.1 LU Factorization

For a brief review, the sparse matrix A can be numerically factored into a lower triangular matrix

L and an upper triangular matrix U as in equation 2, where all values on the diagonal of either

L or U must equal 1 | Lk;k = 1 or Uk;k = 1. Equation 2 is solved by setting Ux = y, and

substituting y for Ux. The numerical solution for Ly = b is found by forward reduction, and the

numerical solution for x is calculated by backward substitution in the equation Ux = y. Triangular

9

for k = 1 to N /* for all elements along the diagonal */

for each i 2 [k;N]

for each j 2 [1; k� 1] such that Ai;j 6= 0 and Aj;k 6= 0

Ai;k Ai;k � (Ai;j �Aj;k)

endfor

endfor

for each i 2 [k + 1; N]

Ak;j (Ak;j=Ak;k)

endfor

for each j 2 [k + 1; N]

for each i 2 [1; k� 1] such that Ak;i 6= 0 and Ai;j 6= 0

Ak;j Ak;j � (Ak;i �Ai;j)

endfor

endfor

endfor

Figure 3: Sparse LU Factorization - Doolittle Algorithm

linear systems can be readily solved numerically by solving for the �rst value in the triangular linear

system and substituting that value into subsequent equations. Additional discussions on the state

of the literature for LU factorization are presented below.

Sparse LU factorization can mirror any similar dense factorization algorithm, although generally

a sparse matrix algorithm has only one explicit for loop, which can be for any single index in the

dense case. The remaining indices are examined only for non-zero values in the original matrix or for

non-zero values that will occur from �llin in the matrix. Sparse matrix �llin occurs when a value that

formally was zero becomes non-zero in the process of factoring the matrix. Fillin can be controlled

in sparse factorization by ordering the matrix before performing the factorization if there is no

requirement for pivoting to ensure numerical stability of the calculations [9]. There are many ordering

techniques for position symmetric matrices, with one of the most common being minimum degree

ordering. If pivoting is required to ensure numerical stability, a Markowitz ordering/pivoting strategy

can be employed, and �llin determined during the solution of the matrix. The Markowitz ordering

strategy selects pivots with the added constraint of minimizing �llin [9]. Additional discussions on

the state of the literature for LU factorization are presented below.

As we continue the review of LU factorization, we present a general sequential sparse factorization

algorithm, in �gure 3, based upon the factorization algorithms commonly attributed to Doolittle

for matrices that do not require pivoting. In Doolittle factorization, all values on the diagonal of

L equal 1 | Lk;k = 1. We also present general sequential sparse forward reduction and backward

substitution algorithms in �gures 4 and 5 respectively that would be used in conjunction with the

Doolittle-based algorithm to solve for x in Ax = b.

10

for k = 1 to N /* for all elements along the diagonal */

yk bk

for each i 2 [k + 1; N] such that Li;k 6= 0

bi bi � (yk � Li;k)

endfor

endfor

Figure 4: Sparse Forward Reduction for Doolittle Factorization

for k = N to 1 by �1 /* for all elements along the diagonal */

xk (yk=Uk;k)

for each i 2 [1; k� 1] such that Li;k 6= 0

yi yi � (xk � Ui;k)

endfor

endfor

Figure 5: Sparse Backward Substitution for Doolittle Factorization

3.2 Choleski Factorization

If the matrix A is an N � N symmetric positive de�nite sparse matrix, then a special form of LU

factorization can be used that exploits the symmetry and inherently numerical stable characteristics

of this matrix form [9]. A symmetric positive de�nite sparse matrix A can be numerically factored

into a single lower triangular matrix L:

Ax = LL
T
x = b; (3)

Equation 3 is solved by setting LTx = y, and substituting y for LTx. The numerical solution for

Ly = b is found by forward reduction, and the numerical solution for x is calculated by backward

substitution in the equation LTx = y. Our analysis of the available parallelism in block-diagonal-

bordered LU factorization, presented in section 4, can be extended to an analysis of available par-

allelism in block-diagonal-bordered Choleski factorization by simply substituting LTx for U . Addi-

tional discussions on the state of the literature for Choleski factorization are presented below.

We present a general sequential sparse factorization algorithm based upon the column Choleski

factorization algorithm [20], which is similar to the factorization algorithms commonly attributed

to Crout and Doolittle, and similar to the LU algorithm presented in �gure 3. A sequential sparse

factorization algorithm is presented in �gure 6, and we present sequential sparse forward reduction

and backward substitution algorithms for Choleski factorization in �gures 7 and 8 respectively. In

the backward substitution algorithm, the calculations are performed by implicitly transposing L.

11

for k = 1 to N /* for all elements along the diagonal */

for each i 2 [k;N]

for each j 2 [1; k� 1] such that Ai;j 6= 0 and Aj;k 6= 0

Ai;k Ai;k � (Ai;j �Aj;k)

endfor

endfor

Ak;k
p
Ak;k

for each i 2 [k + 1; N]

Ak;j (Ak;j=Ak;k)

endfor

endfor

Figure 6: Sparse Choleski Factorization

for k = 1 to N /* for all elements along the diagonal */

yk (bk=Lk;k)

for each i 2 [k + 1; N] such that Li;k 6= 0

Li;k Li;k � (yk � Li;k)

endfor

endfor

Figure 7: Sparse Forward Reduction for Choleski Factorization

for k = N to 1 by �1 /* for all elements along the diagonal */

xk (yk=Lk;k)

for each j 2 [1; k� 1] such that Lj;k 6= 0

Lj;k Lj;k � (xk � Uj;k)

endfor

endfor

Figure 8: Sparse Backward Substitution for Choleski Factorization

12

3.3 Ordering Sparse Matrices

Position symmetric sparse matrices can be represented by graphs with elements in equations cor-

responding to undirected edges in the graph [9, 20]. The motivating applications for this research

have position symmetric or have position symmetric submatrices that are derived from power sys-

tem networks that have graph representations. Ordering a symmetric sparse matrix is actually little

more than changing the labels associated with nodes in an undirected graph, however, this simple

task can drastically e�ect the amount of calculations involved when factoring a sparse matrix.

For symmetric positive de�nite matrices, there is much latitude in the order to perform the cal-

culations, because there is no requirement for pivoting for numerical stability and the only e�ect of

modifying the order of calculations might result from changes in round-o� errors [20]. Diagonally

dominant matrices also can be factored with little concern for pivoting, and there are many appli-

cations where time constraints are critical, so in order to speedup sparse LU factorization, pivoting

is ignored. If there is no pivoting, ordering can be performed a priori and static data structures can

be used for the most e�cient sequential algorithm.

There is a graph-theoretical interpretation for �llin; factoring a node is equivalent to removing

the node from the graph, however, any path through the factored node to adjacent edges must

remain and must now be explicitly listed. This phenomenon is illustrated in �gure 9 for a segment

of a graph. In this example, the node with the least number of edges is selected for factoring, and two

of three possible new edges are created. Only two new edges are created because there is an existing

edge already connecting a pair of nodes. Fillin causes the number of edges in the remaining nodes

to increase, often drastically increasing the number of calculations. The amount of �llin generated

when any node is factored is bounded by the binomial coe�cient of the number of edges at a node

choose 2 or

fk �

�k

2

!
=

�k!

2� (�k � 2)!
=

(�k � (�k � 1))

2
; (4)

where:

fk is the number of �llin when factoring node k.

�k is the number of edges at node k.

There are several notable techniques to minimize �llin, with one of the commonly used techniques

being minimum-degree ordering. This ordering technique is used for position symmetric matri-

ces and attempts to minimize �llin by choosing that node for the next elimination which has the

lowest degree or least number of connected edges. Minimum-degree ordering is closely related to

Markowitz ordering [9]. Like minimum-degree ordering, Markowitz ordering attempts to select the

next row/column to eliminate that has the least row/column elements. Minimum degree ordering

is used in conjunction with the node-tearing-based ordering technique to generate block-diagonal-

bordered form sparse matrices. Additional detail on minimum degree-based sparse matrix ordering

is presented in appendix A.

Modifying the ordering of a sparse matrix is simple to perform using a permutation matrix P

of all zeros and ones that simply generates elementary row and column exchanges. Applying the

permutation matrix P to the original linear system in equation 1 yields the linear system

(PAPT)(Px) = (Pb); (5)

13

FILLIN

DUE TO

NEW EDGES

FACTOR

NODE

(b) Graph Segment After Factoring(a) Graph Segment Before Factoring

Figure 9: Graph Theoretical Explanation of Fillin

that is solved by factoring PAPT into LU factors �
L and �

U in �
L
�
U or the Choleski factor �

L in �
L
�
L
T

and then performing forward reduction, backward substitution, and undoing the permutation on

the x vector. For LU factorization, these steps would require the solutions of:

�
L = Pb;

�
Uz = y; x = P

T
z: (6)

For Choleski factorization, simply substitute �
L
T for �U in equation 6. Also for Choleski factorization,

as long as a symmetric positive de�nite matrixA is ordered with the permutation matrixP to PAPT ,

the resultant matrix after ordering remains symmetric positive de�nite.

3.4 A Survey of the Literature

Signi�cant research e�ort has been expended to examine parallel matrix solvers | for both dense

and sparse matrices. Numerous papers have documented research on parallel dense matrix solvers

[8, 42, 43], and these articles illustrate that good e�ciency is possible when solving dense matrices

on multi-processor computers. The calculation time complexity of dense matrix LU factorization is

O(N3), and there are su�cient, regular calculations for good parallel algorithm performance. Some

implementations are better than others [42, 43], nevertheless, performance is deterministic for:

� the algorithm,

� the multi-processor architecture,

� the number of processors,

� the matrix size.

Direct sparse matrix solvers, on the other hand, have computational complexity signi�cantly less

than O(N2:0), and actual power system sparse matrices used in this work have order of complexities

14

less than O(N1:5). These orders of complexity are consistent with matrices from circuit analysis

applications that have complexities ranging from O(N1:2) to O(N1:5) [33]. With signi�cantly less

calculations than dense direct solvers, and lacking uniform, organized communications patterns,

direct parallel sparse matrix solvers often require detailed knowledge of the application to permit

e�cient implementations.

The bulk of recent research into parallel direct sparse matrix techniques has centered around

symmetric positive de�nite matrices, and implementations of Choleski factorization. A signi�cant

number of papers concerning parallel Choleski factorization for symmetric positive de�nite matrices

have been published recently [14, 15, 16, 20]. These papers have thoroughly examined many aspects

of the parallel direct sparse matrix solver implementations, symbolic factorization, and appropriate

data structures. Techniques to improve interprocessor communications using block partitioning

methods have been examined in [31, 38, 39, 40, 41].

Some of the most celebrated recent work has revived research into parallel sparse multifrontal

Choleski techniques [18, 22]. Multifrontal techniques identify parallelism within the matrix struc-

ture in a manner similar to [14, 15, 16, 20], but then create multiple small, dense matrices from

independent rows/columns of data, and update each frontal matrix with dense techniques. Parallel

sparse multifrontal algorithms have shown scalable performance for very-large, extremely regular

sparse structural matrices. There has been some work on solving less-regular problems. Research

has recently been published in [32] that describes load balancing techniques to support the work

in [31]. Also, research has been ongoing to examine techniques that can e�ciently factor irregular

matrices using multifrontal techniques [5, 6, 7].

Techniques for sparse Choleski factorization have even been developed for single-instruction-

multiple-data (SIMD) computers like the Thinking Machines CM-1 and the MasPar MPP [29]. This

discussion is by no means an exhaustive literature survey, although it does represent a signi�cant

portion of the direct sparse matrix research performed for vector and multi-processor computers.

References [14, 15, 16, 20, 38, 39, 40, 41] have kept with a general two step preprocessing paradigm

for parallel sparse Choleski factorization:

1. order the matrix to minimize �llin,

2. symbolic factorization to identify �llin and set up static data structures,

In this paper, we break from this two step pre-processing paradigm and introduce a new three-step

preprocessing phase that includes ordering, pseudo-factorization, and explicit load balancing. The

pseudo-factorization step is similar to the symbolic factorization step, although we require that the

number of calculations in matrix partitions be calculated so that we can perform explicit load-

balancing on the majority of the sparse matrix. Our three-step preprocessing phase is described in

section 5.

15

4 Available Parallelism in Block-Diagonal-Bordered Form

Matrices

The most signi�cant aspect of parallel sparse LU factorization is that the sparsity structure can

be exploited to o�er more parallelism than is available with dense matrix solvers. Parallelism in

dense matrix factorization is achieved by distributing the data in a manner that the calculations in

one of the for loops can be performed in parallel. Sparse factorization algorithms have inadequate

calculations in any row or column for e�cient parallelism; however, sparse matrices o�er additional

parallelism as a result of the nature of the data and the precedence rules governing the order of

calculations. Instead of just parallelizing a single for loop as in parallel dense matrix factorization,

entire independent portions of a sparse matrix can be factored in parallel | especially when the

sparse matrix has been ordered into block-diagonal-bordered form. Provided that a matrix can be

ordered into block-diagonal-bordered form, then the parallel sparse LU algorithm can reap additional

bene�ts, such as the elimination of task graphs for distributed-memory multi-processor implemen-

tations. Minimizing or eliminating task graphs is signi�cant because the task graph can contain as

much information as the representation of the sparse matrix for more conventional parallel sparse

LU solvers [13].

There are several distinct ways to examine the available parallelism in block-diagonal-bordered

form matrices. The �rst way to consider available parallelism in a block-diagonal-bordered sparse

matrix is to consider the graph of the matrix. Figure 10 represents the form of a graph with four

mutually independent sub-matrices (subgraphs) interconnected by shared coupling equations. No

graph node in a subgraph has an interconnection to another subgraph except through the coupling

equations. It should be intuitive that data in columns associated with nodes in subgraphs can be

factored independently up to the point where the coupling equations are factored. The description

of parallelism presented here is closely related to the concept of elimination graphs and super-

nodes described in [20]. A block-diagonal-bordered form sparse matrix can be represented by an

elimination tree with supernodes at only two levels. Supernodes form the elimination tree leaves,

with another supernode as the root of the Nprocsary tree. By simply restructuring the graph

presented in �gure 10, it is possible to represent the same concept as a tree. An elimination tree for

a block-diagonal-bordered form matrix with four supernodes as leaves and a single supernode as the

tree's root is presented in �gure 11.

While an elimination graph o�ers intuition into the available parallelism in block-diagonal-

bordered sparse matrices, it is possible to examine the theoretical mathematics of matrix parti-

tioning to clearly identify available parallelism in this sparse matrix form. By partitioning the

block-diagonal-bordered matrix into:

� a block-diagonal matrix

� an upper border

� a lower border

� a last block

16

SUBMATRIX 1

SUBMATRIX 2

SUBMATRIX 4

SUBMATRIX 3

COUPLING EQUATIONS

Figure 10: Graph with Four Independent Sub-Matrices

SUPERNODESN

SN5

SN1 SN2 SN3 SN4

COUPLING
EQUATIONSTREE ROOT

ELIMINATION

ELIMINATION
TREE LEAVES

SUBMATRICES

LEGEND

Figure 11: Elimination Tree with Four Supernode Leaves

17

and calculating the Shur complement [9], it is possible to identify available parallelism by proving a

theorem that states the LU factors of a block-diagonal-bordered matrix are also in block-diagonal-

bordered form. A supporting lemma stating that the LU factors of a block-diagonal matrix are

also block-diagonal form is required to complete the proof of the theorem. A similar version of this

derivation can be used to identify the parallelism in Choleski factorization.

De�ne a partition of A = LU as

A =

A1;1 A1;2

A2;1 A2;2

!
=

L1;1 0

L2;1 L2;2

!
U1;1 U1;2

0 U2;2

!
= LU (7)

where:

A1;1, L1;1, and U1;1 are of size n1 � n1

A2;1 and L2;1 are of size n2 � n1

A1;2 and U1;2 are of size n1 � n2

A2;2, L2;2, and U2;2 are of size n2 � n2.

The Shur complement of the partitioned matrices in equation 7 can be calculated by simply per-

forming the matrix multiplication on the LU partitions which yields:

A =

A1;1 A1;2

A2;1 A2;2

!
=

L1;1U1;1 L1;1U1;2

L2;1U1;1 L2;1U1;2 + L2;2U2;2

!
(8)

By equating blocks in equation 8, we can easily identify how to solve for the partitions:

A1;1 = L1;1U1;1) L1;1U1;1 = A1;1

A1;2 = L1;1U1;2) U1;2 = L
�1
1;1A1;2

A2;1 = L2;1U1;1) L2;1 = A2;1L
�1
1;1

A2;2 = L2;1U1;2 + L2;2U2;2) L2;2U2;2 = A2;2 �L2;1U1;2

(9)

Before we can proceed and prove the theorem that the LU factors of a block-diagonal-bordered

(BDB) position symmetric sparse matrix are also in block-diagonal-bordered form, we must de�ne

additional matrix partitions in the desired form and prove a Lemma that the LU factors of a block-

diagonal (BD) matrix are also in block-diagonal form. At this point, we must de�ne additional

partitions of A that represent the block-diagonal-bordered nature of the original A matrix:

ABDB =

A1;1 A1;2

A2;1 A2;2

!
=

0
BBBBBBB@

A1;1 0 A1;m

A2;2 A2;m

0
. . .

...

Am�1;m�1 Am�1;m

Am;1 Am;2 � � � Am;m�1 Am;m

1
CCCCCCCA

(10)

18

LBDB =

L1;1 0

L2;1 L2;2

!
=

0
BBBBBBB@

L1;1

L2;2 0

0
. . .

Lm�1;m�1

Lm;1 Lm;2 � � � Lm;m�1 Lm;m

1
CCCCCCCA

(11)

UBDB =

U1;1 U1;2

0 U2;2

!
=

0
BBBBBBB@

U1;1 0 U1;m

U2;2 U2;m

0
. . .

...

Um�1;m�1 Um�1;m

Um;m

1
CCCCCCCA

(12)

A1;1 = ABD =

0
BBBBB@

A1;1 0

A2;2

0
. . .

Am�1;m�1

1
CCCCCA (13)

A1;2 =

0
BBBBB@

A1;m

A2;m

...

Am�1;m

1
CCCCCA (14)

A2;1 =
�
Am;1 Am;2 � � � Am;m�1

�
(15)

A2;2 = Am;m (16)

Lemma | The LU factors of a block-diagonal matrix are also in block-diagonal form

Proof:

Let:

ABD =

A1;1 0

0 A2;2

!
=

L1;1 0

L2;1 L2;2

!
U1;1 U1;2

0 U2;2

!
= LBDUBD (17)

By applying the Shur complement to equation 17, we obtain:

A1;2 = L1;1U1;2 = 0) U1;2 = L
�1
1;10 = 0 (18)

and

A2;1 = L2;1U1;1 = 0) L2;1 = 0U�11;1 = 0 (19)

If ABD is non-singular and has a numerical factor, then L�11;1 and U
�1
1;1 must exist and be non-zero:

thus

ABD =

A1;1 A1;2

A2;1 A2;2

!
=

L1;1 0

0 L2;2

!
U1;1 0

0 U2;2

!
= LBDUBD (20)

This lemma can be applied recursively to a block-diagonal matrix with any number of diagonal blocks

to prove that the LU factorization of a block-diagonal matrix preserves the block structure.

Theorem | The LU factors of a block-diagonal-bordered matrix are also in block-diagonal-

bordered form. To restate this theorem, we must show that ABDB = LBDBUBDB .

19

Proof:

First the matrix partitions A2;1 and A1;2 have simply been further partitioned to match the

sizes of the diagonal blocks. Meanwhile, the matrix partition A2;2 has been left unchanged. In the

lemma, we proved that the factors of A1;1 are block-diagonal if A1;1 is block-diagonal. Consequently,

ABDB = LBDBUBDB .

As a result of this theorem, it is relatively straight forward to identify available parallelism by

simply performing the matrix multiplication in a manner similar to the Shur complement. As a

result we obtain:

1. Diagonal Blocks: A1;1 = L1;1U1;1)

8>><
>>:

A1;1 = L1;1U1;1

A2;2 = L2;2U2;2

...

2. Lower Border: A2;1 = L2;1U1;1)

8>><
>>:

Am;1 = Lm;1U1;1

Am;2 = Lm;2U2;2

...

3. Upper Border: A1;2 = U1;2L1;1)

8>><
>>:

A1;m = L1;1U1;m

A2;m = L2;2U2;m

...

4. Last Block:

A2;2 � L2;1U1;2 = L2;2U2;2)

8<
:Am;m �

(m�1)X
i=1

Lm;iUi;m = Lm;mUm;m

If the matrix blocks Ai;i, Am;i, and Ai;m (1 � i � (m� 1)) are assigned to the same processor, then

there are no communications until the last block is factored. At that time, only sums of sparse matrix

� sparse matrix products are sent to the processors that hold the appropriate data in the last block.

This data-assignment to processors is similar to column-oriented sparse LU algorithms, although

a signi�cant di�erence exists with block-diagonal-bordered form matrices. Data in block-diagonal-

bordered form sparse matrices have a two-dimensional blocked nature that groups calculations and

should permit e�cient parallel operations.

This derivation identi�es the parallelism in the LU factorization step of a block-bordered-diagonal

sparse matrix. The parallelism in the forward reduction and backward substitution steps also bene�ts

from the aforementioned data/processor distribution. By assigning data in a matrix block and its

associated border section to the same processor, no communications would be required in the forward

reduction phase until the last block of the factored matrix, L, is updated by the product of a dense

vector partition ym � the sparse matrix Am;i (1 � i � (m � 1)). No communications is required in

the backward substitution phase after the values of xm are broadcast to all processors holding the

matrix blocks Ai;i and Ai;m (1 � i � (m � 1)).

Figure 12 illustrates both the LU factorization steps and the reduction/substitution steps for

a block-diagonal-bordered sparse matrix. In this �gure, the strictly lower diagonal portion of the

matrix is L, and the strictly upper diagonal portion of the matrix is U. This �gure depicts four

20

Σ

LAST

BLOCK

(2) UPDATE LAST BLOCK USING
DATA FROM THE BORDERS

(3) FACTOR

P1

P2

P3

P1

P2

P3

P4

Σ Σ Σ Σ
ACCUMULATE

P4

0
0

0

0

0

0

(a) Factorization Steps

P1 P2 P3 P4

P1

P2

P3

P4

(1
)

F
O

R
W

A
R

D
 R

E
D

U
C

T
IO

N

P1

P2

P3

P1

P2

P3

P4

Σ Σ Σ
ACCUMULATE

B
R

O
A

D
C

A
S

T

(2
)

B
A

C
K

W
A

R
D

 S
U

B
S

T
IT

U
T

IO
N

P4

0
0

0
0

0

0

(b) Reduction/Substitution Steps

P1 P2 P3 P4

P4

P3

P2

P1

(1) FACTOR DIAGONAL BLOCKS

Figure 12: Block Bordered Diagonal Form Sparse Matrix Solution Steps

diagonal blocks, and processor assignments (P1, P2, P3, and P4) are listed with the data block.

This �gure would represent the block-diagonal-bordered form matrix and data distribution for the

data represented in �gures 10 and 11.

5 The Three-Step Preprocessing Phase

For parallel sparse block-diagonal-bordered matrix algorithms to be e�cient when factoring irregular

sparse matrices, the following three step preprocessing phase must be performed:

� order the matrix into block-diagonal-bordered form while minimizing the number of calcula-

tions,

� pseudo-factorization to identify both �llin and the number of calculations for all diagonal blocks

and corresponding portions of the borders, and

� load balance to uniformly distribute the calculations among processors.

The �rst step determines the block-diagonal-bordered form and the ordering of nodes within diag-

onal blocks to minimize calculations; the second step determines the locations of �llin values for

static data structures and also determines the number of calculations in independent blocks for the

load balancing step; and the third step determines a mapping of data to processors for e�cient

implementation of the algorithm for the user speci�ed data. These three steps may be incorporated

into an optimization framework that uses the three-step preprocessing phase to produce matrix

orderings with optimal overall performance for a particular version of the block-diagonal-bordered

21

sparse matrix factorization algorithm. For this paper, the optimization was performed by hand

| various values of input parameters for the node-tearing routine were examined and the block-

diagonal-bordered form sparse matrix with the best load balance and least numbers of operations

were chosen for collecting performance benchmarks.

The metric for load balancing or the metric for an optimization routine to determine the most

e�cient overall ordering technique must be based on the actual workload required by the individual

processors. This number may di�er substantially from the number of equations assigned to proces-

sors because the number of calculations in an independent sub-block is a function of the number

and location of non-zero matrix elements in that block | not the number of equations in a block.

For dense matrices, the computational complexity of factorization is O(N3), and the computational

complexity for factoring entire sparse matrices used in later parallel algorithm performance studies

varies is substantially less than O(N1:5). Determining the actual workload requires a detailed sim-

ulation of all processing for the factorization and triangular solution phases, which we refer to as

pseudo-factorization.

5.1 Ordering

The ordering portion in the preprocessing phase must identify diagonal matrix blocks while also

attempting to minimize the amount of �llin during factorization. Few matrices can be readily ordered

into block-diagonal-bordered form with equal workload in each block. The exception to this rule are

highly regular matrices from the structural analysis community, where the nested dissection ordering

algorithm can produce balanced block-diagonal-bordered matrices on some regular matrices [20].

Recursive spectral bisection can be used to partition irregular matrices [1, 30, 35], and subsequently,

the coupling equations can be extracted. Unfortunately, this technique, as well as nested dissection,

relies on dividing the matrix intom equal sized partitions, without considering the coupling equations

or considering the number of calculations in each diagonal block. Load-imbalance limits the potential

for using recursive spectral bisection, because the number of calculations for factorization or forward

reduction/backward substitution are higher than linear order complexity, even for sparse matrices

[26]. A third method to order a sparse matrix into block-diagonal-bordered form is referred to as

node tearing [9, 34], which is a specialized form of diakoptics [19]. This technique attempts to

extract the natural structure in the matrix or graph, and generally produces many irregularly sized

blocks, while minimizing the number of coupling equations or the size of the lower border and last

diagonal block. Load balancing techniques must be used after the node tearing matrix ordering step

to uniformly distribute the processing load onto a multi-processor. As proven in section 4, diagonal

blocks can be assigned to any processor without requirements for interprocessor communications to

factor the diagonal block and associated portion of the lower border.

There are several notable techniques to minimize �llin when factoring a sparse matrix, with

one of the commonly used techniques being minimum-degree ordering. Minimum degree ordering

is used in conjunction with the node-tearing-based ordering technique to generate block-diagonal-

bordered form sparse matrices. Additional detail on minimum degree-based sparse matrix ordering

is presented in appendix A.

We are looking for an ordering technique that limits the number of coupling equations for irregular

22

problems and also limits �llin while ordering matrices into block-diagonal-bordered form. Minimizing

the number of coupling equations minimizes the number of calculations and also minimizes the size

of the nearly dense last block in a parallel block-diagonal-bordered sparse matrix solver; however, the

amount of potential parallelismmay su�er if the workload for factoring the diagonal blocks cannot be

distributed uniformly throughout a multi-processor. Moreover, the distribution of workload between

diagonal blocks and the last block must be considered. The last block will be nearly dense, and if

the size of the last block of the matrix can be adequately constrained, the number of calculations can

be drastically reduced. When determining the optimal ordering for a sparse matrix, the minimum

total number of calculations may be traded for the optimal ordering that yields the most parallelism.

The node-tearing ordering algorithm has the ability to adjust the characteristics of the ordering by

varying an input parameter. A sample of the variety of matrix ordering possible with real irregular

sparse admittance matrices is presented later in section 8. Nevertheless, the �nal measure of merit

for matrix ordering is the performance of the parallel LU solver.

5.2 Pseudo-factorization

As stated above, the metric for performing load balancing or for comparing the performance of

ordering techniques must be based on the actual workload required by the processors in a distributed-

memory multi-computer. Consequently, more information is required than just the locations of �llin

as in previous work that used symbolic factorization to identify �llin for static data structures

[16, 20, 38].

To accomplish the two-fold requirement for both identifying the location of �llin and determining

the amount of calculations in each independent block, we utilize a pseudo-factorization step as part of

the preprocessing phase. Pseudo-factorization is merely a replication of the numerical factorization

process without actually performing the calculations. Counters are used to tally the numbers of

calculations to factor the independent data blocks and the numbers of calculations to update the

last block using data from the borders. In addition, while performing the pseudo-factorization step, it

is also simple to keep track of the number of operations that would be required when performing the

triangular solutions. By collecting this data, it provides an option to order the matrix to optimize

the number of calculations per processor in the factorization step, or to optimize the number of

calculations in the triangular solution steps. Often the LU matrix calculated by factorization is

utilized multiple times in dishonest iterative numerical solutions. As a result, some applications may

require special attention to maximum e�ciency in the forward reduction and backward substitution

steps.

There is no way to avoid the computational expense of this preprocessing step, because the

computational workload in factorization is not correlated with the number of equations in an inde-

pendent block. The number of calculations when factoring an independent sub-block is a function

of the number and location of non-zero matrix elements in that block | not necessarily the number

of equations in the block. E�cient parallel sparse matrix solvers require that any disparities in

processor workloads be minimized in order to minimize load imbalance overhead, and consequently,

to maximize processor utilization.

23

5.3 Load Balancing

The load balancing step of the preprocessing phase can be performed with a simple pigeon-hole type

algorithm that uses one of several metrics based on the numbers of calculations determined in the

pseudo-factorization step. There are three distinct steps in the proposed block-diagonal-bordered

matrix solver:

� factor independent blocks,

� update the last block using data from the borders,

� factor the last block.

Load balancing as implemented for factorization of the diagonal blocks and the lower border em-

phasizes the uniform distribution of the processing workload in the �rst two steps. The parallel

calculations in the last diagonal block are load balanced separately, which is simple, because we are

using a parallel blocked kji-saxpy LU algorithm to factor the last diagonal block [43]. Our research

into this area has emphasized uniformly distributing the workload to separate processors based on

the number of calculations when factoring both the independent blocks and calculating the updates

of the last block from data in the borders [26]. The second factorization step, updating the last block

using data in the borders, requires that partial sums be accumulated from multiple processors and

sent to the processor that holds the data for an element in the last block. However, the independent

nature of calculations in the diagonal blocks and the border permit a processor to start the sec-

ond phase as soon as that processor has completed factoring the independent blocks. No processor

synchronization is required between these steps and it is assumed that communications will occur

independent of the calculations. Consequently, the sum total of all calculations in the diagonal

blocks and corresponding border sub-matrices can be used when load balancing for factoring.

When load balancing for the triangular solutions, we chose as a metric the number of non-zero

elements (including �llin) in all rows except the last diagonal block. This e�ectively emulates the

total number of calculations, although the forward reduction of the last block requires processor

synchronization. As a result, there may be some room for variation in this load-balancing metric.

Regardless of which metric is used for load-balancing, there is an important point to note. These

metrics do not consider indexing overhead, which can be rather extensive when sparse matrices are

stored in an implicit form. The data structure used in our solver has explicit links between non-zero

values in a column and stores the data in any row as a sparse vector. This data structure should

minimize indexing overhead at the cost of additional memory required to store the sparse matrix

when compared with other sparse data storage methods [10]. The implementation of the parallel

block-diagonal-bordered LU solver is discussed in greater detail in section 7.

The load-balancing algorithm is a simple greedy assignment algorithm that distributes objec-

tive function values to multiple pigeon-holes in a manner that minimizes the disparity between the

sums of objective function values in each pigeon-hole. This is performed in a three-step process.

First the objective function values for each of the independent blocks are placed into descending

order. Second, the Nprocs greatest values are distributed to a pigeon-hole for each processor, where

Nprocs is the number of processors in a distributed-memory multi-computer. Then the remaining

24

objective function values are selected in descending order and placed in the pigeon-hole with the

least aggregate workload. This algorithm is straightforward and minimizes the disparity in aggre-

gate workloads between processors. This algorithm �nds an optimal distribution for workload to

processors, however, actual disparity in processor workload is dependent on the irregular sparse

matrix structure. This algorithm works best when there are minimal disparities in the workloads

for independent blocks or when there are signi�cantly more independent blocks than processors. In

this instance, the workloads in multiple small blocks can sum to equal the workload in a single block

with more computational workload.

The pseudo-factorization step incurs signi�cantly more computational cost than symbolic fac-

torization in previous sparse matrix solvers. Additionally, the ordering phase is more costly than

minimum degree ordering, and load balancing is often not explicitly considered. Consequently,

block-diagonal-bordered sparse matrix solvers have signi�cantly more overhead in the preprocessing

phase, and consequently, the use of this technique will be limited to problems that have static matrix

structures that can reuse the ordered matrix and load balanced processor assignments multiple times

in order to amortize the cost of the preprocessing phase over numerous matrix factorizations.

6 Node-tearing Nodal Analysis

Node-tearing nodal analysis partitions a graph into independent subgraphs and a coupling network,

which corresponds to determining the diagonal blocks and lower border in a block-diagonal-bordered

form matrix. We have selected node-tearing nodal analysis because this algorithm examines the

natural structure in the matrix while providing the means to minimize the number of coupling

equations. Tearing here refers to breaking the original problem into smaller sub-problems whose

partial solutions can be combined to give the solution of the original problem. Node-tearing nodal

analysis is a specialized form of diakoptic analysis [19] that was developed especially for power system

network analysis [34]. In general, node-tearing analysis is superior to conventional diakoptic analysis

because node-tearing simply orders the network graph and does not generate new nodes in the power

distribution network graph, For load-
ow analysis, the corresponding ordered admittance matrices

retain their symmetry and positive de�nite nature. For this analysis, we are also interested in

node-tearing because this algorithm identi�es independent diagonal blocks in the matrix to generate

block-diagonal-bordered form matrices, Examples in reference [34] illustrate that the technique also

has validity for general structural analysis matrices.

6.1 The Node-tearing Algorithm

To describe node-tearing in rigorous mathematical terms, let the set N denote the nodes of a graph

G and let E denote the edges in G, or G = (N ; E). Partition the node set N into two arbitrary

subsets N1 and N2, and partition the edge set E into two subsets E1 and E2 such that:

1. E1 contains all edges in E that touch nodes in N1,

2. E2 contains all other edges of E .

25

Two conditions exist to ensure that the partitioned graph is suitable for tearing. The topological

condition speci�es the form into which we partition the graph, and the edge-coupling condition

speci�es limits on the connectivity of edges in graph partitions. Before de�ning the topological

condition concerning the connected nature of the graph, we introduce the concept of a section

graph.

De�nition | Section Graph Given a graph G, let S � G, then a section graph is de�ned as:

G(S) � (S; ES); (21)

where: ES � f" 2 E j " is incident only with Sg [34].

The topological condition for graph connectivity requires that the section graph GN1
can be

partitioned into m, (m > 1) disconnected sub-graphs such that:

G
1
1 � (N 1

1 ; E
1
1)

G
2
1 � (N 2

1 ; E
2
1)

...

G
m
1 � (Nm

1 ; E
m
1):

(22)

Given the topological condition, we can de�ne the two partitions of the node set N:

N1 � [
m
i=1N

i
1

N2 � N �N1

(23)

where:

N1 is the set of nodes in the mutually independent sub-blocks

N2 is the set of nodes in the coupling equations

In the case of block-diagonal-bordered form matrices, N1 equates to the diagonal blocks, and N2

equates to those block-diagonal-bordered matrix rows in the lower border and the last diagonal

block.

The edge-coupling condition simply requires that the edges in E i1 are not connected to edges in

E
j
1 8 i 6= j and i; j = 1; 2; : : : ;m. Consequently, Gi1 has no edges in common with G

j
1, 8i 6= j, and

there are no edges directly interconnecting any nodes in N i
1 and N

j
1 , 8i 6= j. Connectivity between

G
i
1 and G

j
1, 8i 6= j, is not direct and must go through nodes in N2. Reference [34] contains the

straight forward proof that these conditions yield a block-diagonal-bordered form matrix when the

corresponding graph G is ordered by node-tearing.

In addition to ordering matrices into block-diagonal-bordered form using node-tearing, we require

that the number of coupling equations, j N2 j, is minimized over all distinct partitions fN1;N2g of

G. The tearing optimization problem attempts to minimize j N2 j given that:

1. the topological condition holds,

2. the edge coupling condition holds,

3. jN k
1 j � maxDB , k = 1; 2; : : : ;m.

26

Iterating Sets Adjacency Sets Contour Number

I
k
1 A

k
1 c

k
1

I
k
2 A

k
2 c

k
2

I
k
3 A

k
3 c

k
3

...
...

...

Figure 13: Sample Contour Tableau for the kth Diagonal Block

The last constraint for the tearing optimization problem permits some control of the maximum size

of diagonal blocks,maxDB , which can prove quite useful when tearing a graph for factoring on multi-

processors. By modifying this parameter, control can be exercised over the shape of the ordered

sparse matrix | yielding narrow bandwidth blocked-diagonal-bordered form matrices when maxDB

is small and limiting the size of the borders in a block-diagonal-bordered matrix when maxDB is

large. The e�ects of varying the value of maxDB is illustrated in section 8.1. This optimization

problem belongs to the family of NP-complete problems [34]. We expect to apply node-tearing to

order large sparse matrices into block-diagonal-bordered form, so the use of an exact exponentially-

bounded-complexity algorithm is not feasible, and the following e�cient heuristic algorithm has

been developed,

The technique chosen to solve the graph optimization problem is based on examining the con-

tour of the graph [34], by developing a contour tableau to identify independent sub-graphs. A

contour-tableau consists of three columns as illustrated in �gure 13 and a separate contour-tableau

is developed for each diagonal block. The leftmost column contains the iterating sets or the potential

elements of a set of nodes in the sub-graph N k
1 . The middle column contains the adjacency set, which

contains the set of nodes adjacent to, but not including any elements in the corresponding iterating

set. The remaining column contains the contour number or the cardinality of the corresponding

adjacency set.

The contour tableau is constructed by selecting the initial iterating set element �1 and placing

�1 in I
k
1 . Next, all nodes adjacent to �1, �(�1), are stored in Ak1: then jA

k
1j is placed in ck1 . The next

iterating set is constructed by forming the union of the previous iterating set and the next iterating

node:

I
k
(i+1) = I

k
i [f�(i+1)g: (24)

The adjacency set is updated by the formula:

A
k
(i+1) = A

k
i [�(�(i+1))� f�(i+1)g; (25)

and

c
k
(i+1) = jA

k
(i+1)j: (26)

What remains to be described are the methods to select an initial node, select the next node, and to

select an independent graph partition from the contour tableau. Because the algorithm is attempting

to minimize jN2j, it can be shown that the selection of both the initial node and the next node should

27

always be the node with the smallest number of adjacent nodes or select �(i+1) such that

�(�(i+1)) = min
8�2N�Ik

i

�(�) (27)

If there are ties, then a node is selected arbitrarily. Lastly, the criteria to select an independent

graph partition from the contour tableau requires identifying the iterating set Iki that has a local

minimum value of cki , i � maxDB . This selection criteria is obvious because at any location in the

contour tableau, three disjoint sets are speci�ed:

1. Iki | the iterating set,

2. Aki | the adjacency set,

3. Zki = N � Iki � A
k
i | the remaining nodes in G.

In this representation, no node in Iki is adjacent to a node in Zki , and A
k
i represents the coupling

equations between the two sets. The number of elements in the set Aki varies as a function of i. One

constraint in this optimization problem is to minimize the number of coupling equations, j N2 j,

so a greedy algorithm that uses the heuristic for building the kth independent partition, N k
1 , by

minimizing the cardinality of Aki should yield an acceptable solution in a polynomial algorithm.

Moreover, when a partition is selected, nodes remaining in Aki are placed directly into the set N2,

N2 = N2 [A
k
i (28)

because Aki represents the nodes adjacent to but not included within the set Iki . According to the

topological condition, these nodes must be part of the coupling equations.

An example illustrating the node-tearing technique is presented in appendix B.

6.2 The Node-tearing Implementation

The software implementation to perform node-tearing nodal analysis utilizes the basic concept of

building a contour tableau to identify independent sub-matrices and the coupling equations in an

undirected graph representing a sparse matrix. In our implementation, the search for the local

minimum of the contour number is limited to within the range (� � maxDB) � i � maxDB,

0 < � < 1. When an independent sub-matrix is found, this iterating set is moved into a set

N
k
1 , where j N

k
1 j= i. After the sets N1 = fN 1

1 ; : : : ;N
m
1 g and N2 are determined, the equations

corresponding to the setsN 1
1 ; : : : ;N

m
1 andN2 are further ordered using the minimum-degree ordering

algorithm.

Figure 14 illustrates the major steps in the node-tearing ordering algorithm that produces block-

bordered-diagonal form matrices with minimized �llin. The algorithm examines all nodes essentially

once, where the size of the independent sub-blocks are limited to maxDB . The computational

complexity of this algorithm is

O(max
8 i
jA

k
i j � n) (29)

due to the fact that all nodes in the graph must be examined, and for each element in the contour

tableau | all elements of the adjacency set must be examined for the next node. The value of

max8 i jA
k
i j must be less than n, and because the graphs will be sparse, the maximum number in

the adjacency set will be substantially less than n.

28

G the graph representing the sparse matrix

while G 6= � do

while i � maxDB do

select �i 2 A
k
(i�1) such that �(�i) = min�2Ik

(i�1)
�(�)

I
k
i I

k
(i�1) [f�g

A
k
i A

k
(i�1) [�(�i) � f�ig

if (��maxDB) � i � maxDB

determine the location of the local minimum

endif

endwhile

N
k
1 I

k

N2 N2 [A
k

G G � N
k
1 �N2

minimum-degree order N k
1

end while

minimum-degree order N2

Figure 14: The Node-Tearing Algorithm

7 Sparse Matrix Solver Implementations

Implementations of a block-diagonal-bordered sparse LU solver and a similar Choleski solver have

been developed in the C programming language for the Thinking Machines CM-5 multi-computer

using message passing and a host-node paradigm. A version of the software is available that runs

on a single processor on the CM-5 to provide empirical speed-up data to quantify multi-processor

performance. Empirical performance data has been gathered for a range of numbers of processors

and real power systems sparse network matrices. Results based on empirical data collected in

benchmarking trials are presented in the next section. Our block-diagonal-bordered sparse solvers

have the following distinct sections where blocks are de�ned in section 4:

1. LU factorization

� factor the mutually independent diagonal blocks and associated portions of the border |

Ai;i = Li;iUi;i, Am;i = Lm;iUi;i, and Ai;m = Li;iUi;m for (1 � i � (m � 1))

� update the last diagonal block using the data in the borders |

Am;m = Am;m �
P(m�1)
i=1 Lm;iUi;m

� factor the last diagonal block | Am;m = Lm;mUm;m

2. forward reduction

� calculate the y vector partition corresponding to the mutually independent

diagonal blocks | yi for (1 � i � (m � 1))

29

� update the b vector partition corresponding to the last diagonal block |

bm = bm �
P(m�1)

i=1 yiLm;i

� calculate the y vector partition corresponding to the last diagonal block | ym

3. backward substitution

� calculate the x vector partition corresponding to the last diagonal block | xm

� calculate the x vector partition corresponding to the mutually independent diagonal

blocks | xi for ((m � 1) � i � 1)

The Choleski factorization algorithm is similar to LU factorization, with the block-diagonal-bordered

Choleski algorithm having the same distinct sections as described above with the exception of LTi;i

and LTm;i being substituted for Ui;i and Ui;m respectively.

The parallel implementation presented in this section has been developed as an instrumented

proof-of-concept to examine the e�ciency of each section of the code described above. The host

processor is used to gather and tabulate statistics on the multi-processor calculations. Statistics

are gathered in a manner that do not impact the total empirical measures of performance for

factorization, forward reduction, or backward substitution.

7.1 The Hierarchical Data Structure

This block-diagonal-bordered sparse LU solver uses implicit hierarchical data structures based on

vectors of C programming language structures to e�ciently store and retrieve data for a block-

diagonal-bordered sparse matrix. These data structures provide good cache coherence, because non-

zero data values and row and column location indicators are stored in adjacent physical memory

locations. This data structure is static, consequently, the locations of all �llin must be determined

before memory is allocated for the data structures. For this work, we are assuming that there is no

requirement for pivoting and, consequently, we can using static data structures. In the static data

structures, we use explicit pointers to subsequent data locations in order to reduce indexing overhead.

Row location indicators are explicitly stored as are pointers to subsequent values in columns that are

required when updating values in the matrix. The use of additional memory in the data structures

is traded for reduced indexing overhead. Modern distributed memory multi-processors are available

with substantial amounts of random access memory at each node, so this research examines data

structures that are designed to optimize processing speed at the cost of increased memory usage when

compared to other compressed storage formats. We compare the memory requirements for these

data structures to the memory requirements for the more conventional compressed data structures

below.

The hierarchical data structure is composed of eight separate parts that implicitly store a block-

diagonal-bordered sparse matrix. The hierarchical nature of these structures store only non-zero

values, especially in the borders where entire rows may be zero. Eight separate C language structures

are employed to store the data in a manner that can e�ciently be accessed with minimal indexing

overhead. Static vectors of each structure type are used to store the block-diagonal-bordered sparse

matrix. Figure 15 graphically illustrates the hierarchical nature of the data structure, where the

distinct C structure elements presented in that �gure are:

30

.

.

.

.

. . .

.

.

.

. . .

. . .

. . .

UPPER BLOCKS

LOWER BLOCKS

UPPER BORDER

LOWER BORDER

BLOCKS

DIAGONAL

UPPER BORDER COLUMNS

LOWER BORDER COLUMNS

Figure 15: The Hierarchical Data Structure

1. diagonal block identi�ers,

2. matrix diagonal elements,

3. non-zero values in the lower triangular diagonal matrix blocks (arranged by rows),

4. non-zero values in the upper triangular diagonal matrix blocks (arranged by columns),

5. non-zero row identi�ers in the lower border,

6. non-zero column identi�ers in the upper border,

7. non-zero values in the lower border (arranged by rows),

8. non-zero values in the upper border (arranged by columns).

At the top of the hierarchical data structure is the information on the storage locations of

independent diagonal blocks, and both the lower and upper borders. The next layer in the data

structure hierarchy has the matrix diagonal and the identi�ers of non-zero border rows and columns.

Data values on the original matrix diagonal are stored in the diagonal portion of the data structure,

however, most of the remaining information stored along with each diagonal element are pointers so

that data in related columns or rows can be rapidly accessed.

Data in the strictly lower triangular portion of the matrix is stored as sparse row vectors; likewise,

data in the strictly upper triangular portion of the matrix is stored as sparse columns vectors. This

data storage scheme minimizes the e�ort to �nd non-zero Ai;k | Ak;j pairs used to modify Ai;j

by consecutively storing values in lower triangular rows and upper triangular columns. However,

Crout and Doolittle-based LU factorization algorithms require access to the next non-zero value in

the same column or row for lower/upper triangular matrices, so pointers are used to permit direct

access to those values without requiring searching for the data as is required in compressed storage

31

formats. This data structure provides the bene�ts of a doubly linked data structure in order to

minimize indexing overhead. The value corresponding to any diagonal element has pointers to the

�rst non-zero element in the lower triangular row and upper triangular column, and to the �rst

non-zero elements in the lower and upper border. This data structure trades memory utilization for

speed by storing indicators to all non-zero column values. In addition, the combination of adjacent

storage of non-zero row values and the explicit storage of column identi�ers, greatly simplify the

forward reduction and backward substitution steps.

The remaining portions of the hierarchical data structure e�ciently store the non-zero values in

the borders. Because entire lower border rows or upper border columns may be sparse in a block,

two layers are required to store this data in an e�cient manner. The next level in this portion of

the hierarchy stores the location of the �rst non-zero value in the row or column. The corresponding

row and column identi�ers can be found by referencing the structure that the pointer references.

The non-zero values in the lower and upper borders are stored with the same format as data in the

diagonal blocks.

Conventional compressed data formats require less storage than this data structure; however,

additional memory has been traded for reduced indexing overhead. Two reasons exist that justify the

use of additional memory: large available memories are available with state-of-the-art distributed-

memory multi-processors and these algorithms have been designed with the expressed intention to

examine support real-time applications. The compressed data format requires

Sc = (�fp + �int) � �(A) + (�int � n) (30)

bytes to store the A matrix implicitly. Likewise, the hierarchical data structure used in this imple-

mentation requires

Sh = (�fp + (3� �int))� �(A) + (�int � n) + ((3� �int)� Nblocks) + ((2 � �int) �Nborder) (31)

bytes to store the same matrix implicitly.

where:

Sc is the storage requirements in bytes for the compressed data structure.

Sh is the storage requirements in bytes for the hierarchical data structure.

�fp is the length if a
oating point data type.

�int is the length if an integer data type.

�(A) is the number of non-zero values in the matrix.

n is the order of the matrix.

Nblocks is the number of independent blocks.

Nborder is the number of non-zero row and column segments in the borders.

For double precision
oating point or single precision complex representations of the actual data

values and single word integer representations of all pointers, the hierarchical data structure takes

approximately twice the data storage of the compressed data structure. By doubling the storage

requirements, row and column data is available as sparse vectors for ready cache-coherent access

when updating values and subsequent column or row values are directly addressable. When using

32

conventional compressed data structures, indexing information is stored only on a single dimension

and values along the other dimension must be found by searching through the data structures to

�nd the next values to update. To �nd a value in a row or column, the average number of operations

in the search will be one-half the average number of values in the row or column. Given that this

costly search must be performed for nearly every non-zero value in the matrix, substantial indexing

overhead is required when using the implicit compressed storage format. By using this data structure

and doubling the storage, there is a signi�cant decrease in indexing overhead even for the sequential

version of this sparse block-diagonal-bordered LU factorization algorithm.

While Crout and Doolittle factorization algorithms permit partial pivoting [21], this static hier-

archical data structure assumes that no pivoting is required to maintain numerical stability in the

calculations. Traditional numerical pivoting can be di�cult in a general sparse matrix due to the

sparsity structure and concerns for �llin, so considerations are made to relax the normal numerical

pivoting rules in Markowitz pivoting when the matrix is neither positive de�nite nor diagonally

dominate [9]. Block-diagonal-bordered sparse matrices o�er the potential for an additional relaxed

pivoting rule that limits pivoting choices to within a diagonal matrix block. Numerical pivoting

choices could be further limited to a small neighborhood of an equation when sparse matrices are

ordered into recursive block-diagonal-bordered form. For the present research, it is assumed that nu-

merical pivoting will not be required, because the matrices for power systems distribution networks

will be derived from matrices that are diagonally dominate or even positive de�nite.

7.2 The Parallel Blocked-Diagonal-Bordered LU Factorization Algorithm

Implementations for both parallel block-diagonal-bordered sparse LU and Choleski factorization have

been developed in the C programming language for the Thinking Machines CM-5 multi-processor

using a host-node paradigm with message passing. Two versions of each parallel block-diagonal-

bordered algorithm have been implemented: one implementation uses low latency active messages

to update the last diagonal block using data in the borders and the second implementation uses

conventional high(er) latency asynchronous bu�ered non-blocking interprocessor communications.

The communications paradigms for these two implementations di�ered signi�cantly. The commu-

nications paradigm we used with active messages, is to calculate a vector � vector product and

immediately send the value to the processor holding the corresponding value of Am;m. The commu-

nications paradigm we used with asynchronous, bu�ered communications was to perform the vector

� vector products, store them in a bu�er, and the have each processor send bu�ers to all other

processors. The active message communications paradigm greatly simpli�ed development of the al-

gorithm, and the empirical results, presented in the next section, show that the active message-based

implementation is signi�cantly faster.

The block-diagonal-bordered LU factorization algorithm can be broken into three component

parts as de�ned in the derivation on available parallelism in section 4. Pseudo-code representations

of each parallel algorithm section are presented separately in �gures 16 through 19. In particular,

each of these �gures correspond to the following �gure numbers:

1. factor the diagonal blocks and border | �gure 16,

33

Node Program

/* factor the independent blocks and corresponding borders */

for those independent blocks l assigned to this processor

for all elements k along the diagonal in block l

for each i 2 [k;Nl]

for each j 2 [1; k� 1] such that Ai;j 6= 0 and Aj;k 6= 0

Ai;k Ai;k � (Ai;j �Aj;k)

endfor

endfor

for each i 2 [k + 1; Nl]

Ak;j (Ak;j=Ak;k)

endfor

for each j 2 [k + 1; Nl]

for each i 2 [1; k� 1] such that Ak;i 6= 0 and Ai;j 6= 0

Ak;j Ak;j � (Ak;i �Ai;j)

endfor

endfor

endfor

endfor

Figure 16: Parallel Block-diagonal-Bordered Sparse LU Factorization Algorithm| Diagonal Blocks

and Border

2. update the last diagonal block,

� active message communications paradigm | �gure 17

� asynchronous bu�ered communications paradigm | �gure 18

3. factor the last diagonal block | �gure 19.

In the actual parallel implementation, these program sections required a processor synchronization

before starting any part of the algorithm. To better understand the algorithm, timing statistics were

collected for each portion of the algorithm, and empirical data are reported for the performance of

each algorithm portion in section 8.

The LU factorization algorithm for the diagonal blocks and border follows a Doolittle's form and

is a fan-in type algorithm. Conversely, the LU factorization algorithm for the last diagonal block

follows a fan-out algorithm requiring rank-1 submatrix updates as each row or block of rows are

factored.

By distributing the factorization of the last block to all active node processors, interprocessor

communications is required in the second step of this algorithm. The algorithm section that updates

the last diagonal block calculates a sparse matrix � sparse matrix product by calculating individual

34

Node Program

/* calculate updates to the last block */

for those independent blocks l assigned to this processor

for all non-zero columns j in the upper border of this block

for all non-zero rows i in the lower border

� = 0

for each k such that Li;k and Uk;j 6= 0

� � + (Li;k � Uk;j)

endfor

endfor

p P(i; j) /* the function P() maps the (i; j) tuple to the processor location p */

Send an active message RPC to the handler function Update FAC LB(�; i; j) on processor p

Poll for active message RPCs

endfor

endfor

/* update the last block with active message RPC handler function Update FAC LB */

Function Update FAC LB(�; i; j)

Ai;j Ai;j � �

End Update FAC LB

Figure 17: Parallel Block-diagonal-Bordered Sparse LU Factorization Algorithm| Update the Last

Diagonal Block | Active Message Communications Paradigm

35

Node Program

/* calculate updates to the last block */

��;�;� = 0

for those independent blocks l assigned to this processor

for all non-zero columns j in the upper border

for all non-zero rows i in the lower border

p P(i; j) /* the function P() maps the (i; j) tuple to the processor location p */

for each k such that Li;k and Uk;j 6= 0

�i;j;p �i;j;p + (Li;k � Uk;j)

endfor

endfor

endfor

endfor

/* update the last diagonal block on this processor using the data calculated on this processor */

for all data in the bu�er

Ai;j Ai;j � �i;j

endfor

/* update the last diagonal block on this processor using the data calculated on other processors */

psend preceive local proc num

psend (psend + 1) mod Nproc

preceive (preceive + Nproc � 1) mod Nproc

for all processors around a conceptual ring

Asynchronously send ��;�;psend to processor psend

Asynchronously receive ~��;� from processor preceive

/* update the last diagonal block on this processor using the data from processor preceive */

for all data in the received bu�er

Ai;j Ai;j � ~�i;j

endfor

psend (psend + 1) mod Nproc

preceive (preceive + Nproc � 1) mod Nproc

endfor

Figure 18: Parallel Block-diagonal-Bordered Sparse LU Factorization Algorithm| Update the Last

Diagonal Block | Asynchronous Bu�ered Communications Paradigm

36

Node Program

/* factor the last block | all communications are sent around a conceptual ring */

pfactor pstart 0

if pfactor = local proc num

factor the �rst block

send the panel of values to processor 1

end if

for all blocks on this processor

if pfactor 6= local proc num

receive the next panel

if pstart 6= local proc num

psend (local proc num + 1) mod Nproc

send the next panel of values to processor psend

end if

end if

pfactor (pfactor + 1) mod Nproc

if pfactor = local proc num

update only the next block with the next panel

factor the next block

if not the last block

psend (local proc num + 1) mod Nproc

send the panel of values to processor psend

pstart psend

end if

end if

update all remaining blocks with the next panel

endfor

Figure 19: Parallel Block-diagonal-Bordered Sparse LU Factorization Algorithm | Last Diagonal

Block

37

sparse vector � sparse vector products for lower border rows and upper border columns and these

partial sums must be distributed to the proper processor holding data in the last diagonal block.

Separate sparse vector products are performed for each block of data on a processor. Only nonzero

rows in the lower border and non-zero columns in the upper border are utilized when calculating

vector � vector products to generate the required partial sum values to update the last diagonal

block. Examining only non-zero values signi�cantly limits the amounts of calculations in this phase.

In the process of developing an implementation with optimal performance, it was discovered that

any attempt to consolidate updates to a value in the last diagonal block caused more overhead than

was encountered by sending multiple update values to the same processor. There is a higher order

of work required to sum update data than to calculate the sparse vector products. Likewise, there

has been no attempt at parallel reduction of the partial sums of updates from the borders.

This block-diagonal-bordered LU factorization implementation solves the last block using a sparse

blocked kji-saxpy LU algorithm based on the dense kij-saxpy algorithm described in [43]. Our

examinations of power systems network matrices showed that after partitioning these matrices into

block-diagonal-bordered form, there is little additional available parallelism in the last diagonal

block | insu�cient parallelism to be exploited in a load-balanced manner. The algorithm to factor

the last diagonal block maintains the blocked format and pipelines nature of the dense kij-saxpy

algorithm; however, special changes were made to the algorithm in order to minimize calculations

and to minimize overhead when performing communications. The three signi�cant changes to the

kij-saxpy algorithm are:

� the order of calculations in each fan-out update has been changed,

� sparse data structures,

� separate data structures are used to store the values on the diagonal and values in the strictly

lower and strictly upper triangular matrices.

While changing the order of calculations in each rank-1 update of the partially-factored submatrix

has little e�ect on the factorization algorithm, it is equivalent to exchanging the order of for loops,

this seemingly small modi�cation contributed signi�cantly to improving the performance of the

forward reduction and backward substitution steps. This small modi�cation reduced the amount of

communications greatly during both forward reduction and backward substitution by allowing the

broadcast of only calculated values of ym and xm and not also requiring the broadcast of partial

sums encountered when updating values.

As would be expected with a sparse matrix, data is stored as sparse vectors with explicit row

and column identi�ers. To optimize performance for a kji algorithm, data is stored in sparse vectors

corresponding to rows in the matrix. These sparse vectors of row data are stored as three separate

data structures:

1. values on the diagonal,

2. values in the strictly lower triangular matrix,

3. values in the strictly upper triangular matrix.

38

The use of three data structures greatly simpli�es parallel rank-1 updates in this fan-out algorithm.

In parallel LU factorization, only the data in either the strictly lower triangular or strictly upper

triangular matrix must be broadcast to all processors when updating the submatrix. By storing

the data in the triangular matrices in separate data structures, the data in a block can be accessed

directly by the bu�ered communications software. With irregular sparse matrices, this storage

technique is required to eliminate a memory-to-memory copy step required if data was stored in

single sparse row or column vectors. The data is irregular and no regular strides can be used when

forming the communications bu�er if all data is stored contiguously for a row.

Parallel block-diagonal-bordered Choleski factorization algorithms are similar to the LU fac-

torization algorithms presented in �gures 16 through 19 | with modi�cations to account for the

symmetric nature of the matrices used in Choleski factorization. Choleski factorization has only

about half of the calculations of LU factorization. Block-diagonal-bordered Choleski factorization

has half the number of updates to the last diagonal block. The parallel Choleski algorithm using

the active message communications paradigm would see reduced communications when compared

to LU factorization; however, there would be no reduction in the number of messages required in

a bu�ered communications update of the last diagonal block. While the bu�ers would be shorter,

there is still the requirement for each processor to communicate with all other processors. In most

instances, the message start-up latency dominates, not the per-word transport costs. There would

also be no reduction in the amount of communications when factoring the last block.

In other words, parallel Choleski factorization is a more di�cult algorithm to implement than

LU factorization, because there is a signi�cant reduction in the amount of calculations, without a

similar reduction in communications overhead. Consequently, the results in section 8 will compare

the performance of LU factorization and Choleski factorization to illustrate performance as a func-

tion of the amount of
oating point operations versus the communications overhead. To get a better

understanding of this trend, a version of the parallel block-diagonal-bordered LU factorization algo-

rithm has been implemented for complex data. Complex math has four
oating point multiplies and

two subtracts/adds when compared to double precision
oating point calculations. With these three

implementations, we will be able to clearly illustrate the need for high-speed low-latency communica-

tions for algorithms to solve power systems network linear equations. These matrices are su�ciently

sparse, that by increasing the number of
oating-point operations by two or six times that of Choleski

factorization, there is a marked increase in the relative parallel speedup of these algorithms. Com-

munications overhead remains constant and only the number of
oating point operations increases.

By considering the capabilities of the target parallel architecture, namely the communications to

computations ratio or granularity, you can identify what communications capabilities are required

in your target parallel architecture.

The same implicit hierarchical data structure used in the parallel implementation can be readily

used in a sequential implementation, where the entire matrix is placed on a single node processor

on the CM5. Single-processor performance is measured in this manner, so that relative speedup can

be calculated to examine parallel algorithm performance.

39

Node Program

/* reduce the independent blocks */

for all independent blocks l assigned to this processor

for all elements k along the diagonal in block l

yk bk

for each i 2 [k + 1; Nl] such that Li;k 6= 0

bi bi � (yk � Li;k)

endfor

endfor

endfor

Figure 20: Parallel Block-diagonal-Bordered Sparse Forward Reduction Algorithm| LU Factoriza-

tion | Diagonal Blocks and Border

7.3 Forward Reduction and Backward Substitution Algorithms

The remaining steps in the parallel algorithm are forward reduction and backward substitution. The

parallel version of these algorithms take advantage of the fact that calculations can be performed

in one of two distinct orders that preserve the precedence relation in the calculations [23]. The

combination of these techniques is utilized to minimize communications times when solving for the

last diagonal block. The forward reduction algorithm to operate with the parallel block-diagonal-

bordered LU factorization algorithm can be broken into three component parts, similar to LU

factorization. Pseudo-code representations of each parallel algorithm section are presented separately

in �gures 20 through 23. In particular, each of these �gures correspond to the following �gure

numbers:

1. forward reduce the diagonal blocks and border | �gure 20,

2. update the last diagonal block,

� active message communications paradigm | �gure 21

� asynchronous bu�ered communications paradigm | �gure 22

3. forward reduce the last diagonal block | �gure 23.

As with the LU factorization algorithms, in the actual parallel implementation, these program

sections required a processor synchronization before starting any part of the algorithm. To better

understand the algorithm, timing statistics were collected for each portion of the algorithm, and are

presented in section 8.

The backward substitution algorithm to operate with the parallel block-diagonal-bordered LU

factorization algorithm can be broken into two component parts, back substitute the last diagonal

block then back substitute the upper triangular matrix. The only interprocessor communications

required occurs when solving for xm in the last diagonal block. The solution for xm in this portion

40

Node Program

/* calculate updates to the last block */

for all independent blocks l assigned to this processor

for all non-zero rows i in the lower border of this block

� = 0

for each j such that Li;j 6= 0

� � + (yj � Li;j)

endfor

p P(i) /* the function P() maps the row value (i) to the processor location p */

Send an active message RPC to the handler function Update FR LB(�; i) on processor p

endfor

endfor

/* update the last block with active message RPC handler function Update FR LB */

Function Update FR LB(�; i)

bi bi � �

End Update FR LB

Figure 21: Parallel Block-diagonal-Bordered Sparse Forward Reduction Algorithm| LU Factoriza-

tion | Update the Last Diagonal Block | Active Message Communications Paradigm

41

Node Program

/* calculate updates to the last block */

for all independent blocks l assigned to this processor

for all non-zero rows i in the lower border of this block

p P(i) /* the function P() maps the row value (i) to the processor location p */

for each j such that Li;j 6= 0

�i;p �i;p + (yj � Li;j)

endfor

endfor

endfor

/* update the last diagonal block on this processor using the data calculated on this processor */

for all data in the bu�er

bi bi � �i

endfor

/* update the last diagonal block on this processor using the data calculated on other processors */

psend preceive local proc num

psend (psend + 1) mod Nproc

preceive (preceive + Nproc � 1) mod Nproc

for all processors around a conceptual ring

Asynchronously send ��;psend to processor psend

Asynchronously receive ~�� from processor preceive

/* update the last diagonal block on this processor using the data from processor preceive */

for all data in the received bu�er

bi bi � ~�i

endfor

psend (psend + 1) mod Nproc

preceive (preceive + Nproc � 1) mod Nproc

endfor

Figure 22: Parallel Block-diagonal-Bordered Sparse Forward Reduction Algorithm| LU Factoriza-

tion | Update the Last Diagonal Block | Asynchronous Bu�ered Communications Paradigm

42

Node Program

/* reduce the last block */

preduce pstart 0

if preduce = local proc num

forward reduce the �rst block

send the values of y from this block to processor 1

end if

for all blocks on this processor

if preduce 6= local proc num

receive the next values of y

if pstart 6= local proc num

psend (local proc num + 1) mod Nproc

send the next values of y on to processor psend

end if

end if

preduce (preduce + 1) mod Nproc

if preduce = local proc num

forward reduce only the next block with the next values of y

if not the last block

psend (local proc num + 1) mod Nproc

send the values of y from this block to processor psend

pstart psend

end if

end if

forward reduce all remaining blocks with the next values of y

endfor

Figure 23: Parallel Block-diagonal-Bordered Sparse Forward Reduction Algorithm| LU Factoriza-

tion | Last Diagonal Block

43

of the matrix broadcasts the values of xm to all processors, so those values are available to the next

step, solving for x1 to xm�1 in the remaining diagonal blocks. Pseudo-code representations of each

parallel algorithm section are presented separately in �gures 24 and 25, respectively for backward

substitution of the last diagonal block and backward substitution of the diagonal blocks and border.

Forward reduction and backward substitution algorithms for Choleski factorization are similar

to those for LU factorization, with one major di�erence. The factorization process generates only

a single lower triangular matrix, L. For the last diagonal block, one triangular solution step must

occur in a manner that requires more communications than an optimally implemented triangular

solution for LU factorization. The selection of kji factorization in the last diagonal block for LU

factorization was to maximize performance for both forward reduction and backward substitution

| as a result communications was minimized. Meanwhile, for Choleski factorization, the optimal

direct solver algorithm must use a column distribution for the data in the last block, require ad-

ditional communications and calculations be incurred in the forward reduction of the last diagonal

block, and then backward substitute the last diagonal block using an implicit transpose of L. The

�nal step ensures that all xm values are broadcast to all processors, eliminating an extra, costly

communications step. This combination of data distributions and algorithm speci�cs ensures the

least number of calculations and the minimumamount of communications are performed and should

o�er the best opportunity for good parallel performance.

8 Empirical Results

A stated goal of this block-diagonal-bordered LU solver is to simplify the task organization of the

parallel LU algorithm and have interprocessor communications signi�cantly reduced and regular.

The performance of this block-diagonal-bordered LU solver is dependent on the ability to order the

real power systems sparse matrices into the appropriate form with both uniformly distributed data

in the diagonal blocks and a minimum number of equations on the lower border. In section 8.1, we

illustrate the ordering capabilities of the node-tearing nodal analysis by presenting pseudo-images

of selected sparse power systems network matrices after we have applied our node-tearing algorithm

to partition the matrices into block-diagonal-bordered form and also have applied the pigeon-hole

load-balancing algorithm. We provide additional information as to the overall performance of the

three-step preprocessing phase, with special note to the amount of �llin in the matrices after ordering

and to the total number of
oating operations required to factor the matrices. We then report

on the performance of the block-diagonal-bordered sparse LU and Choleski solvers in section 8.2.

Performance of these parallel block-diagonal-bordered direct linear solvers is dependent on both the

ability of the node-tearing algorithm and the performance of the parallel implementations. The real

performance test of the node-tearing algorithm occurs when the performance of the block-diagonal-

bordered sparse LU solver is examined for real power system network matrices in section 8.2. In

section 8.3, we present our conclusions concerning the performance of our parallel implementations

| and add projections of how the parallel algorithms would perform when ported to near-term

future scalable parallel processing (SPP) architectures.

44

Node Program

/* backward substitute the last block */

psub pstart plast block

if psub = local proc num

backward substitute the last block

psend (local proc num+ Nproc � 1) mod Nproc

send the values of x from this block to processor psend

end if

for all blocks on this processor

if psub 6= local proc num

receive the next values of x

if pstart 6= local proc num

psend (local proc num +Nproc � 1) mod Nproc

send the next values of x on to processor psend

end if

end if

psub (psub +Nproc � 1) mod Nproc

if psub = local proc num

backward substitute only the next block with the next values of x

if not the �rst block

psend (local proc num +Nproc � 1) mod Nproc

send the values of x from this block to processor psend

pstart psend

end if

end if

backward substitute all remaining blocks with the next values of x

endfor

Figure 24: Parallel Block-diagonal-Bordered Sparse Backward Substitution Algorithm | LU Fac-

torization | Last Diagonal Block

45

Node Program

/* backward substitute in the independent blocks and the border */

for all independent blocks l in descending order

/* backward substitute the border in this block */

for all elements k along the diagonal in block l in descending order

for all j in the upper border such that Uk;j 6= 0

yk yk � xj � Uk;j)

endfor

endfor

/* backward substitute the triangular section of this block */

for all elements k along the diagonal in block l in descending order

xk (yk=Uk;k)

for each i 2 [1; i� 1] such that Ui;k 6= 0

yi yi � (xk � Ui;k)

endfor

endfor

endfor

Figure 25: Parallel Block-diagonal-Bordered Sparse Backward Substitution Algorithm | LU Fac-

torization | Diagonal Blocks and Border

46

8.1 Empirical Results | Ordering Power Systems Network Matrices into

Block-Diagonal-Bordered Form

Performance of our parallel block-diagonal-bordered LU and Choleski solvers will be examined with

�ve separate power systems network matrices:

� Boeing-Harwell matrix BCSPWR09 | 1,723 nodes and 2,394 graph edges [10],

� Boeing-Harwell matrix BCSPWR10 | 5,300 nodes and 8,271 graph edges [10],

� EPRI matrix EPRI6K matrix | 6,692 nodes and 10,535 graph edges [11],

� Niagara Mohawk Power Corporation operations matrix NiMo-OPS | 1,766 nodes and 2,506

graph edges,

� Niagara Mohawk Power Corporation planning matrix NiMo-PLANS | 9,430 nodes and 14,001

graph edges.

Matrices BCSPWR09 and BCSPWR10 are from the Boeing Harwell series and represent electrical

power system networks from the Western and Eastern US respectively. The EPRI-6K matrix is

distributed with the Extended Transient-Midterm Stability Program (ETMSP) fromEPRI. Matrices

NiMo-OPS and NiMo-PLANS have been made available by the Niagara Mohawk Power Corporation,

Syracuse, NY.

To illustrate the performance of the graph partitioning algorithm, we will present pseudo-images

that illustrate the sparsity of the matrices that represent the power systems networks. These pseudo-

images illustrate the locations of the non-zero values in the matrices, both the original non-zero values

and those that would become non-zero due to �llin during factorization. In the following pseudo

images, original non-zero values are represented as black and �llin values are represented by a lighter

grey color. A bounding box has been placed around the sparse matrix.

A detailed ordering analysis of graph partitioning is presented here for the BCSPWR09 power

systems network data to illustrate the ability of the node-tearing ordering algorithm described in

section 6.1. In order to provide a baseline with which to illustrate the performance of the node-

tearing algorithm, we provide a representation of the original matrix in �gure 26 and a representation

of the sparse matrix after ordering with the minimum degree algorithm in �gure 27. The original

matrix has no �llin and is presented with the graph node identi�ers as supplied in the Boeing-Harwell

data distribution | without ordering. The minimum degree ordered matrix is the most sparse in

the upper left-hand corner, while the matrix is less sparse in the lower right-hand corner. When

factoring this matrix, the number of zero values that become non-zero while factoring the matrix,

is 2,168.

Our parallel block-diagonal-bordered direct solver algorithms require that the power systems

network matrix be ordered into block-diagonal-bordered form with uniformly distributed workload

at each of the processors. A single speci�ed input parameter, the maximumpartition size, de�nes the

shape of the matrix after ordering by the node-tearing algorithm. Examples of applying the node-

tearing algorithm to the BCSPWR09 matrix are presented in �gures 28 through 31, respectively for

maximum diagonal block sizes of 16, 32, 64, and 96 nodes. Statistics are presented in table 2 for

47

Figure 26: BCSPWR09 | Original Matrix

48

Figure 27: BCSPWR09 | Minimum Degree Ordering

49

Table 2: BCSPWR09 | LU and Choleski Factorization Ordering Statistics

number of nodes 1723

number of edges 2394

�llin for minimum

degree ordering 2168

Lower Triangular Matrix and Border

Maximum Factor Fr or Bs

Partition Non Total % Ops in Total % Ops in

Size NLB NFILLIN Zeros Ops Partitions Ops Partitions

16 277 3109 7226 18958 36.5% 5503 58.9%

32y 190 2765 6882 16759 45.7% 5192 67.7%

64 153 3248 7365 23809 37.7% 5642 65,6%

96 131 3266 7383 24906 40.3% 5660 68.1%

y Best parallel direct block-diagonal-bordered sparse linear solver performance

the four matrix orderings. In this table, NLB is the number of rows/columns in the borders and

last diagonal block of the ordered matrix and NFILLIN is the number of �llin. This table shows

that the ordering with maximum partition size of 32 has the least �llin, the fewest total operations,

the largest percentage of operations in the mutually independent matrix partitions, and the best

parallel direct linear solver performance.

Figures 28 through 31 illustrate that the size of the borders and last diagonal block can be

manipulated by varying the value of the single input parameter to the partitioning algorithm, the

maximum partition size. The number of rows/columns in the borders and last diagonal block of

these ordered matrices vary from 277 to 131 for maximum partition size of 16 and 96 respectively.

Each of these four �gures has been load-balanced for eight processors. Figure 29 includes additional

markings to illustrate how this matrix would be distributed to the eight processors | P1 through

P8. Load-balancing is a function of the number of operations and not the number of columns

assigned to a processor. The load balancing step is simply another permutation of the matrix that

keeps rows/columns within partitions together in the same order. As the matrix is load-balanced

for various numbers of processors, there is no change in the number of �llin or the total number of

operations.

Figure 32 illustrates the relationship between maximum partition size and size of the borders

and last diagonal block for each of the �ve power systems networks used in this analysis. The

partitioning results for the BCSPWR09 network is very similar to the data for the Niagara Mohawk

operations data. These matrices are similar in size and have similar numbers of edges per node.

The larger matrices have signi�cantly larger numbers of rows in the last diagonal block, and there is

signi�cantly larger variation between the number of rows in the last diagonal block for a maximum

50

Figure 28: BCSPWR09 | Block-Diagonal-Bordered Form| MaximumPartition Size = 16 | Load

Balanced for 8 Processors

51

P1

P2

P3

P4

P5

P6

P7

P8

Figure 29: BCSPWR09 | Block-Diagonal-Bordered Form| MaximumPartition Size = 32 | Load

Balanced for 8 Processors

52

Figure 30: BCSPWR09 | Block-Diagonal-Bordered Form| MaximumPartition Size = 64 | Load

Balanced for 8 Processors

53

Figure 31: BCSPWR09 | Block-Diagonal-Bordered Form| MaximumPartition Size = 96 | Load

Balanced for 8 Processors

54

16 32 64 96 128 160 192 256 320 384 448 512
Maximum Partition Size

0

200

400

600

800

1000

1200

1400

R
ow

s
in

 L
as

t D
ia

go
na

l B
lo

ck

BCSPWR09
BCSPWR10
EPRI6K
NiMo-OPS
NiMo-PLANS

Figure 32: Last Diagonal Block Size for Power Systems Matrices after Partitioning with the Node-

Tearing Algorithm

partition size of sixteen than for larger maximum partition sizes. This is empirical evidence that

there are variations between data from operational analysis networks and larger planning networks.

Additional evidence of di�erences are discussed below, both when we present example of the ordering

for these matrices and when we discuss the performance of the parallel direct linear solvers.

Note that the maximum size of the diagonal blocks is inversely related to the size of the last

diagonal block in �gure 32. This is intuitive, because as diagonal matrix blocks are permitted to

grow larger, multiple smaller blocks can be incorporated into a single block. Not only will the two

blocks be consolidated into the single block, but in addition, any elements in the coupling equations

that are unique to those network partitions could also be moved into the larger block. Another

interesting point with the relationship between maximum size of the diagonal block and the size

of the last block, is that the percentage of non-zeros and �llin in the last diagonal block increases

signi�cantly as the size of the last block decreases. The empirical performance data for the parallel

solvers show that the best parallel performance is closely correlated with the minimum numbers of

operations. In tables 3 through 6, we present summary statistics for the remaining power systems

networks used in this analysis. In each table, the maximum partition size that yielded the best

parallel performance is marked.

In �gures 33 through 40, we provide an accompanying visual reference to the partitioning per-

formance data presented in tables 3 through 6. We present two �gures for each power systems

network: the original matrix before ordering, and the matrix after partitioning and load-balancing

for 8 processors. Partitioned graphs presented here have values of the maximum partition size that

yielded the best empirical parallel block-diagonal-bordered direct linear solver performance.

When examining the unordered matrices, there appears to be signi�cant di�erences between the

power systems networks from the Niagara Mohawk Power Corporation | they have some block

structure, while the Boeing-Harwell matrices and the EPRI matrix appear that they have been

ordered with a minimum degree ordering. This can be seen in �gures 26 and 27. Except for the

�llin, the general pattern appears the same for the original matrix and the minimumdegree ordered

55

Table 3: BCSPWR10 | LU and Choleski Factorization Ordering Statistics

number of nodes 5300

number of edges 8271

�llin for minimum

degree ordering 14525

Lower Triangular Matrix and Border

Maximum Factor Fr or Bs

Partition Non Total % Ops in Total % Ops in

Size NLB NFILLIN Zeros Ops Partitions Ops Partitions

16 1059 20040 33611 193384 17.0% 28311 41.5%

32y 789 19080 32651 190445 20.1% 27351 50.7%

64 668 21886 35457 261910 18.5% 30157 49.8%

96 600 22812 36383 295067 18.3% 31983 50.0%

y Best parallel direct block-diagonal-bordered sparse linear solver performance

Table 4: EPRI6K | LU and Choleski Factorization Ordering Statistics

number of nodes 6692

number of edges 10535

�llin for minimum

degree ordering 10048

Lower Triangular Matrix and Border

Maximum Factor Fr or Bs

Partition Non Total % Ops in Total % Ops in

Size NLB NFILLIN Zeros Ops Partitions Ops Partitions

16y 1041 15267 32494 207825 18.1% 25802 50.0%

32 655 14923 32150 242716 19.8% 25458 55.1%

64 524 15692 32919 271605 19.7% 26227 58.0%

96 444 15989 33216 309488 20.5% 26524 57.8%

y Best parallel direct block-diagonal-bordered sparse linear solver performance

56

Table 5: NiMo-OPS | LU and Choleski Factorization Ordering Statistics

number of nodes 1766

number of edges 2506

�llin for minimum

degree ordering 2227

Lower Triangular Matrix and Border

Maximum Factor Fr or Bs

Partition Non Total % Ops in Total % Ops in

Size NLB NFILLIN Zeros Ops Partitions Ops Partitions

16 281 3408 7680 22616 32.9% 5914 58.0%

32y 173 3152 7424 22762 35.7% 5658 65.2%

64 136 2959 7231 21147 40.7% 5465 69.6%

96 130 3259 7531 25727 37.1% 5765 67.7%

y Best parallel direct block-diagonal-bordered sparse linear solver performance

Table 6: NiMo-PLANS | LU and Choleski Factorization Ordering Statistics

number of nodes 9430

number of edges 14001

�llin for minimum

degree ordering 13637

Lower Triangular Matrix and Border

Maximum Factor Fr or Bs

Partition Non Total % Ops in Total % Ops in

Size NLB NFILLIN Zeros Ops Partitions Ops Partitions

16 1450 20300 43731 243945 19.4% 34301 52.2%

32y 886 19172 42603 250301 23.1% 33173 58.9%

64 721 19508 42939 265654 22.8% 33509 60.2%

96 612 19974 43405 287427 27.6% 33975 62.9%

y Best parallel direct block-diagonal-bordered sparse linear solver performance

57

Figure 33: BCSPWR10 | Original Matrix

58

Figure 34: BCSPWR10 | Block-Diagonal-Bordered Form| MaximumPartition Size = 32 | Load

Balanced for 8 Processors

59

Figure 35: EPRI6K | Original Matrix

60

Figure 36: EPRI6K | Block-Diagonal-Bordered Form | Maximum Partition Size = 16 | Load

Balanced for 8 Processors

61

Figure 37: NiMo-OPS | Original Matrix

62

Figure 38: NiMo-OPS | Block-Diagonal-Bordered Form | Maximum Partition Size = 32 | Load

Balanced for 8 Processors

63

Figure 39: NiMo-PLANS | Original Matrix

64

Figure 40: NiMo-PLANS | Block-Diagonal-Bordered Form | Maximum Partition Size = 32 |

Load Balanced for 8 Processors

65

matrix. It is important to note that the block-diagonal-bordered matrices for the BCSPWR09 and

NiMo-OPS matrices and the EPRI6K and NiMo-PLANS matrices look similar. The BCSPWR09

and NiMo-OPS matrices are for operational networks that are homogeneous and have very similar

voltage distributions throughout. Meanwhile, the EPRI6K and NiMo-PLANS matrices are from

planning applications, and one subsection of these networks includes some lower voltage distribution

lines. This matrix has enhanced detail in the local area, with less detail in areas around the power

utility's area of interest. This causes additional rows/columns in the borders and the last diagonal

blocks, but our parallel block-diagonal-bordered direct solvers appear to have little di�cult with

e�ciently solving these matrices. The small, highly connected graph section can be seen at the

lower right-hand corner of the matrix in �gures 36 and 40.

8.2 Empirical Results | Parallel Direct Sparse Solver Performance

We have collected empirical data for parallel block-diagonal-bordered sparse direct methods on the

Thinking Machines CM-5 multi-computer for three solver implementations |

1. Choleski factorization and forward reduction/backward substitution for double precision vari-

ables

2. LU factorization and forward reduction/backward substitution for double precision variables

3. LU factorization and forward reduction/backward substitution for complex variables

for each of two communications paradigms |

1. active message based communications

2. asynchronous, non-blocking, bu�ered communications

for �ve separate power systems networks |

1. BCSPWR09

2. BCSPWR10

3. EPRI6K

4. NiMo-OPS

5. NiMo-PLANS

for 1, 2, 4, 8, 16, and 32 processors | and for four matrix partitioning | with a maximum of 16,

32, 64, and 96 graph nodes per partition.

As we examine the empirical results, we �rst describe the selection process to identify the matrix

partitioning that yielded the best parallel empirical performance. This reduces the amount of data

we must consider when examining the performance of the implementations. For the three solver

implementations, there are increasing amounts of
oating point calculations in double precision

Choleski factorization, double precision LU factorization, and complex LU factorization, with the

relative workload on a single processor of approximately 6:2:1, because Choleski algorithms have

66

only approximately one half the
oating point operations of LU algorithms, and complex
oating

point operations require four separate multiplications and two addition/subtraction operations for

a double precision multiply/add operation. While there are di�ering amounts of calculations in

these algorithms, there are equal amounts of communications. We will present timing comparisons

that illustrate how sensitive parallel sparse direct solvers for power systems networks are to com-

munications overhead. This sensitivity is not totally unexpected, given the extremely sparse nature

of power systems matrices. We next examine speedup for the three solver implementations, and

examine speedups for both factorization and a combination of forward reduction and backward sub-

stitution. We then examine the performance of the load-balancing step by examining the timing data

for each component of the algorithm. Lastly, we discuss the performance improvements achieved by

using active message communications and the corresponding simpli�cations to the algorithm that

were possible using this communications paradigm.

8.2.1 Selecting Partitioned Matrices with Best Parallel Solver Performance

There are many factors that can e�ect the performance of parallel direct sparse linear solvers.

The primary factors are available parallelism, load balancing, and communication overhead. Our

choice to order the power systems matrices into block-diagonal-bordered form provides a means to

signi�cantly limit the task graph to factor the matrix and to make all communications regular. We

have shown in section 8.1 that the node tearing algorithm can partition the power systems network

matrices into block-diagonal-bordered form and o�er substantial parallelism in the diagonal blocks

and borders.

There is one input parameter to the node-tearing algorithm, the maximum partition size, which

when varied, e�ects the size of the diagonal blocks and the size of the borders and last diagonal

block. We also presented tables 2 through 6 to illustrate that the amount of �llin and the amount of

oating point operations varied as a function of the maximumpartition size. When determining the

partitioning with the best parallel direct block-diagonal-bordered sparse linear solver performance,

we examined the empirical data collected from algorithm benchmark trials on the Thinking Machines

CM-5 multi-computer to make those selections. Graphs presented in �gures 41 and 42 illustrate the

performance for LU factorization and for the combination of the forward and backward triangular

solution steps for the Boeing-Harwell matrices; BCSPWR09 and BCSPWR10. Each graph has

timing data for double precision LU factorization and for forward reduction/backward substitution.

These graphs are on a log-log scale and show that for each power system network, a maximum of

32 nodes per partition yields the best overall performance for factorization.

We are considering software to be embedded within a more extensive power systems application,

so we must examine e�cient parallel forward reduction and backward substitution algorithms in

addition to parallel factorization algorithms. These �gures show that the time to factor the matrix

is only approximately an order of magnitude greater than the time required to perform forward

reduction and backward substitution on a single processor. This is signi�cant because it illustrates

the sparsity of these power system matrices. Due to the reduced amount of calculations in the

triangular solution phases of solving a system of factored linear equations, these algorithms are often

ignored when parallel Choleski or LU factorization algorithms are presented in the literature. For a

67

1 2 4 8 16 32
Number of Processors

10

100

1000

Ti
m

e
(m

ill
is

ec
on

ds
)

16
32
64
96

Max Nodes per Partition

FrBs

Factor

Figure 41: Parallel LU Factorization Timing Data | BCSPWR09 | Double Precision

1 2 4 8 16 32
Number of Processors

60

100

200

500

1000

2000

5000

10000

Ti
m

e
(m

ill
is

ec
on

ds
)

16
32
64
96

Max Nodes per PartitionFactor

FrBs

Figure 42: Parallel LU Factorization Timing Data | BCSPWR10 | Double Precision

68

dense matrix, the number of calculation to factor a matrix is O(n3) and the number of calculations to

triangular solve the matrix isO(n2). For dense matrices as large as these two matrices, there would be

a signi�cant di�erence in wall-clock time between factorization and triangular solutions, a di�erence

that is not present here. As a result, we must also consider the performance of the triangular solution

step, especially if there will be dishonest (re)use of a factored matrix as it is repeatedly (re)used for

multiple triangular solutions. Meanwhile, this order of magnitude di�erence in performance erodes

for large numbers of processors, because it will be shown that there is better relative speedup for

the factorization algorithms than for forward reduction and backward substitution.

In �gure 42, we must consider the performance of the forward reduction/backward substitution

step in selecting the better of the two partitioning; for a maximum of sixteen or 32 nodes per

partition. Performance of the factorization algorithm for sixteen and 32 nodes per partition are

nearly similar, although the performance of the triangular solution step is signi�cantly better for 32

nodes per partition than 16 nodes per partition.

8.2.2 Comparing Timing Performance for Direct Solver Implementations

For the three solver implementations, there are increasing amounts of
oating point calculations

in double precision Choleski factorization, double precision LU factorization, and complex LU fac-

torization, with a relative workload of approximately 6:2:1. While there are di�ering amounts of

calculations in these algorithms, there are equal amounts of communications. We present timing

comparisons for the three solver implementations in �gures 43 through 47 for the �ve sample power

system networks. These graphs each have six curves | three each for factorization and for the

triangular solution. These graphs illustrate just how sensitive parallel sparse direct solvers for power

systems networks are to the relative amount of communications overhead. This sensitivity is not

totally unexpected, given the extremely sparse nature of power systems matrices.

These graphs show the time in milliseconds that it will take to factor and calculate a trian-

gular solution for these matrices. These graphs also show the relative amount of
oating point

operations between implementations for a single processor. That ratio of time to factor the matrix

decreases as additional processors are used when solving the sparse matrix. With constant amounts

of communications, communications overhead has proportionally less of an e�ect when there are

more calculations, and it is easier to hide communications behind calculations when there are more

oating point operations to perform.

These graphs also illustrate some important information concerning parallel triangular solutions

for Choleski factorization. First, while there is only half the calculations in the factorization step,

there is no reduction in the number of calculations in the triangular solution step. To calculate

the triangular solution, every non-zero coe�cient in L is used once during forward reduction and

every non-zero coe�cient in L
T must also be used once during backward substitution. While it

is possible to avoid explicitly performing the matrix transpose, one of the triangular solutions will

require additional overhead because of the data must be explicitly or implicitly column oriented. This

solution phase will require additional communications,O(nnon�zeros) as compared to O(nrows). The

number of non-zeros is greater than the number of row/columns in the matrix. For a single processor,

there is the same amount of work when solving the factored equations for double precision LU and

69

1 2 4 8 16 32
Number of Processors

20

50

100

200

500

1000

Ti
m

e
(m

ill
is

ec
on

ds
)

LU - complex
LU - double
Choleski - double

Factor

FrBs

Figure 43: Parallel Choleski and LU Timing Comparisons | BCSPWR09 | Maximum Nodes per

Partition = 32

1 2 4 8 16 32
Number of Processors

100

200

500

1000

2000

5000

10000

20000

Ti
m

e
(m

ill
is

ec
on

ds
)

LU - complex
LU - double
Choleski - double

Factor

FrBs

Figure 44: Parallel Choleski and LU Timing Comparisons | BCSPWR10 | Maximum Nodes per

Partition = 32

70

1 2 4 8 16 32
Number of Processors

100

200

500

1000

2000

5000

10000

Ti
m

e
(m

ill
is

ec
on

ds
)

LU - complex
LU - double
Choleski - double

Factor

FrBs

Figure 45: Parallel Choleski and LU Timing Comparisons | EPRI6K | Maximum Nodes per

Partition = 16

1 2 4 8 16 32
Number of Processors

20

50

100

200

500

1000

2000

Ti
m

e
(m

ill
is

ec
on

ds
)

LU - complex
LU - double
Choleski - double

Factor

FrBs

Figure 46: Parallel Choleski and LU Timing Comparisons | NiMo-OPS | Maximum Nodes per

Partition = 32

71

1 2 4 8 16 32
Number of Processors

100

200

500

1000

2000

5000

10000

20000

Ti
m

e
(m

ill
is

ec
on

ds
)

LU - complex
LU - double
Choleski - double

Factor

FrBs

Figure 47: Parallel Choleski and LU Timing Comparisons | NiMo-PLANS | MaximumNodes per

Partition = 32

Choleski. However, the e�ect of the additional communications overhead has a noticeable e�ect on

the slope of the curve representing the triangular solution for Choleski solvers. This phenomenon

can be seen for all �ve power systems networks.

8.2.3 Examining Speedup

De�nition | Relative Speedup Given a single problem with a sequential algorithm running on

one processor and a concurrent algorithm running on p independent processors, relative speedup is

de�ned as

Sp �
T1

Tp

; (32)

where T1 is the time to run the sequential algorithm as a single process and Tp is the time to run

the concurrent algorithm on p processors.

Graphs of relative speedup calculated from empirical performance data are provided in �gures 48

through 50 for the three parallel direct solver implementations. Figures 48 and 49 each have two

families of speedup curves that show speedup for the �ve power systems networks examined in this

research with separate families of curves for both factorization and the triangular solution. Figure 50

has three families of curves that show speedup for the �ve power systems networks for factorization,

forward reduction, and backward substitution. Each curve plots relative speedup for 2, 4, 8, 16, and

32 processors,

Figure 48 illustrates that parallel performance of the complex LU factorization algorithm can

be as much as eighteen on 32 processors for the BCSPWR10 power systems network. Meanwhile,

factorization performance for the other data sets range from eleven to nearly eight. The BCSPWR10

matrix has the most calculations, and careful examination of �gures 43 through 47 show that the

empirical timing data for the BCSPWR10 matrix requires a greater relative increase in time from

72

2 4 8 16 32
Number of Processors

0

2

4

6

8

10

12

14

16

18

Ti
m

e
(m

ill
is

ec
on

ds
)

BCSPWR09
BSCPWR10
EPRI6K
NiMo-OPS
NiMo-PLANS

Factor

FrBs

Figure 48: Relative Speedup | Complex Variate LU Factorization

2 4 8 16 32
Number of Processors

0

2

4

6

8

10

Ti
m

e
(m

ill
is

ec
on

ds
)

BCSPWR09
BSCPWR10
EPRI6K
NiMo-OPS
NiMo-PLANS

Factor

FrBs

Figure 49: Relative Speedup | Double Precision LU Factorization

73

2 4 8 16 32
Number of Processors

0

1

2

3

4

5

Ti
m

e
(m

ill
is

ec
on

ds
)

BCSPWR09
BSCPWR10
EPRI6K
NiMo-OPS
NiMo-PLANS

Factor

Bs

Fr

Figure 50: Relative Speedup | Choleski Factorization

double precision LU factorization to complex LU factorization for a single processor than other

power systems networks. A signi�cant increase in the time to factor the matrix on a single processor

will cause signi�cant increases in speedup. We believe that the unusually good performance of the

parallel solver for the BCSPWR10 data is a result of caching e�ects | when the program is run on

one or two processors, there is too much data on each processor to �t into the fast memory cache.

When more processors are used, the entire memory can �t concurrently into the fast cache, and

the program runs considerably faster with all cache hits. Meanwhile, complex triangular solutions

provide speedups ranging between a high of eight and a low of four.

Figure 49 illustrates that parallel performance of the double precision LU factorization algorithm

can be nearly ten on 32 processors for the BCSPWR10 power systems network. Factorization

performance falls between eight and seven for the other four networks. Likewise, double precision

triangular solutions provide speedups ranging from slightly greater than four to a low of three.

Parallel Choleski factorization yields speedups that are less than similar LU algorithms. Em-

pirical data for relative speedup varies between �ve and four for 32 processors, as illustrated in

�gure 50. This �gure also presents empirical speedup data for forward reduction and backward

substitution. Due to the signi�cant di�erences in the implementation of these triangular solution

algorithms, empirical data are presented for both.

Backward substitution is the simplest algorithm with the lowest communications overhead |

limited to only the broadcast of recently calculated values in xm when performing the triangular

backward substitution on LTm;m. Empirical relative speedup ranges from a high of 3.5 to 2.5. These

speedups are only slightly less than speedups for backward substitution associated with LU factoriza-

tion. Meanwhile, essentially no speedup has been measured for the forward reduction algorithm, due

primarily to additional communications overhead for this implementation than either LU forward

reduction or Choleski backward substitution. Additional communications is required to update the

74

last diagonal using data in the borders, and there are additional communications for reducing the

last diagonal block. These additional communications occur because the data distribution forces

interprocessor communications of partial updates when calculating values in ym, rather than broad-

casting values in ym as in the LU-based forward reduction. Interprocessor communications increase

from O(nlb) to O(nnz lb), or from being proportional to the number of rows/columns in the last

diagonal block to being proportional to the number of non-zeros in the last diagonal block. After

minimum degree ordering of the last diagonal block, nnz lb � nlb. Due to the characteristics of

Choleski factorization, it is inevitable that either forward reduction or backward substitution would

have to deal with the problem of increased interprocessor communications [20].

The sensitivities of these parallel algorithms to communications overhead is clearly apparent

when comparing the relative speedups presented in �gures 48, 49, and 50. For the three solver

implementations, there are increasing amounts of
oating point calculations in double precision

Choleski factorization, double precision LU factorization, and complex LU factorization, with a rel-

ative workload of approximately 6:2:1; however, there are nearly equal amounts of communications.

Communications in block-diagonal-bordered Choleski or LU factorization occurs in two locations |

updating the last diagonal block using data in the borders and factoring the last diagonal block.

There are twice as many calculations and twice as many values to distribute to processors holding

data in the last diagonal block when updating the last diagonal block for LU factorization versus

Choleski factorization, because LU factorization requires the update of Lm;mUm;m versus only Lm;m.

There are equal amounts of communications for LU and Choleski factorization when factoring the

last diagonal block.

When factoring the last diagonal block, the Choleski algorithm requires that data in Lm;m

be broadcast to all processors in the pipelined algorithm that perform the rank 1 update of the

submatrix, However, the parallel algorithm for the last diagonal block requires only that Um;m be

broadcast during the parallel rank 1 update. Communications overhead is nearly constant and

the 6:2:1 relative workload of
oating point operations result in relative speedups of 4:2:1 for the

BCSPWR10 power systems network. Consequently, if speedups of 18 were required for a Choleski

factorizations algorithm embedded in a real-time application, one way to reach those design goals

is to improve the processor/communications performance by a factor of six to cause proportional

reductions in the communications overhead. Another way that algorithm speedup could be achieved

is by increasing the performance of the
oating point capability of the processor, although, the ratio

of communications-to-calculations performance ratio must stay equal to that in the CM-5 for these

test runs.

8.2.4 Analyzing Algorithm Component Performance

We next present a detailed analysis of the performance of the component parts of the parallel block-

diagonal-bordered direct linear solver. We present graphs that show the time in milliseconds to

perform each of the component operations of the algorithm:

1. factor

� diagonal blocks

75

1 2 4 8 16 32
Number of Processors

5

10

20

50

100

200

400

Ti
m

e
(m

ill
is

ec
on

ds
)

Diagonal Blocks
Update Last Block
Last Block

Figure 51: Algorithm Component Timing Data | Double Precision LU Factorization | BC-

SPWR09

� update last diagonal block

� last diagonal block

2. forward reduction

� diagonal blocks

� update last diagonal block

� last diagonal block

3. backward substitution

� last diagonal block

� diagonal blocks

This detailed analysis of the parallel algorithm will demonstrate that the pre-processing phase can

e�ectively load balance the matrix for as many as 32 processors and illustrate some of the limitations

of the algorithm for certain classes of data sets. We present the data for two separate power

systems networks: BCSPWR09 | a small, 1723 node network, from an operations application; and

BCSPWR10 | a larger, 5300 node network, from a planning application. The operations network

empirical performance data is presented in �gures 51, 52, and 53. The planning network empirical

performance data is presented in �gures 54, 55, and 56.

For factoring the operations network, �gure 51 illustrates that the performance of factoring the

diagonal blocks and updating the last diagonal block have no apparent load balancing overhead. Also,

communications overhead is minimal when updating the last diagonal block. The curve representing

the performance to factor the last block is nearly straight, with a slope that denotes nearly perfect

76

1 2 4 8 16 32
Number of Processors

1

2

5

10

20

Ti
m

e
(m

ill
is

ec
on

ds
)

Diagonal Blocks
Update Last Block
Last Block

Figure 52: Algorithm Component Timing Data | Double Precision Forward Reduction | BC-

SPWR09

1 2 4 8 16 32
Number of Processors

1

2

5

10

20

30

Ti
m

e
(m

ill
is

ec
on

ds
)

Last Block
Diagonal Blocks

Figure 53: Algorithm Component Timing Data | Double Precision Backward Substitution |

BCSPWR09

77

1 2 4 8 16 32
Number of Processors

20

50

100

200

500

1000

2000

3000

Ti
m

e
(m

ill
is

ec
on

ds
)

Diagonal Blocks
Update Last Block
Last Block

Figure 54: Algorithm Component Timing Data | Double Precision LU Factorization | BC-

SPWR10

1 2 4 8 16 32
Number of Processors

2

5

10

20

40

50

100

Ti
m

e
(m

ill
is

ec
on

ds
) Diagonal Blocks

Update Last Block
Last Block

Figure 55: Algorithm Component Timing Data | Double Precision Forward Reduction | BC-

SPWR10

78

1 2 4 8 16 32
Number of Processors

2

5

10

20

40

50

100

Ti
m

e
(m

ill
is

ec
on

ds
)

Last Block
Diagonal Blocks

Figure 56: Algorithm Component Timing Data | Double Precision Backward Substitution |

BCSPWR10

parallelism | relative speedup at each point is approximately equal to the number of processors.

The curve representing the performance to update the last diagonal block is also nearly straight,

although the slope of the curve shows that some overhead has occurred. On this log-log chart, the

di�erence in slope is slight, Meanwhile, the curve representing the times to factor the last diagonal

block show that this portion of the algorithm has poor performance | speedups are no more that

1.84 for sixteen processors and performance declines for 32 processors. Fortunately, the preprocessing

phase was able to partition the network and generate matrices where the number of operations to

factor the last diagonal block is signi�cantly less than the number of operations to factor the diagonal

blocks or update the last diagonal block. The relative time required to factor the three algorithm

components is approximately 4:2:1. Relative speedup of the overall implementation is a�ected by the

limited speedup of the last block, not to the extent of Amdahl's Law [12], but there are performance

limits to this algorithm. Amdahl's Law would limit speedup for this algorithm to approximately

seven | we have been able to achieve that speedup here, although the doubling of processors from

16 to 32 yields improvements in speedup from 6.30 to only 7.44.

For the triangular solutions, �gures 52 and 53 show that we were able to get no speedup when

performing the triangular solutions in the last diagonal block. The relative time required to reduce

the algorithm components is approximately 4:3:2, so speedup for forward reduction would be limited

to approximately 4.5 | a value that the algorithm could not reach with 32 processors due to load

imbalance overhead in the reduction of the diagonal blocks and when updating the last diagonal

block. The relative time required to back solve for the algorithm components is approximately 4:1,

so speedup for backward substitution would be limited to approximately 5.0 | a value that the

algorithm also could not attain due to additional overhead. Both triangular solution algorithms

su�ered load imbalance overhead, which was slight and not unexpected. We distributed the data

to processors as a function of balanced computational load for factorization. Dense factorization

79

has O(n3)
oating point operations, while dense triangular solutions have only O(n2)
oating point

operations. The sparse matrices associated with these power systems networks have signi�cantly

lower orders of computational complexity for the two components; however, factorization still has

more calculations per row than triangular solves. As a result, some load imbalance overhead has

been encountered in these algorithms.

We next examine parallel algorithm performance for a larger power systems network, BC-

SPWR10, that has four times the number of rows/columns and over eleven times the number

of
oating point operations. Figure 51 illustrates that the performance of factoring the diagonal

blocks and updating the last diagonal block have little apparent load balancing overhead and com-

munications overhead when updating the last diagonal block is minimal. Relative speedups are 29.9

for factoring the diagonal blocks on 32 processors and 21.6 for updating the last diagonal block

on 32 processors. Performance for factoring the last diagonal block shows great improvement for

this planning matrix when compared to the small operations matrix, BCSPWR09. While there is

no measurable speedup for two processors due to the pipelined-nature of the algorithm, parallel

performance improves respectably for larger numbers of processors. The timing data in �gure 51

correspond to speedups of 4.9 for factoring the last diagonal block on 32 processors. The relative

workload on a single processor is 2:6:5 for factoring this matrix. The extensive amount of operations

to update and factor the last block make it imperative that good speedups have been obtained in

these algorithm sections | in spite of the fact that both algorithm sections contain communications.

The relative speedup obtained for factoring this matrix is 9.4 for 32 processors.

Performance of the triangular solvers on this larger, planning matrix are more promising than

for the operations matrix. Figures 55 and 56 show that we were able to get limited speedup when

performing the triangular solutions in the last diagonal block. The relative time required to reduce

the algorithm components is approximately 1:1:1, so speedup for forward reduction would be limited

to approximate 3 under Amdahl's law | a value that the algorithm was able to exceed, 3.6, with 32

processors. The relative time required to back solve for the algorithm components is approximately

2:1, so backward substitution speedup would be limited to approximately 3.0 | a value that the

algorithm also did surpass, although only slightly. Both triangular solution algorithms su�ered

nearly no load imbalance overhead for this larger power systems network, in spite of the fact that

we distributed the data to processors as a function of balanced computational load for factorization.

We have conducted similar detailed examinations into the performance of the algorithm for the

three other power systems networks, and have obtained similar results. We draw the following

conclusions from this detailed examination of the algorithm components:

� Power systems networks can vary greatly | not only are planning networks larger than opera-

tions networks, there are di�erent characteristics to the matrices. Planning matrices are likely

to have adequate workload in the last diagonal block that the this portion of the algorithm

will yield speedups. Little speedup appeared possible when factoring the last diagonal block

in operations matrices: however, this generates minimal cause for concern, because there is

very little work involved in factoring that matrix relative to the other algorithm sections.

� The preprocessing stage was successful in generating matrices with block-diagonal-bordered

form and balancing the processing load in the diagonal blocks and the update of the last

80

diagonal block.

� There are limitations to the number of processors that can be used to solve linear systems

derived from these power systems networks due to the extreme sparsity of these matrices. We

have shown that all algorithm components have good performance for as many as 32 processors,

except those algorithm components working with the last diagonal block. There is overhead to

�ll pipelines, and it is questionable whether or not there are adequate
oating point operations

to keep the pipeline full for algorithms factoring or solving the last diagonal block. Increasing

the size of the last block results in signi�cant performance improvements, but no power sys-

tem network examined here was large enough that the algorithm could get speedups greater

than ten for parallel double precision block-diagonal-bordered LU factorization. Performance

improved when the number of
oating point operations increased for a complex-variate version

of the algorithm and worsened when the number of
oating point operations was reduced in a

Choleski implementation.

8.2.5 Comparing Communications Paradigms

We have developed two versions of this parallel block-diagonal-bordered sparse linear solver, one

version using an active message communications paradigm and the other using an asynchronous

non-blocking bu�ered communications paradigm. These communications paradigms signi�cantly

modi�ed the respective algorithms as seen in section 7.2. For all power systems networks exam-

ined, the largest relative workload when factoring or forward reducing the matrix is to update the

last diagonal block. Increases in communications overhead in this portion of the algorithm could

signi�cantly a�ect parallel algorithm performance. In �gure 57 we present a graph of the speedups

obtained using active messages on the CM-5 versus asynchronous non-blocking bu�ered communica-

tions for factoring the matrices. Likewise, in �gure 58 we present a graph of the speedups obtained

using active messages versus conventional communications for forward reduction of the matrices.

These graphs show that speedups can be as great as 1.6 for factoring the operations matrices with

active messages, but speedups are less for the planning networks. Speedups are also greatest for the

smaller operations matrices for updating the last diagonal block during forward reduction.

The speedups reported in �gures 57 and 58 are relative to the entire time required to factor or

reduce the matrices in parallel for the respective number of processors. While updating the last

block has the most relative workload for a single processor, for larger numbers of processors, this

relative workload changes signi�cantly and the algorithm section for the last diagonal block assumes

a larger relative workload because these algorithm sections are less e�cient. To provide a better

understanding of the algorithm component speedup, we present speedup graphs for active messages

versus bu�ered communications in �gures 59 and 60. Speedups for the factorization algorithm

component are as great as 2.8, while speedups for the reduction component are as much as 14.8.

Active message communications have their greatest improvement when there are fewer opera-

tions to o�set the additional communications overhead of the bu�ered communications. This is most

evident when comparing speedups for factorization versus forward reduction in �gures 59 and 60.

It has been su�ciently di�cult to obtain usable speedups for the triangular solutions with the

active message communications paradigm. Performance reductions of 1.2 to 2.0 for bu�ered com-

81

2 4 8 16 32
Number of Processors

1.0

1.2

1.4

1.6

S
pe

ed
up

BCSPWR09
BCSPWR10
EPRI6K
NiMo-OPS
NiMo-PLANS

Figure 57: Speedup Active Messages versus Bu�ered Communications - Double Precision LU Fac-

torization

2 4 8 16 32
Number of Processors

1.0

1.2

1.4

1.6

1.8

2.0

S
pe

ed
up

BCSPWR09
BCSPWR10
EPRI6K
NiMo-OPS
NiMo-PLANS

Figure 58: Speedup Active Messages versus Bu�ered Communications - Double Precision Forward

Reduction

82

2 4 8 16 32
Number of Processors

1.0

1.5

2.0

2.5

3.0

S
pe

ed
up

BCSPWR09
BCSPWR10
EPRI6K
NiMo-OPS
NiMo-PLANS

Figure 59: Speedup Active Messages versus Bu�ered Communications - Double Precision LU Fac-

torization | Update Last Block

2 4 8 16 32
Number of Processors

1.0

3.0

5.0

7.0

9.0

11.0

13.0

15.0

S
pe

ed
up

BCSPWR09
BCSPWR10
EPRI6K
NiMo-OPS
NiMo-PLANS

Figure 60: Speedup Active Messages versus Bu�ered Communications - Double Precision Forward

Reduction | Update Last Block

83

munications would have a signi�cant e�ect on the usability of this algorithm. For complex-variate

implementations of these LU algorithms, the e�ect was somewhat less than for the double preci-

sion versions of the LU algorithms. Conversely, the Choleski implementation saw more pronounced

speedups from active messages due to the reduced workload. There are the same number of bu�ered

communications in all algorithms, with less data sent for the Choleski algorithms.

8.3 Empirical Results | Conclusions

We have extensively analyzed the performance of parallel linear solvers for power systems appli-

cations on the Thinking Machines CM-5. We have shown that the performance of our parallel

block-diagonal-bordered sparse linear solvers can yield good speedups for LU factorization. Power

system matrices are so sparse that we were able to show that relative speedups for parallel Choleski

factorization and complex-variate LU factorization can di�er by factors from two to greater than

three. There is a six-fold increase in the number of calculations for complex LU factorization versus

Choleski factorization. The sparsity in the matrices has an even greater e�ect on the triangular

solution steps as it does on the factorization. Communications overhead when reducing or substi-

tuting in the last diagonal block is so great that there is no available speedup, so the performance

of these algorithms becomes limited by Amdahl's law for the Thinking Machines CM-5 architecture

and software.

8.3.1 Algorithm Performance on an IBM SP1 and SP2

We have ported this software to the IBM SP1 and SP2. The available communications on the

IBM parallel machines required the use of the non-blocking bu�ered communications paradigm,

because active messages are not implemented on this hardware. We chose to use the Message Passing

Interface (MPI) for the communications language, because it is being developed as a communications

standard for multi-processors with strong emphasis on optimizing message-passing performance. In

table 7, we present empirical performance data for the IBM SP1 using MPI and the IBM SP2

using standard Transmission Control Protocol (TCP)/Internet Protocol (IP) based communications

through the embedded communications switch. This preliminary data from the IBM scalable parallel

processors (SPPs), based on workstation clusters with switched network communications, shows that

the processor/communications ratio for MPI applications shows some promise, although there is too

much latency in the TCP/IP based communications for the triangular solutions.

8.3.2 Algorithm Performance on Future SPP Architectures

While we design and implement algorithms on existing hardware, it is desirable to predict algorithm

performance for future architectures. We can expect future SPPs to be similar to the IBM SPx

series with features approaching the Cray T3D massively parallel processor (MPP) [28]. When

comparing the single processor performance of the CM-5 (a 33 MHz Sparc microprocessor from

Sun Microsystems [3]) with the node of an SP1 or SP2 (a 62.5 MHz IBM RS/6000 model 370

four command superscalar microprocessor), the RS/6000 is 6.6 times faster today when comparing

empirical data from our algorithm run on a single processor. In the near-future, it will feasible to get

four times the individual processor power that we see today, so it is conceivable that the (near-term)

84

Table 7: Empirical Performance Data from the IBM SP1 and SP2 | EPRI6k | Com-

plex Variate LU Solver

IBM SP1 using MPI

Number Forward Backward

of Factorization Reduction Substitution

Processors (seconds) (seconds) (seconds)

1 1.450000 0.050000 0.050000

2 1.165000 0.050000 0.045000

4 0.827500 0.045000 0.040000

IBM SP2 using TCP/IP

Number Forward Backward

of Factorization Reduction Substitution

Processors (seconds) (seconds) (seconds)

1 1.460000 0.080000 0.080000

2 0.865000 0.165000 0.115000

4 0.607500 0.175000 0.180000

8 0.460000 0.203750 0.212500

85

next generation of SPP microprocessors will be 25 times as fast as today's microprocessors. Some

of this power may come from placing multiple processors per SPP node,

If SPP node processor capability increases by a factor of 25, communications capabilities must

improve by at least as much if the performance of parallel sparse direct linear solvers for power

systems applications are to have equal or better performance on multiple processors. In other

words, the communications-to-calculations ratio or granularity must remain constant. As we analyze

communications performance of the parallel sparse direct solver, we must look at the two portions

of the factorization algorithm that include communications: updating the last block and factoring

the last block.

We implemented two versions of the parallel software on the CM-5 that updated the last di-

agonal block: with active message remote procedure calls (RPCs), and with non-blocking bu�ered

communications. The active message based communications has latency of 1.6 �second for an RPC,

which transmits a data payload of four words. The non-blocking bu�ered communications version

of the algorithm utilized the CMMD communications library, which has 86 �second latency and

0.12 �second per word communications costs [3]. The CM-5 has a multi-tiered communications

network with 40 megabytes-per-second bandwidth at the lowest layer [3]. The IBM SP2 has a 30

�second latency and 30 megabyte-per-second bandwidth in present con�gurations. In the near-

future, we expect interprocessor communications for SPPs to improve signi�cantly, with latency for

bu�ered communications decreasing to levels that are available in MPPs like the Cray T3D today.

We anticipate that bu�ered communications latency for SPPs, in the near future, will be only one

�second, with 100 megabytes-per-second bandwidths between individual processors [28]. Per-word

communications costs for this architecture should be less than 0.04 �second. For the active message

communications version of updating the last diagonal block, we can't expect much improvement;

however, for bu�ered communications,most communicationsmessages are short, less than a kilobyte,

so we can expect that communications performance in this section of the algorithm would improve

by a factor of �ve. If communications latency decreases as signi�cantly as we anticipate, the version

of the algorithm to update the last diagonal block that would yield the best performance would be

the bu�ered communications algorithm, but not keep pace with the performance improvement of

individuals SPP processors.

The communications in the section of the CM-5 program that factors the last diagonal block

uses active message s-copy commands, which have 23 �second latency and 0.12 �second per word

communications costs [3]. Messages are short, again about a kilobyte, so we can expect that com-

munications performance would improve by a factor of nearly four.

If we combine the three portions of the speedup analysis: improvements of a factor of 25 for

the processor speed, and improvements of four or �ve in the communications speeds, it may not be

possible to sustain the parallel speedup that we have obtained in this example program. Performance

may be limited for 32 processors, however, strong performance with lessor numbers of processors

should be sustainable, because communications overhead is not as great. Consequently, we should

be able to obtain strong speedups with a single processor due to increased processor performance,

while additional speedup due to parallelism may see less, although, multi-processor speedup should

not decline to levels less than those speedups achieved for Choleski factorization.

If communications bandwidths between individual processors for our future machine improved

86

an order of magnitude, to a gigabyte-per-second, the prognosis for this algorithm would change.

For gigabyte-per-second networks, communications to update the last-diagonal block could improve

by a factor of 40 and communications to factor the last diagonal block could improve by a factor

greater than 25. As a result, the computation-to-communications ratio would be preserved, if not

improved, and similar or better parallel speedups could be expected.

This research was inspired by the low latency communications possible using active messages on

the CM-5. We believe that SPP architectures, like the IBM SP2, may eventually provide similar low-

latency communications for short messages because there are many parallel algorithms that can only

be implemented e�ciently with this type of interprocessor communications support. SPP hardware

developers recognize that low-latency communications increase the utility of their computer and,

consequently, improve market potential. The research community also recognizes this fact and uni-

versity research will keep pressure on hardware developers to provide lower latency communications

and higher interconnection bandwidths.

9 Conclusions

In this paper we present research into parallel block-diagonal-bordered sparse direct linear solver

algorithms developed with special considerations to solve irregular sparse matrices originating in the

electrical power systems community. Available parallelism in the block-diagonal-bordered matrix

structure o�ers promise for simpli�ed implementation and also o�ers a simple decomposition of the

problem into clearly identi�able subproblems. Parallel block-diagonal-bordered direct linear solvers

require a three step preprocessing phase that is reusable for static matrices. The matrix is ordered

into block-diagonal-bordered form, pseudo-factored to identify the location of all �llin and obtain

operations counts in the mutually independent diagonal blocks and corresponding portions of the

borders, and the load-balanced to uniformly distribute operations.

We developed an implementation that o�ered speedups of nearly ten for double precision LU

factorization and even greater speedups for complex variate LU factorization with 32 processors.

Speedups for parallel block-diagonal-bordered Choleski factorization were less than for LU factor-

ization, and there are formidable problems implementing forward reduction due to data distribution.

We have performed additional research into parallel block-diagonal-bordered sparse Gauss-Seidel al-

gorithms, an iterative linear solution technique [24, 25]. We are able to get substantially better

speedups with the parallel Gauss-Seidel algorithm, although the only matrix types that there is

assurance of convergence for Gauss-Seidel are diagonally dominant and positive de�nite matrices.

Moreover, Choleski factorization is limited to either symmetric diagonally dominant or symmet-

ric positive de�nite matrices. Consequently, we have compared the performance of parallel sparse

Choleski solvers and parallel sparse Gauss-Seidel algorithms.

Power systems applications use sparse linear solvers in conjunction with either non-linear equa-

tion or di�erential-algebraic equation solvers. Often applications reuse a factored matrix numerous

times, as a trade-o� is made between the computational costs of repeated factorization and addi-

tional iterations in the non-linear equation solvers. A new LU factorization is not calculated every

iteration { instead, an old LU decomposition is used to solve an approximate linear system. A new

factorization is only calculated every few iterations. The cost of multiple linear solutions for dishon-

87

1 2 3 4 5 6 7 8 9 10
(Dishonest) (Re)Uses

0

10

20

30

40

50

Ite
ra

tio
ns

1 Processor
2 Processors
4 Processors
8 Processors
16 Processors
32 Processors

Figure 61: Gauss-Seidel Iterations as a Function of Dishonest Reuses of LU Matrix | BCSPWR09

est reuse would be a linear combination of the cost for factorization plus the cost for the repeated

number of factorization (re)uses.

We compare the performance of parallel Choleski solvers with parallel iterative Gauss-Seidel

solvers by determining the number of iterations for the parallel Gauss-Seidel given a number of

(re)uses. Families of curves plotting the number of iterations versus the number of dishonest (re)uses

are presented in �gures 61 and 62 for one through ten reuses and one through 32 processors for

power systems networks BCSPWR09 and BCSPWR10. The shape of the curves show that the

largest number of iterations possible for a constant time solution occur for a single use of the

factored matrix. As the factorization is (re)used, the cost to factor the matrix is amortized over the

additional (re)uses. For large numbers of factorization (re)uses, the curve becomes asymptotic to

y = TCholeski � TGauss Seidel.

Figure 61 illustrates that 12 Gauss-Seidel iterations take as much time as a single factorization

and triangular solution for the BCSPWR09 operations matrix on a single processor. Meanwhile,

only four iterations per solution would equal the time for 10 dishonest (re)uses. However, when 32

processors are available, 54 Gauss-Seidel iterations could be performed in the same time as a single

direct solution, and 24 iterations per solution for 10 dishonest (re)uses. Figure 62 illustrates similar

performance for the BCSPWR10 power systems matrix | nearly 120 Gauss-Seidel iterations could

be performed in the same time as a single direct solution for 32 processors, and 55 iterations per

solution for 10 dishonest (re)uses. Given that there are good starting points for each successive

iterative solution, there is a strong possibility that the use of parallel Gauss-Seidel should yield

signi�cant algorithmic speedups for diagonally dominant or positive de�nite sparse matrices.

The parallel block-diagonal-bordered direct solvers, presented in this paper, address the most

di�cult power systems applications to implement on a multi-processor | solutions relating only

to power system networks. Load-
ow has the smallest matrices and the fewest calculations due

88

1 2 3 4 5 6 7 8 9 10
(Dishonest) (Re)Uses

0

10

20

30

40

50

60

70

80

90

100

110

120

Ite
ra

tio
ns

1 Processor
2 Processors
4 Processors
8 Processors
16 Processors
32 Processors

Figure 62: Gauss-Seidel Iterations as a Function of Dishonest Reuses of LU Matrix | BCSPWR10

to symmetry and lack of requirements for pivoting to ensure numerical stability. LU factorization

of network equations for decoupled solutions of di�erential-algebraic equations has additional cal-

culations, but often is solved without numerical pivoting. We have shown in this paper that by

simply increasing the number of
oating point operations by a factor of six, parallel speedup of the

algorithm improves signi�cantly.

Parallel block-diagonal-bordered sparse linear solver algorithms can readily be extended to ap-

plications that have power systems networks as a small portion of a larger matrix, for example, the

entire system of linearized di�erential-algebraic equations encountered in transient stability analy-

sis or small-signals analysis applications. These applications add many natural blocks of linearized

di�erential equations that signi�cantly increase the size of the matrix. The linearized di�erential

equations are less-sparse than the network equations and may require pivoting to ensure numerical

stability. Pivoting for this matrix would be limited to within diagonal-blocks to place limits on �llin,

but the e�cient static data structures would need to be replaced by less-e�cient dynamic linked-list-

based data structures. Any of these modi�cations would increase computational workload | work

that does not require interprocessor interactions. As a result, any modi�cations to algorithms to

include these additional features would improve parallel speedup, for the Thinking Machines CM-5

and for future machines that will be signi�cantly faster than the MPPs and SPPs of today.

Acknowledgments

We thank Alvin Leung, Nancy McCracken, Paul Coddington, Chris Pottle, and Tony Skjellum for

their assistance in this research. This work has been supported in part by Niagara Mohawk Power

Corporation, the New York State Science and Technology Foundation, the NSF under co-operative

agreement No. CCR-9120008, and ARPA under contract #DABT63-91-K-0005.

89

References

[1] S. T. Barnard and H. D. Simon. A Fast Multilevel Implementation of Recursive Spectral

Bisection for Partitioning Unstructured Problems. Technical Report RNR-92-033, NASA Ames

Research Center, November 1992.

[2] A. R. Bergen. Power Systems Analysis. Prentice-Hall, 1986.

[3] E. A. Brewer and B. C. Kuszmaul. How to Get Good Performance from the CM-5 Data

Network. Proceedings of the 1994 International Parallel Processing Symposium, 1994.

[4] J. S. Chai and A. Bose. Bottlenecks in Parallel Algorithms for Power System Stability Analysis.

IEEE Transactions on Power Systems, 8(1):9{15, February 1993.

[5] T. A. David. Performance of an Unsymmetric-Pattern Multifrontal Method for Sparse LU

Factorization. Technical Report TR-92{14, University of Florida, Computer and Information

Sciences Department, May 1992.

[6] T. A. David and I. S. Du�. Unsymmetric-Pattern Multifrontal Methods for Parallel Sparse LU

Factorization. Technical Report TR-91-23, University of Florida, Computer and Information

Sciences Department, September 1991.

[7] T. A. David and I. S. Du�. An Unsymmetric-Pattern Multifrontal Method for Sparse LU

Factorization. Technical Report TR-93-018, University of Florida, Computer and Information

Sciences Department, March 1993.

[8] J. J. Dongarra, D. C. Sorensen I. S. Du�, and H. A. van der Vorst. Solving Linear Systems on

Vector and Shared Memory Computers. SIAM, Philadelphia, 1991.

[9] I. S. Du�, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Oxford University

Press, Oxford, 1990.

[10] I. S. Du�, R. G. Grimes, and J. G. Lewis. Users` Guide for the Harwell-Boeing Sparse Ma-

trix Collection. Technical Report TR/PA/92/86, Boeing Computer Services, October 1992.

(available by anonymous ftp at orion.cerfacs.fr).

[11] Electrical Power Research Institute, Palo Alto, California.Extended Transient-Midterm Stability

Program: Version 3.0 - Volume 4: Programmers Manual , Part 1, April 1993.

[12] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems on

Concurrent Processors. Prentice Hall, 1988.

[13] A. George and E. Eg. Some Shared Memory is Desirable in Parallel Sparse Matrix Computation.

SIGNUM Newsletter, 23(2):9{13, April 1988.

[14] A. George, M. T. Heath, J. Liu, and E. Ng. Solution of Sparse Positive De�nite Systems on a

Shared-Memory Multiprocessor. International Journal of Parallel Programming, 15(4):309{328,

August 1986.

90

[15] A. George, M. T. Heath, J. Liu, and E. Ng. Sparse Cholesky Factorization on a Local-Memory

Multiprocessor. SIAM journal on Scienti�c and Statistical Computing, 9(2):327{340, March

1988.

[16] A. George, M. T. Heath, J. Liu, and E. Ng. Solution of Sparse Positive De�nite Systems on a

Hypercube. Journal of Computational and Applied Mathematics, 27:129{156, 1989.

[17] A. George and J. Liu. The Evolution of the Minimum Degree Ordering Algorithm. SIAM

Review, 31(1):1{19, March 1989.

[18] A. Gupta and V. Kumar. A Scalable Parallel Algorithm for Sparse Cholesky Factorization. In

SuperComputing '94, pages 793{802. IEEE Computer Society and ACM, November 1994.

[19] H. H. Happ. Diakoptics - The Solution of System Problems by Tearing. Proceedings of the

IEEE, 62(7):930{940, July 1974.

[20] M. T. Heath, E. Ng, and B. W. Peyton. Parallel Algorithms for Sparse Linear Systems. In

Parallel Algorithms for Matrix Computations, pages 83{124. SIAM, Philadelphia, 1991.

[21] W. Ho�mann. Solving Linear Systems by Direct Methods Related to Gaussian Elimination. In

Algorithms and Applications on Vector and Parallel Computers. Elsevier Science Publishers B.

V., 1987.

[22] G. Karypis, A. Gupta, and V. Kumar. A Parallel Formulation of Interior Point Algorithms. In

SuperComputing '94, pages 204{213. IEEE Computer Society and ACM, November 1994.

[23] D. P. Koester, S. Ranka, and G. C. Fox. Parallel LU Factorization of Block-Diagonal-Bordered

Sparse Matrices. NPAC Technical Report SCCS-550, Northeast Parallel Architectures Center

(NPAC), Syracuse Univeristy, August 1993.

[24] D. P. Koester, S. Ranka, and G. C. Fox. A Parallel Gauss-Seidel Algorithm for Sparse Power

System Matrices. In SuperComputing '94, pages 184{193. IEEE Computer Society and ACM,

November 1994.

[25] D. P. Koester, S. Ranka, and G. C. Fox. A Parallel Gauss-Seidel Algorithm for Sparse Power

System Matrices. NPAC Technical Report SCCS 630, Northeast Parallel Architectures Center

(NPAC), Syracuse University, April 1994.

[26] D. P. Koester, S. Ranka, and G. C. Fox. Parallel Block-Diagonal-Bordered Sparse Linear

Solvers for Electrical Power System Applications. In A. Skjellum, editor, Proceeding of the

Scalable Parallel Libraries Conference. IEEE Press, 1994.

[27] D. P. Koester, S. Ranka, and G. C. Fox. Parallel Choleski Factorization of Block-Diagonal-

Bordered Sparse Matrices. NPAC Technical Report SCCS 604, Northeast Parallel Architectures

Center (NPAC), Syracuse University, January 1994.

[28] W. Oed. The Cray Research Massively Parallel Processor System | Cray T3D. Technical

report, Cray Research GmbH, November 1993.

91

[29] V. Pan. Parallel Solution of Sparse Linear and Path Systems. In J. H. Reif, editor, Synthesis

of Parallel Algorithms, chapter 14. Morgan Kaufmann, San Mateo, CA, 1993.

[30] A. Pothen, H. Simon, and K.. P. Liou. Partitioning Sparse Matrices with Eigenvalues of Graphs.

SIAM J. Mat. Anal. Appl., 11(3):pp. 430{452, 1990.

[31] E. E. Rothberg. Exploiting the Memory Hierarchy in Sequential and Parallel Sparse Cholesky

Factorization. PhD thesis, Stanford University, December 1992.

[32] E. Rothenberg and R Schreiber. Improved Load Distribution in Parallel Sparse Cholesky Factor-

ization. In SuperComputing '94, pages 783{792. IEEE Computer Society and ACM, November

1994.

[33] R. A. Saleh, K. A. Gallivan, M. Chang, I. N. Hajj, D. Smart, and T. N. Trick. Parallel Circuit

Simulation on Supercomputers. Proceedings of the IEEE, 77(12):1915{1930, December 1989.

[34] A. Sangiovanni-Vincentelli, L. K. Chen, and L. O. Chua. Node-Tearing Nodal Analysis. Tech-

nical Report ERL-M582, Electronics Research Laboratory, College of Engineering, University

of California, Berkeley, October 1976.

[35] H. D. Simon. Partitioning of Unstructured Problems for Parallel Processing. Technical Report

RNR-91-008, NASA Ames Research Center, February 1991.

[36] D. J. Tylavsjy, A. Bose, and et. al. Parallel Processing in Power Systems Computation. IEEE

Transactions on Power Systems, 7(2):629{638, May 1992.

[37] S. Venugopal and V. K. Naik. E�ects of Partitioning and Scheduling Sparse Matrix Factorization

on Communications and Load Balance. NASA Contractor Report 189563 ICASE Report No.

91-80, NASA, Langley Research Center, October 1991.

[38] S. Venugopal and V. K. Naik. SHAPE: A Parallelization Tool for Sparse Matrix Computations.

Research Report RC 17899 (77448), IBM Research Division, T. J. Watson Research Center

Yorktown Heights, NY 10598, January 1992.

[39] S. Venugopal and V. K. Naik. Towards Understanding Block Partitioning for Sparse Cholesky

Factorization. Research Report RC 18666 (80517), IBM Research Division, T. J. Watson Re-

search Center Yorktown Heights, NY 10598, October 1992.

[40] S. Venugopal and V. K. Naik. Towards Understanding Block Partitioning for Sparse Cholesky

Factorization. pages 792{796, April 1993.

[41] S. Venugopal, V. K. Naik, and J. Saltz. Performance of Distributed Sparse Cholesky Factor-

ization with Pre-scheduling. Research Report RC 18623 (78732), IBM Research Division, T. J.

Watson Research Center Yorktown Heights, NY 10598, April 1992.

[42] G. von Laszewski, M. Parashar, A. G. Mohamed, and G. C. Fox. High Performance Scalable

Matrix Algebra Algorithms for Distributed Memory Architectures. Technical Report SCS-271,

Northeast Parallel Architectures Center, Syracuse University, 1992.

92

[43] G. von Laszewski, M. Parashar, A. G. Mohamed, and G. C. Fox. On the Parallelization of

Blocked LU Factorization Algorithms on Distributed Memory Architectures. Technical Report

SCS-271b, Northeast Parallel Architectures Center, Syracuse University, June 1992.

[44] Y. Wallach. Calculations and Programs for Power System Networks. Prentice-Hall, 1986.

[45] M. Zubair and M. Ghose. A Performance Study of Sparse Cholesky Factorization on the

INTEL iPSC/860. NASA Contractor Report 189634 ICASE Report No. 92-13, NASA, Langley

Research Center, March 1992.

93

A Minimum-Degree Ordering

Minimum-degree ordering has been used in our research in a two-fold manner:

1. to order symmetric power system admittance matrices to provide baseline orderings with which

to compare the performance of other ordering techniques

2. to order the independent sub-matrices in recursive spectral bisection and node-tearing ordering

techniques

Minimum degree ordering is a greedy algorithm that selects a node with a minimum number of

connected edges in the graph for factoring next. This algorithm is not optimal because truly e�cient

techniques do not exists to resolve ties and numerous rows have equal numbers of elements. The

minimum-degree ordering algorithm is based on the iterative application of the following equation

to solve for i for all rows in a matrix:

r

(k)
i = min

t
r

(k)
t ; (33)

where:

r

(k)
i is the number of variables in row i when factoring the kth row.

r

(k)
t is the number of variables in row t when factoring the kth row

When factoring the kth row, the row with the minimum number of variables is selected, moved

by elementary row and column exchange rules to the kth row, and then factored. Algorithms to

implement this iterative formula are best described using the graph theoretical explanation of �llin

presented in �gure 9. Let G be an undirected graph and � a node in G, then let �G(�) describe the

set of nodes adjacent to � and let j�G(�)j represent the degree of node �. The last concept required

to develop a concise minimum-degree algorithm is the concept of an elimination graph [17]. Given a

graph G, the elimination graph G� is the resulting graph after the node � is factored. Elimination

graphs get their name because of the close relationship of LU factorization and Gaussian elimination.

The rudimentary minimum-degree algorithm used throughout this work is presented in �gure 63.

The outer loop examines each node in the graph, and the inner loop searches through all remaining

nodes in the present graph to select a node with the minimumdegree. After a minimum-degree node

is selected, the edges at adjacent nodes must be updated to re
ect factorization. As illustrated in

�gure 9, the addition of new edges in the elimination graph G� is limited to those nodes in �G(�).

For � 2 �G(�), then

�G�
(�) = (�G(�) [�G(�))� f�; �g: (34)

Given the two nested loops that can examine all nodes in the original sparse graph, the compu-

tational order of this algorithm is O(n2), although a signi�cant portion of the workload is required

to calculate the elimination graph G� [17]. As stated above, in formula 4, the total amount of calcu-

lations in the loop to update the elimination graph G� is bounded by the binomial coe�cient of the

number of edges at a node choose 2 or j�G(�)j chose 2. See equation 4 for details on calculating the

binomial coe�cient. It is important to note that the location of all �llin can be determined when

using this classical implementation of minimum degree ordering.

This version of the minimum-degree algorithmhas been used in our research in a two-foldmanner:

to order symmetric power systems admittance matrices to provide baseline orderings with which to

94

G the symmetric graph representing the sparse matrix

while G 6= � do

select a node � 2 G with minimum degree

order � next

/* calculate the elimination graph G� */

for all nodes � 2 �G(�)

�G�
(�) (�G(�) [�G(�))� f�; �g

end for

G G�

end while

Figure 63: The Minimum-Degree Algorithm

compare the performance of other ordering techniques, and to order the independent sub-matrices

obtained with node-tearing ordering techniques.

95

B A Node-tearing Example

An example illustrating node-tearing nodal analysis is presented in �gures 64 through 67. The

example graph, presented in �gure 64, has two distinct portions connected at node �4. Node �1

meets the selection criteria for the �rst node, and the contour tableau is presented in �gure 65.

There is a distinct local minimum in the contour number at c4 which identi�es node �4 as the

node that couples the two mutually independent graph partitions. Figure 66 illustrates the ordered

graph, note that only the labels on the modes have changed from �gure 64. To illustrate the e�ect of

ordering the matrix, the matrix sparsity structure for the original and ordered graphs are presented

in �gure 67. In these �gures, original data values are represented with + symbols while �llin are

denoted with F characters. Within the sub-blocks, the values would be ordered with a minimum-

degree ordering algorithm. For this sample matrix, minimum degree ordering for the entire matrix

would yield the same results.

ν1

ν2

ν3

ν4

ν5

ν6

ν7

FIRST

NODE

COUPLING

NODE

Figure 64: Graph for a Node-Tearing Example

Iterating Sets Adjacency Sets Contour Number

1 f�1g f�2; �3; �4g 3

2 f�1; �2g f�3; �4g 2

3 f�1; �2; �3g f�4g 1

4 f�1; �2; �3; �4g f�5; �6; �7g 3

5 f�1; �2; �3; �4; �5g f�6; �7g 2

6 f�1; �2; �3; �4; �5; �6g f�7g 1

7 f�1; �2; �3; �4; �5; �6; �7g f�g 0

Figure 65: Example Contour Tableau

96

ν1

ν2

ν3

COUPLING

NODE

ν7

ν5

ν6

ν4

Figure 66: Relabeled Example Graph

+ + + 0 0 0 +
+ + + 0 0 0 +
+ + + 0 0 0 +
0 0 0 + + + +
0 0 0 + + + +
0 0 0 + + + +
+ + + + + + +

+ -
0 -
F -

non-zero value
zero value
fillin

independent
sub-matrix

(a) Original Matrix (b) Ordered Matrix

+ + + + + + +
F F F + + + +
F F F + + + +
F F F + + + +

+ + + + F F F
+ + + + F F F
+ + + + F F F

Figure 67: Matrix Representation of the Example Graphs

97

