
Gravitational Wave Extraction - A Benchmark?

1 Overview

The simpli�ed model we propose to build intends to serve as a benchmark for the problem

of gravitational wave extraction. This will be an important component of all numerical

codes being developed as part of the Black Hole Binaries collaboration. We will follow

the line of research of the Pittsburgh group [1, 2, 3, 4] and describe the physical problem

as a characteristic initial value problem (CIVP), although di�erent approaches have been

suggested [5]. We hope that the numerical codes we develop will be generic enough that

alternative approaches might be incorporated later.

In the CIVP approach, space-time is described in terms of a metric in null spherical polar

coordinates, (u; r; �; �), where retarded time u is given by u = t � r in
at space time, and

initial data is given on a null cone (the locus of the set of points at constant retarded time

u = t � r). Supplementary boundary conditions are required at an inner boundary. This

inner boundary can be taken to be a spacelike surface, such as a sphere at constant r, or

alternatively, a null surface determined by radially incoming characterics. We will concern

ourselves with the �rst alternative in the scope of this work. The equations to be solved

take the form of a hyperbolic evolution equation which determines the rate of change @u of a

metric �eld, and a hierarchy of hypersurface equations which do not involve time derivatives

and can be solved in a predetermined order.

Starting from the initial data at u = u0 and the conditions on the inner boundary, the

evolution equation and the hypersurface equations can be integrated outwards from the

origin, yielding the metric functions on a null cone at u = u0+�u. This march proceeds to

the edge of the computational grid, which corresponds to the set of points for which r!1.

In the terminology of general relativity this set is refered to as (future) null in�nity, J +.

The inner boundary could be taken to be the origin of the coordinate system, however, to

take advantage of the numerical codes being developed by other groups on the collaboration,

we propose a di�erent approach.

We will specify the boundary conditions in terms of the values of the metric functions

and their derivatives on a timelike surface �. This values will be the result of the numerical

evolution of a Cauchy code. For simplicity we might think of � as a sphere, with the initial

data for the exterior CIVP given on a null cone exterior to �. We will come back later to

the question of what coordinate and gauge transformations might be necessary to translate

from the variables used in the Cauchy codes being developed to variables suitable for our

code.

We propose to build this exterior CIVP code in several stages. In the �rst stage we will

solve the scalar wave equation with source 2� = S on the domain de�ned by the region

exterior to a given surface �. We will assume the solution has been given on the boundary �.

The exterior region will extend from the surface � to future null in�nity J +. For simplicity,

we will assume that the slicing of the surface � at constant retarded time has the topology

of a sphere. We will use (null) spherical polar coordinates to express the equations but we

1

will make no assumption of symmetry, i.e. the problem will be fully 3-D.

We will implement the equations using �nite di�erences (FDE's) on structured, rectan-

gular meshes. The implementation of the FDE's will need to be
exible enough to allow for

the eventual use of multilevel adaptive grids, therefore special care will have to be put in

designing the basic data structures in which the algorithm will operate. On this �rst stage

however, the grids will have �xed spatial spacings that will not change with time. For the

time being, we will restrict our attention to explicit schemes.

On subsequent stages, the equation will be modi�ed to allow for source terms of the type

found in the linearized Einstein equations in a Bondi gauge. We know from experience with

the axysmmetric linearized Einstein equations, that the stability properties of the algorithm

are likely to be di�erent from those of the scalar algorithm. Later on additional terms will

be incorporated, to try to mimic the nonlinear parts of the fully nonlinear vacuum Einstein

equations. Lastly, once we have worked out what the supplementary conditions are on the

inner boundary (the cilinder at constant r), the boundary conditions will be incorporated.

We would expect that the structure of the equations and the resulting codes will remain

general enough that the codes will be useful even for di�erent metric elements (provided

they are null), and hence for di�erent forms of the equations which other workers might use.

2 Mathematical De�nition of the Model Problem

We want to solve the scalar wave equation (SWE) in null polar coordinates

G;ur �G;rr �

1

r2

(sin �G;�);�

sin �
�

1

r2
G;�� = rS(G); (1)

where G = r�, on the domain exterior to a surface � (which we take to be given by

r = r0 = constant). The null spherical coordinates span the range u � 0, r � r0, 0 � � � �

and 0 � � � 2�. The free initial data consists of the value of G on the initial null cone

at u = constant. The required boundary condition is the value of G on the surface de�ned

by r = r0 for all values of u. Together with the initial data they completely determine the

solution. Unlike in the more common Cauchy approach, the time derivative of G is not part

of the initial data, since the equation has only a �rst retarded time derivative.

We introduce the auxiliary coordinates x = (r=r0)=(1 + (r=r0)), y = � cos � and z = �.

The inner boundary of the computational domain S is at x = 1
2
, while the outer boundary,

given by the set of points for which r!1, corresponds to the edge x = 1. The coordinate

ranges are then 1
2
� x � 1, �1 � y � 1 and 0 � z � 2�. In this coordinates, the SWE takes

the form

G;ux � [(1� x)2G;x];x �
1

x2
[(1� y

2)G;y];y �
1

x2
G;zz =

x

(1� x)3
S(G): (2)

2

3 Geometrical Interpretation

It is possible to write a simple evolution algorithm for scalar waves based on an integral

identity which the solution must satisfy at the corners of a null parallelogram lying on the

(u; r) plane [3]. The wave equation with source, 2� = S, can be reexpressed in the form

2
(2)
G = �

L
2
G

r2
+ rS; (3)

where 2 (2) is the 2-dimensional wave operator intrinsic to the (u; r) plane. Integration over

the null parallelogram then leads to the integral equation

GQ = GP +GS �GR +
Z
�
dudr[�

L
2
G

r2
+ rS]; (4)

where P , Q, R and S are the corners and � the area of the parallelogram.

>From a numerical point of view, this approach and that discussed in Sec. 4 are entirely

equivalent, in that the discretization of Eq. (4) yields the same FDE's, but the point of view

taken here has proven to be extremely useful in the design of numerical algorithms to solve

the (vacuum) Einstein equations.

4 Numerical issues

For the purpose of discussing the stability properties of the algorithm, we look at the equation

at constant coe�cients

G;ux �AG;xx �BG;yy � C G;zz = 0; (5)

which may be considered as the limit of Eq. (2) obtained by \freezing" any explicit depen-

dence on the coordinates. (For the time being we have dropped the source terms in the RHS

of the equation. We will come back to that later.)

As stated previously, we use rectangular meshes. Given a region D de�ned by xl � x �

xr, yl � y � yr, zl � z � zr, the mesh associated with that region is fully speci�ed by the

value of the coordinates at the region's boundaries xl, xr, yl, yr, zl, zr, and the number of grid

points which lie inside the region in each coordinate direction, Nx, Ny, Nz. The internal grid

point themselves are given by xi = xl + i�x; i = 1; : : : ; Nx where �x = (xr � xl)=(Nx + 1),

and similarly for the coordinates y and z. The time slicing is represented by the discrete

levels un = n�u, and we denote by G
n

i j k
the value of the �eld G at the point(un; xi; yj; zk).

We can discretize Eq. (5), on points interior to a region D, to second order accuracy in

the grid spacings �u, �x, �y and �z, by the following FD approximation to the derivatives:

G;ux =
�
G

n+1
i j k

�G
n+1
i�1 j k �G

n

i j k
+G

n

i�1 j k

� 1

�u�x

G;xx =
�
G

n+1
i j k

� 2Gn+1
i�1 j k +G

n+1
i�2 j k +G

n

i+1 j k � 2Gn

i j k
+G

n

i�1 j k

� 1

2(�x)2

3

G;yy =
�
G

n+1
i�1 j+1 k � 2Gn+1

i�1 j k +G
n+1
i�1 j�1 k +G

n

i j+1 k � 2Gn

i j k
+G

n

i j�1 k

� 1

2(�y)2

G;zz =
�
G

n+1
i�1 j k+1 � 2Gn+1

i�1 j k +G
n+1
i�1 j k�1 +G

n

i j k+1 � 2Gn

i j k
+G

n

i j k�1

� 1

2(�z)2
(6)

Note the angled derivative approach used in the computation of the spatial derivatives, G;xx,

G;yy and G;zz . We will see later that this is essential to guarantee stability of the algorithm.

We then insert Eqn. (6) in Eq. (5) and solve for Gn

i j k
. Note that the relevant numerical

coe�cients in the resulting explicit algorithm are a = A�u=(2�x), b = B�u�x= (2(�y)2)

and c = C�u�x= (2(�z)2).

A von Neumann stability analysis of the algorithm can be carried out by introducing the

Fourier modes Gn

k lm
= �

n
e
ikx
e
ily
e
imz (with real k, l and m) in Eq. (6), which yields:

�u�xG;ux = [�(1� !)� (1� !)]Gn

k lm

A�u�xG;xx = [�af! + af]Gn

k lm

B�u�xG;yy = [�bg! + bg]Gn

k lm

C�u�xG;zz = [�ch! + ch]Gn

k lm

(7)

where f = e
ikx
� 2 + e

�ikx, g = e
ily
� 2 + e

�ily and g = e
imz
� 2 + e

�imz, with (f; g; h) 2 R

and ! = e
�ikx, with ! 2 Z, j!j = 1. The ampli�cation factor � is given by

� = �!
1� (R+ 1)�!

1� (R+ 1)!
(8)

where R = af + bg + ch 2 R, which clearly indicates j�j = 1. This result depends strongly

on the slanted averages used in the discretization of the spatial derivatives (see Eq. (6)).

It is not clear that any other explicit discretization would have produced a stable (and

unimodular) algorithm. This approach will be taken again when source terms are added to

the equation. As with all applications of the Von Neuman stability analysis, the results we

obtain are rigurously valid only in the limit of constant coe�cients and with the additional

assumption of periodic boundary conditions. Experience indicates, however, that when an

algorithm satis�es the Von Neuman stability criteria, it is numerically stable even when

these conditions are relaxed. The analysis we just outlined can be carried out even if in

Eqn. (5) A, B and C are smoothly varying functions of the coordinates (u; x; y; z) and the

�rst derivatives G;x, G;y and G;z , i.e. for a quasi-linear second order equation.

The algorithm presented is fully explicit for interior points, and it leads naturally to a

marching algorithm: given the value of G at time u = (n+ 1)�u, for all points at x = i�x,

it can be used to advance the solution to the set of points at x = (i+1)�x. This procedure

can be started near the inner boundary, given the values of G at x = 1
2
+�x, continuing the

outward sweep until the points just before the outer boundary have been reached. It can

not be applied to the points at x = 1
2
+�x since the algorithm becomes implicit at the inner

boundary, hence a modi�ed form must be used there. It is necessary to use a modi�ed form

of the algorithm at the outer boundary as well.

4

Our approach di�ers from the ADE method of Roberts and Weiss for the inviscid trans-

port equation described in [6]. In their case, they considered a Cauchy problem, and the

technique was to march in one direction, reach one of the boundaries of the grid, and then

reverse the slant of the angled derivatives and the direction of the sweep in the next time

iteration.

This is not possible in the CIVP formulation, since the boundary conditions are speci�ed

only at the inner boundary. The outer boundary must, in a sense, be considered as a free

boundary. It is one striking feature of the CIVP that the asymptotic form of equations,

when written in terms of compacti�ed coordinates, provides the correct boundary behaviour

and it does not require the introduction of arti�cial outgoing wave conditions.

Note also that we foliate the domain D with characteristic surfaces, and the physical

speed of propagation of the signal is in�nite on this surfaces, i.e. any signal which reaches

the inner boundary registers instantly at the outer boundary. This behaviour is modeled

correctly by a marching algorithm of the type described. This is another di�erence with

the ADE method mentioned, since theirs was a Cauchy problem and the data was given

on surfaces at constant time t, and therefore the in�nite speed of propagation that their

algorithm introduced was a numerical artifact.

5 Current State of Development

The code described in Sec. 6 implements the approach outlined earlier for Eq. 2. We have

not included the source terms in the RHS of the equation at this point, neither have we built

in the machinery to specify the boundary conditions (at present the boundary condition is

simply G(r = 1) = 0). It would be trivial to specify data at r = 1. The code was built

mainly as a proof of concept, and little e�ort has been spent to this point in optimization.

Some trivial changes are possible, e.g. reordering the indices of the 3-D arrays so that the

innermost loops stride is along the �rst array index.

Timing of the code has been minimal too, as it is still in a state of
ux. To give some

idea of the CPU requirements, a run on a grid of 128 radial points times 64x64 angular

points from u = 0 to u = 1 takes about 20 minutes on a Sparc2-type workstation. For

gravitational wave extraction, it is likely that we will need to use grids of the order of (256)3

to (1024)3, while the complexity of the calculations involved in the RHS of the equation will

probably increase the time requirements by a factor of ten, judging from what we have seen

when comparing the case of the axysimmetric SWE to the axysimmetric vacuum Einstein

equations [7]. We implemented the code in standard Fortran-77 since it was what we have

readily available.

For completeness, the code produces output in the form of 2-D slices of the evolved

function G(u; x; y; z), such that with the appropiate choice of input parameters (explained

in the main routine) one can look at the radiation �eld G at null in�nity. The output is

formatted so that a poor-man's version of a movie can be obtained by looking at the sequence

of graphs generated with the public domain package gnuplot [8]. A suitable command �le is

generated automatically. This has been useful at the development state, but more so�sticated

5

graphics will be required to explore 3-D datasets.

As far as documentation, at present it consists only of this writeup and the references

here. The code could be better commented, but work on that will have to wait until some

issues of coding practice have been settled, i.e. use of commons for argument passing, etc.

Comments and criticisms are most welcome.

References

[1] R. Isaacson, J. Welling, and J. Winicour, J. Math. Phys. 24, 1824 (1983).

[2] R. Isaacson, J. Welling, and J. Winicour, J. Math. Phys. 26, 2859 (1985).

[3] R. G�omez, R. Isaacson, and J. Winicour, J. Comp. Phys. 98, 11 (1992).

[4] R. G�omez and J. Winicour, Phys. Rev. D 45, 2776 (1992).

[5] A. Abrahams and C. R. Evans, Phys. Rev. D 37, 318 (1988).

[6] P. J. Roache, Computational Fluid Dynamics (Hermosa Publishers, Albuquerque, 1985),

Chap. III, p. 98.

[7] R. G�omez, J. Winicour, and P. Papadopoulos, in preparation.

[8] Anonymous FTP to ftp.dartmouth.edu [129.170.16.4], directory pub/gnuplot.

6

6 Code Listing

* nx, ny, nz: grid sizes

* x, y, z: grid arrays

* gn, go: `new' and `old' field arrays

* gy, gyy, gzz: angular derivatives

* l2n, l2o: `new' and `old' laplacian on the sphere

integer nx, ny, nz

parameter (nx = 128, ny = 32, nz = 32)

real x(0:nx), y(0:ny), z(0:nz)

real gn(0:nx,0:ny,0:nz), go(0:nx,0:ny,0:nz)

real gy(0:ny,0:nz), gyy(0:ny,0:nz), gzz(0:ny,0:nz)

real l2n(0:ny,0:nz), l2o(0:ny,0:nz)

* dx, dy, dz: grid spacings

* u, uf, du: initial time, final time, time step

* iter, iterskip: iteration counter, no. of iter between dumps

* islice, isliceno: selects x, y or z slicing, slice number

real dx, dy, dz

real u, uf, du

integer iter, iterskip

integer islice, isliceno

open (unit = 11, file = 'plot.gnu', status = 'unknown')

call grid(x, y, z, nx, ny, nz, dx, dy, dz, du)

call getparam(u, uf, du, iterskip, islice, isliceno)

call surfdata(gn, x, y, z, nx, ny, nz, u)

call wslice(gn, x, y, z, nx, ny, nz, islice, isliceno, u)

iter = 0

do while (u .lt. uf)

iter = iter + 1

u = u + du

call copy(gn, go, nx, ny, nz)

call boundary(gn, go, nx, ny, nz, dx, dy, dz, du, u)

call advance(gn, go, gy, gyy, gzz, l2o, l2n, x, y, z,

7

& nx, ny, nz, dx, dy, dz, du)

if (mod(iter,iterskip) .eq. 0)

& call wslice(gn, x, y, z, nx, ny, nz, islice, isliceno, u)

end do

close (unit = 11)

end

subroutine grid(x, y, z, nx, ny, nz, dx, dy, dz, du)

real x(0:nx), y(0:ny), z(0:nz)

integer nx, ny, nz

real dx, dy, dz, du

real pi

integer i, j, k

pi = 3.14159265358979323846

dx = 0.5 / float(nx)

dy = 2. / float(ny)

dz = 2. * pi / float(nz + 1)

du = min(dx,dy,dz) / 2.

do i = 0, nx

x(i) = 0.5 + i * dx

end do

do j = 0, ny

y(j) = -1. + j * dy

end do

do k = 0, nz

z(k) = k * dz

end do

return

end

subroutine surfdata(g, x, y, z, nx, ny, nz, u)

integer nx, ny, nz

8

real x(0:nx), y(0:ny), z(0:nz)

real g(0:nx,0:ny,0:nz)

real u

integer i, j, k

real x1, x2

x1 = 0.6

x2 = 0.9

do k = 0, nz

do j = 0, ny

do i = 0, nx

if ((x(i) .gt. x1) .and. (x(i) .lt. x2)) then

g(i,j,k) = ((x(i) - x1) * (x2 - x(i))) ** 2

& * (1. - y(j) ** 2)

& * cos(2. * z(k))

else

g(i,j,k) = 0.

end if

end do

end do

end do

return

end

subroutine boundary(gn, go, nx, ny, nz, dx, dy, dz, du, u)

real gn(0:nx,0:ny,0:nz), go(0:nx,0:ny,0:nz)

integer nx, ny, nz

real dx, dy, dz, du, u

* ... for the time being, set the boundary to zero,

* i.e. equivalent to having a perfect reflector at x=0.5

integer j, k

do k = 0, nz

do j = 0, ny

gn(nx/2,j,k) = 0.

end do

end do

9

return

end

subroutine wslice(g, x, y, z, nx, ny, nz, islice, isliceno, u)

integer nx, ny, nz, islice, isliceno

real x(0:nx), y(0:ny), z(0:nz)

real g(0:nx,0:ny,0:nz)

real u

integer i, j, k

character filename*14

filename(1:2) = 'u='

write (filename(3:14),'(e12.6)') u

open (unit = 10, file = filename, status = 'unknown')

if (islice .eq. 1) then

i = isliceno

do k = 0, nz

write (10,120) (y(j), z(k), g(i,j,k), j = 0, ny)

write (10,130)

end do

else if (islice .eq. 2) then

j = isliceno

do k = 0, nz

write (10,120) (x(i), z(k), g(i,j,k), i = 0, nx)

write (10,130)

end do

else if (islice .eq. 3) then

k = isliceno

do j = 0, ny

write (10,120) (x(i), y(j), g(i,j,k), i = 0, nx)

write (10,130)

end do

end if

close (unit = 10)

write (unit = 11, 150) 'splot "' // filename // '"'

120 format(3(5x,e12.5))

130 format('')

150 format(a)

10

return

end

subroutine copy(gn, go, nx, ny, nz)

integer nx, ny, nz

real gn(0:nx,0:ny,0:nz), go(0:nx,0:ny,0:nz)

integer i, j, k

do k = 0, nz

do j = 0, ny

do i = 0, nx

go(i,j,k) = gn(i,j,k)

end do

end do

end do

return

end

subroutine advance(gn, go, gy, gyy, gzz, l2o, l2n, x, y, z,

& nx, ny, nz, dx, dy, dz, du)

integer nx, ny, nz

real gn(0:nx,0:ny,0:nz), go(0:nx,0:ny,0:nz)

real gy(0:ny,0:nz), gyy(0:ny,0:nz), gzz(0:ny,0:nz)

real l2o(0:ny,0:nz), l2n(0:ny,0:nz)

real x(0:nx), y(0:ny), z(0:nz)

real dx, dy, dz, du

integer i, j, k

real gx, gxx, xh

real alpha, beta, gamma

*

* ... at the inner boundary

* evaluate the L^2 operator acting on g ...

* on the new and old levels ...

*

call mkl2(go, gy, gyy, gzz, l2o, y, nx, ny, nz, dy, dz, 1)

call mkl2(gn, gy, gyy, gzz, l2n, y, nx, ny, nz, dy, dz, 0)

*

* ... and insert into a modified form of the evolution algorithm ...

*

xh = x(0) + 0.5 * dx

11

do k = 0, nz

do j = 0, ny

gx = (go(1,j,k) - go(0,j,k)) / dx

gxx = (3. * go(0,j,k)

& - 7. * go(1,j,k)

& + 5. * go(2,j,k)

& - go(3,j,k)

&) / (2. * dx * dx)

gn(1,j,k) = gn(0,j,k)

& + go(1,j,k)

& - go(0,j,k)

& + ((1. - xh) ** 2 * gxx - 2. * (1. - xh) * gx

& - 0.5 * (l2o(j,k) + l2n(j,k)) / (xh * xh)

&) * (0.5 * du * dx)

end do

end do

*

* ... over the bulk of the grid ...

*

do i = 2, nx - 1

alpha = (1. - (x(i) - 0.5 * dx)) / dx

beta = 4. / (du * dx)

gamma = - 2. / (x(i) - 0.5 * dx) ** 2

*

* ... evaluate the L^2 operator acting on g

* on the new and old levels ...

*

call mkl2(go, gy, gyy, gzz, l2o, y, nx, ny, nz, dy, dz, i)

call mkl2(gn, gy, gyy, gzz, l2n, y, nx, ny, nz, dy, dz, i-1)

*

* ... and insert into the evolution algorithm ...

*

do k = 0, nz

do j = 0, ny

gn(i,j,k) = (gamma * 0.5 * (l2o(j,k) + l2n(j,k))

& + (beta - 2 * alpha * alpha) * gn(i-1,j,k)

& + alpha * (alpha + 1.) * gn(i-2,j,k)

& + alpha * (alpha - 1.) * go(i+1,j,k)

& + (beta - 2 * alpha * alpha) * go(i,j,k)

& + (- beta + alpha * (alpha + 1.)) * go(i-1,j,k)

&) / (beta - alpha * (alpha - 1.))

12

end do

end do

end do

*

* ... at the outer boundary

* evaluate the L^2 operator acting on g

* on the old level ...

*

call mkl2(go, gy, gyy, gzz, l2o, y, nx, ny, nz, dy, dz, nx)

call mkl2(gn, gy, gyy, gzz, l2n, y, nx, ny, nz, dy, dz, nx-1)

*

* ... and insert into a modified form of the evolution algorithm ...

*

do k = 0, nz

do j = 0, ny

gn(nx,j,k) = (gamma * 0.5 * (l2o(j,k) + l2n(j,k))

& + (beta - 2 * alpha * alpha) * gn(nx-1,j,k)

& + alpha * (alpha + 1.) * gn(nx-2,j,k)

& + (beta + alpha * (2. * alpha - 3.)) * go(nx,j,k)

& + (-beta - alpha * (5. * alpha - 4.)) * go(nx-1,j,k)

& + alpha * (4. * alpha - 1.) * go(nx-2,j,k)

& + (-alpha * alpha) * go(nx-3,j,k)

&) / (beta - alpha * (alpha - 1.))

end do

end do

return

end

subroutine mkl2(g, gy, gyy, gzz, l2, y, nx, ny, nz, dy, dz, i)

integer nx, ny, nz

real g(0:nx,0:ny,0:nz)

real gy(0:ny,0:nz), gyy(0:ny,0:nz), gzz(0:ny,0:nz), l2(0:ny,0:nz)

real y(0:ny)

real dy, dz

integer i

integer j, k

real g_north, g_south

real gm_north, gm_south

13

*

* calculate the `phi' derivatives

*

do j = 0, ny

gzz(j,0) = (g(i,j,1)

& - 2. * g(i,j,0)

& + g(i,j,nz)

&) / (dz * dz)

do k = 1, nz - 1

gzz(j,k) = (g(i,j+1,k)

& - 2. * g(i,j,k)

& + g(i,j-1,k)

&) / (dz * dz)

end do

gzz(j,nz) = (g(i,j,0)

& - 2. * g(i,j,nz)

& + g(i,j,nz-1)

&) / (dz * dz)

end do

*

* ... estimate the average value of g on a small circle around

* the poles

*

g_north = 0.

g_south = 0.

gm_north = 0.

gm_south = 0.

do k = 0, nz

g_north = g_north + g(i,ny,k)

g_south = g_south + g(i,0,k)

gm_north = gm_north + g(i,ny-1,k)

gm_south = gm_south + g(i,1,k)

end do

g_north = g_north / float(nz + 1)

g_south = g_south / float(nz + 1)

gm_north = gm_north / float(nz + 1)

gm_south = gm_south / float(nz + 1)

*

14

* ... now the `theta' derivatives

*

do k = 0, nz

gy(0,k) = (- 3. * g(i,0,k)

& + 4. * g(i,1,k)

& - g(i,2,k)

&) / (2. * dy)

gyy(0,k) = (2. * g(i,0,k)

& - 5. * g(i,1,k)

& + 4. * g(i,2,k)

& - g(i,3,k)

&) / (dy * dy)

do j = 1, ny - 1

gy(j,k) = (g(i,j+1,k)

& - g(i,j-1,k)

&) / (2. * dy)

gyy(j,k) = (g(i,j+1,k)

& - 2. * g(i,j,k)

& + g(i,j-1,k)

&) / (dy * dy)

end do

gy(ny,k) = (3. * g(i,ny,k)

& - 4. * g(i,ny-1,k)

& + g(i,ny-2,k)

&) / (2. * dy)

gyy(ny,k) = (2. * g(i,ny,k)

& - 5. * g(i,ny-1,k)

& + 4. * g(i,ny-2,k)

& - g(i,ny-3,k)

&) / (dy * dy)

end do

*

* ... assemble the L^2 operator ...

*

do k = 0, nz

l2(0,k) = - 4. * (gm_south - g_south) / (dz * dz)

do j = 1, ny - 1

l2(j,k) = - ((1. - y(j) ** 2) * gyy(j,k)

& - 2. * y(j) * gy(j,k)

15

& + gzz(j,k) / (1. - y(j) * y(j)))

end do

l2(ny,k) = - 4. * (gm_north - g_north) / (dz * dz)

end do

return

end

subroutine getparam(ubegin, ufinal, du, iterskip, islice,

& isliceno)

real ubegin, ufinal, du

integer iterskip

integer islice, isliceno

write (*,'(a$)') 'u initial: '

read (*,*) ubegin

write (*,'(a$)') 'u final: '

read (*,*) ufinal

write (*,'(a,i4)') 'estimated iters: ', int(ufinal / du)

write (*,'(a$)') 'iterskip: '

read (*,*) iterskip

write (*,'(a$)') 'slicing choice [1=x, 2=y, 3=z]: '

read (*,*) islice

write (*,'(a$)') 'slice #: '

read (*,*) isliceno

return

end

16

