
HPF tutorial
Tom Haupt

Northeast Parallel Architectures Center
at Syracuse University

Syracuse, New York, USA
haupt@npac.syr.edu

Copyright: T. Haupt, December 1994

Contents

Chapter 1 Goals and Scope of High Performance Fortran 1

Chapter 2 The HPF Model . 2

Chapter 3 Data Mapping . 3

Section 1 Overview . 3

Section 2 DISTRIBUTE . 4

Section 3 ALIGN . 5

Section 4 DYNAMIC . 7

Section 5 Allocatable Arrays and Pointers 7

Section 6 PROCESSORS . 9

Section 7 TEMPLATE . 10

Section 8 INHERIT . 11

Section 9 Alignment, Distribution, and Subprogram Interface 12

Section 10 Examples . 14

Topic 1 Example 1 . 14

Topic 2 Example 2 . 16

Topic 3 Example 3 . 18

Chapter 4 Data Parallel Statements and Directives 20

Section 1 Overview . 20

Section 2 Array Assignments (FORALL) 21

Topic 1 Fortran 90 array assignments 21

Topic 2 Array Sections . 21

Topic 3 WHERE statement and construct 21

Topic 4 Elemental invocation of intrinsic functions 22

Topic 5 FORALL statement and construct 22

Topic 6 WHERE...ELSEWHERE construct 25

Section 3 Pure Procedures . 25

Section 4 INDEPENDENT Directive . 26

iii

Chapter 5 Intrinsic and Library Procedures 28

Section 1 Elemental Functions . 28

Topic 1 List of Fortran 90 elemental functions 29

Subtopic 1 New HPF Elemental Function ILEN 29

Subtopic 2 Numeric Computation Functions 29

Subtopic 3 Character Computation Functions 30

Subtopic 4 Bit Computation Functions . 30

Subtopic 5 Conversion Functions . 31

Section 2 Transormational Functions . 31

Topic 1 List of Fortran 90 Transformational Intrisic Functions . . . 31

Subtopic 1 Array Reduction Functions . 31

Subtopic 2 Array Construction Functions 32

Subtopic 3 Array Manipulation Functions 32

Subtopic 4 Array Reshape Functions . 32

Subtopic 5 Array Computation Functions 32

Subtopic 6 Array Location Functions . 32

Subtopic 7 Other Transformational Functions 33

Section 3 Inquiry Functions . 33

Topic 1 List of Inquiry Intrinsic Functions 33

Subtopic 1 HPF System Inquiry Functions 33

Subtopic 2 Numeric Inquiry Functions . 34

Subtopic 3 Kind Functions . 34

Subtopic 4 Array Inquiry Functions . 34

Subtopic 5 Pointer Association Inquiry Function 35

Subtopic 6 Argument Presence Inquiry Function 35

Subtopic 7 Character Inquiry Function . 35

Subtopic 8 Bit Inquiry Function . 35

Section 4 Fortran90 intrinsic subroutines 35

Topic 1 List of Intrinsic Subroutines 35

iv

Section 5 HPF Library . 35
Topic 1 Mapping Inquiry Subroutines 36
Topic 2 Bit Manipulation Functions . 36
Topic 3 Array Reduction Functions . 36
Topic 4 Array Combining Scatter Functions 36

Subtopic 1 Example . 36
Topic 5 Array Prefix and Suffix Functions 37

Subtopic 1 Examples . 38
Topic 6 Array Sorting Functions . 39

Chapter 6 Extrinsic Procedures . 39
Section 1 Restrictions . 40

Chapter 7 Storage and Sequence Association 41
Section 1 Storage Associations . 41
Section 2 HPF Storage Associations Rules 42
Section 3 Sequence Associations . 43
Section 4 HPF Sequence Associations Rules 44

Chapter 8 Subset HPF . 44
Section 1 Fortran 90 Features in Subset HPF 45
Section 2 HPF Features Not in Subset HPF 46

Chapter 9 More About HPF . 46

v

Copyright: T. Haupt, December 1994

T. Haupt HPF Tutorial

.

1 Goals and Scope of High Performance Fortran

Nowadays, when increasing the speed of processors become more and more difficult,
more and more computer experts admit that the future of high performance computing
belongs to parallel computers. Many machines that allow for concurrent execution are
commercially available for several years. Nevertheless, this is a very rapidly developing
technology, and vendors come with newer, better concepts almost every year. Hardly ever
parallel computers coming from different vendors have a similar architecture. To exploit
specific features of the machine, vendors develop specific extensions to existing languages
(Fortran, C, ..., etc.) and/or develop vendor specific runtime libraries for interprocessor
communication. As a result, codes developed on these machines are not portable from
platform to platform. Even worse, moving to the next version of the machine from the
same vendor, usually requires recoding to obtain expected efficiency of the application.
As the consequence, there is no surprise that they are not widely used, in particular, for
commercial purposes. Users who traditionally require tremendous amount of CPU still
prefer conventional CRAY supercomputers, recognizing parallel computing as a high risk
technology, which does not protect software investment.

The problem of scalability and portability of the software for parallel computers,
which is the key for protection of software investment, is addressed by High Performance
Fortran (HPF). The idea behind HPF is to develop a minimal set of extensions to Fortran90
to support data parallel programming model, defined as single threaded, global name
space, loosely synchronous parallel computation. The purpose of HPF is to provide
software tools (i.e., HPF compilers) that produce top performance codes for MIMD and
SIMD computers with non-uniform memory access cost. The portability of the HPF codes
means that the efficiency of the code is preserved for different machines with comparable

1

T. Haupt HPF Tutorial

number of processors. The HPF extensions to the Fortran 90 standard fall into three
categories: compiler directives, new language features, and new library routines. The
HPF compiler directives are structured comments that suggest implementation strategies
or assert fact about a program to the compiler. They may affect the efficiency of the
computation performed, but they do not change semantics of the program. In analogy to
Fortran 90 statements, there are declarative directives, to be placed in the declaration part
of a scoping unit, and executable directives, to be placed among the executable Fortran
90 statements. The HPF directives are design to be consistent with Fortran 90 syntax
except for the directive prefix !HPF$, CHPF$ or *HPF$.

The new language features are FORALL statement and construct as well as minor
modifications and additions to the library of intrinsic functions. In addition, HPF
introduces new functions that may be used to express parallelism, like new array reduction
functions, array combining scatter functions, arrays suffix and prefix functions, array
sorting functions and others. Those functions are collected in a separate library, the HPF
library. Finally, HPF imposes some restrictions to Fortran 90 definition of storage and
sequence associations.

2 The HPF Model

The HPF approach is based on two key observations. First, the overall efficiency of
the program can be increased, if many operations are performed concurrently by different
processors, and secondly, the efficiency of a single processor is likely be the highest,
if the processor performs computations on data elements stored in its local memory.
Therefore, the HPF extensions provide means for explicit expression of parallelism and
data mapping. It follows that an HPF programmer expresses parallelism explicitly, and
the data distribution is tuned accordingly to control the load balance and minimize
communication. On the other hand, given a data distribution, an HPF compiler may
be able to identify operations that can be executed concurrently, and thus generate even
more efficient code.

2

T. Haupt HPF Tutorial

3 Data Mapping

3.1 Overview

templatedata objects
physical processors

with arbitrary topology
abstract processors
with grid topology

grid mapping
implementation dependent

!HPF$ TEMPLATE !HPF$ PROCESSORS

!HPF$ ALIGN !HPF$ DISTRIBUTE

HPF data alignment and distribution directives allow the programmer toadvise the
compiler how to assign data object (typically arrayelements) to processors’ memories.
The model (c.f. figure) is that there is atwo-level mapping of data objects to memory
regions, referred to as"abstract processors":

• arrays are first aligned relative to oneanother,
• and then this group of arrays is distributed onto a userdefined, rectilinear arrangement

of abstract processors

The final mapping, abstract to physical processors is not specified by HPF and it is
language-processor dependent.

The alignment itself is logically accomplished in two steps. First, the index space
spanned by an array that serves as an align target defines a natural template of the
array. Then, an alignee is associated with this template. In addition, HPF allows users to
declare a template explicitly; this is particularconvenient when aligning arrays of different
size and/or different shape. It is the template (either a natural or explicit one) that is
distributed onto abstract processors. This means, that all arrays’elements aligned with an
element of the template are mapped to the same processor. This way locality of data is
forced. Arrays and other data object that are not explicitly distributed using the compiler
directives are mapped according to an implementation dependent default distribution.

3

T. Haupt HPF Tutorial

One possible choice of the default distribution is replication: each processor is given its
own copy of the data.

The data mapping can be declared using declarative directives:PROCESSORS,
ALIGN, DISTRIBUTE, and, optionally, TEMPLATE. In addition, arrays may be
remapped during the runtime. To this end, array must bedeclared using DYNAMIC
directive, and the actual remapping is triggered by executable directives REALIGN and
REDISTRIBUTE.

It is important to notice that the template is not a first-class Fortran 90 object, in the
sense that it cannot be passed to a subprogram as an argument. As a consequence, a
distributed array passed to a subprogram is aligned either to the natural template of the
actual argument or it is aligned to the user defined template. Inboth cases it may lead
to a runtime, implicit remapping of the array.To allow more efficient implementations,
in particular when the mapping of the actual argument is known at the compile time,
HPFprovides a directive INHERIT that specifies that a dummy argument should be
aligned to a copy of the template of the corresponding actual argument in the same way
the actual argument is aligned. In addition, user may use a special syntax of the ALIGN
and DISTRIBUTE directives (with stars preceding the align and/or distribute attributes)
that serve as assertion rather than declaration of the mapping of the dummy argument

3.2 DISTRIBUTE

The DISTRIBUTE directive specifies a mapping of data objects to abstract processors
in a processor arrangement. Technically, the distribution step of the HPF model applies
to the template of the object to which the array is ultimately aligned.

A template may be distributed (in each dimension) in the following ways:

• BLOCK
• CYCLIC
• BLOCK(N)
• CYCLIC(N)

In addition, any dimension of the template may be collapsed or replicated onto a processor
grid (note, that it does not change the relative alignment of the arrays!).

The BLOCK distribution specifies that the template should be distributed across set
of abstract processors by slicing it uniformly into blocks of contiguous elements. The
BLOCK(n) distribution specifies that groups of exactly n elements should be mapped to
successive abstract processors, and there must be at least (array size)/n abstract processors

4

T. Haupt HPF Tutorial

if the directive is to be satisfied. The CYCLIC(n) distribution specifies that successive
array elements’ blocks of size n are to be dealt out to successive abstract processors
in round-robin fashion. Finally, CYCLIC distribution is equivalent to the CYCLIC(1)
distribution. The HPF distributions are illustrated in the following diagram.

1

2

3

4

5

6

7

8

10

11

12

9 13

14

15

16

6
7
8
9

10

2

6

10

14

3

7

11

15

1

2

9

10

3

4

11

12

7

8

15

16

5

6

13

14

4

8

12

16

11
12
13
14
15

!HPF$ TEMPLATE T(16)

!HPF$ PROCESSORS P(4)

!HPF$ DISTRIBUTE T(BLOCK(5)) ONTO P

16

1

9

13

1
2
3
4
5

5

!HPF$ DISTRIBUTE T(CYCLIC) ONTO P

!HPF$ DISTRIBUTE T(BLOCK) ONTO P

!HPF$ DISTRIBUTE T(CYCLIC(2)) ONTO P

EXAMPLES OF HPF DISTRIBUTIONS

Every object is created as if according to some complete set of specification directives;
if the program does not include complete specifications for the mapping of some object,
the compiler provides defaults. The default distribution is language-processor dependent,
but must be expressible as explicit directives for that implementation.

3.3 ALIGN

The ALIGN directive is used to specyfy that certain data objects are to be mapped
in the same way as certain other data objects. Operations between aligned data objects
are likely to be more efficient than operations between data objects that are not known
to be aligned.

5

T. Haupt HPF Tutorial

Data objects such as arrays may be aligned one with another in many ways. The
repertoire includes shifts, strides, or any other linear combination of a subscript (i.e., n*i
+ m), transposition of indices, and collapse or replication of array’s dimensions. Skewed
or irregular alignments are, however, not allowed.

INTEGER, DIMENSION(4,4) :: B

!HPF$ TEMPLATE T(12,12)

!HPF$ ALIGN B(I,J) WITH T(2:12:3,1:12:3)

REAL, DIMENSION(8,8) :: C,D

!HPF$ TEMPLATE T(12,12)

!HPF$ ALIGN C(:,:) WITH T(:,:)

!HPF$ ALIGN D(I,J) WITH T(I+5,J+5)

SHIFT AND STRIDESTRANSPOSITION AND STRIDE

COLLAPSERELATIVE ALIGNMENT

EXAMPLES OF HPF ALIGNMENTS

!HPF$ TEMPLATE T(12,12)

!HPF$ ALIGN A(I,J) WITH T(2*J-1,I)

REAL, DIMENSION(12,6) :: A

REAL, DIMENSION(8,12) :: E

!HPF$ TEMPLATE T(12)

!HPF$ ALIGN(*.:) WITH T(:)

If an object A is aligned with an object B, which in turn is aligned to an object
C, this is regarded as an alignment of A with C directly. We say that A isultimately
aligned withC. If an object is not explicitly aligned with another object, we say that it
is ultimately aligned with itself.

It is illegal to explicitly realign an object (REALIGN direcive) if anything else is
aligned to it and it is illegal to explicitly redistribute an object (REDISTRIBUTE direcive)
if it is aligned with another object.

6

T. Haupt HPF Tutorial

3.4 DYNAMIC

ALIGN and DISTRIBUTE directives are declarative directives and must be placed in
the declaration part of a scoping unit (e.g. subroutine). They define static data mapping:
once declared it cannot be changed at execution time.

HPF allows also for dynamic mapping of data object (e.g. arrays). The executable
directives REALIGN and REDISTRIBUTE are introduced for this purpose. These direc-
tives have the same syntax as static ALIGN and DISTRIBUTE directives, respectively,
and they must be placed among executable Fortran 90 statements. In addition, data object
to be remapped dynamically must be declared as dynamic using DYNAMIC directive,
for example:
!HPF$ DYNAMIC A,B
!HPF$ DYNAMIC :: C,D
!HPF$ DISTRIBUTE(BLOCK,BLOCK), DYNAMIC :: X

Dynamic mapping is not included in Subset HPF.

3.5 Allocatable Arrays and Pointers

The fundamental difference between mapping of static and allocatable arrays is in
time when the directives take effect. Mapping of allocatable arrays takes effect not
on entry to subroutine but only at time when the array is allocated by an ALLOCATE
statement.

As a consequence, the following code is not HPF-conforming:
SUBROUTINE ILLEGAL(A)
REAL, DIMENSION(:) :: A(:)
REAL, ALLOCATABLE :: B(:)

!HPF$ ALIGN A(I) WITH B(I)

The directive ALIGN in the above example cannot be processed since array B is not
yet allocated. In the next example:

SUBROUTINE ILLEGAL
REAL, ALLOCATABLE :: A(:),B(:)

!HPF$ ALIGN A(I) WITH B(I)
ALLOCATE(A(1000))

7

T. Haupt HPF Tutorial

ALLOCATE statement is nonconforming because A needs to be aligned but at that
point in time B is still unallocated. On the other hand,

SUBROUTINE GOOD
REAL, ALLOCATABLE :: A(:),B(:)

!HPF$ ALIGN A(I) WITH B(I)
ALLOCATE(B(1000))

is correct because the alignment action does not take place until A is allocated.

It is forbidden for any data object (except for itself) to be aligned to an array at the
time the array becomes undefined by reason of deallocation.

Another feature that a programmer must be careful about is that values of specification
expressions in ALIGN and DISTRIBUTE directives are determined only once on entry
to the subprogram. For example:

SUBROUTINE BE_CAREFUL(N,M)
REAL, ALLOCATABLE, DIMENSION(:) :: A,B

!HPF$ ALIGN B(I) WITH A(I+N)
!HPF$ DISTRIBUTE A(BLOCK(M*2)

N=5
M=50
ALLOCATE(A(495))
ALLOCATE(B(500))

The values of amount of shift N and block size M on entry to the subroutine are
retained by ALIGN and DISTRIBUTE directives. Consequently, the data mapping is
performed according to the original values of N and M and not 5 and 50, respectively.

One can gain more flexibility of mapping of allocatable arrays declaring them as
dynamic (using DYNAMIC directive) and using REDISTRIBUTE and/or REALIGN
directives that immediately follow ALLOCATE statement.

An array pointer may be used in REALIGN and REDISTRIBUTE as an alignee,
align-target or distributee, if and only if it is currently associated with a whole array (thus
not an array section). One may remap an object by using a pointer as an alignee or
distributee only if the object was created by ALLOCATE but is not an ALLOCATABLE
array.

8

T. Haupt HPF Tutorial

3.6 PROCESSORS

The PROCESSORS directive declares (one or more) processor arrangement(s). Only
rectilinear processor arrangements are allowed in HPF. Therefore they are completely
defined by their names, their ranks (number of dimensions), and the extent in each
dimension. For example:
!HPF$ PROCESSORS P(N)
!HPF$ PROCESSORS BIZARRO(1972:1997, -20:17)

The final mapping, abstract to physical processors, is not specified by HPF, and it
is language-processor dependent. The intent is, however, that if two object are mapped
to the same abstract processor at given instance during the program execution, the two
object are mapped to the same physical processor at that instant.

Every dimension of the processor arrangement must have nonzero extent. An HPF
compiler is required to accept any PROCESSORS declaration in which the product of
the extents is equal to the number of physical processors that would be returned by the
intrinsic function NUMBER_OF_PROCESSORS. Other cases may be handled as well,
depending on implementation. As a consequence, program that declare two processors
arrangements of different sizes, e.g.,
!HPF$ PROCESSORS P1(10) !HPF$ PROCESSORS P2(4,4)

may not be portable, while
!HPF$ PROCESSORS P1(16) !HPF$ PROCESSORS P2(4,4)

must be allowed by any HPF compiler.

If no shape is specified, then the declared processor arrangement is conceptually scalar
!HPF$ PROCESSOR SCALARPROC

Depending on the implementation architecture, such a processor arrangement may
reside in a "host" processor, or may reside in an arbitrary chosen processor, or may be
replicated over all processors.

The intrinsic functions NUMBER_OF_PROCESSORS and PROCESSORS_SHAPE
may be used to inquire about the total number of actual physical processors used to
execute the program. This information may then be used to calculate appropriate sizes
for the declared abstract processor, for example
!HPF$ PROCESSORS Q(NUMBER_OF_PROCESSORS())
!HPF$ PROCESSORS R(8,NUMBER_OF_PROCESSORS()/8)

9

T. Haupt HPF Tutorial

3.7 TEMPLATE

The TEMPLATE directive declares one or more templates, specifying for each the
name, the rank (number of dimensions), and the extent in each dimension, for example:
!HPF$ TEMPLATE T(100), TMPL2(N,2*N)
!HPF$ TEMPLATE, DISTRIBUTE(BLOCK) :: A(N)

A template is simply an abstract space of indexed positions. Practically, the only
use of a template is to be an abstract align-target that may then be distributed. Explicitly
declared templates are useful in the particular situation when one must align several
arrays relative to one another but there is no need to declare a single array that spans the
entire index space of interest (cf. example program no. 3).

Unlikely arrays, templates does not occupy any memory space, cannot be passed as
subprograms parameters or be in COMMON blocks. Therefore two templates declared
in different scoping units (e.g. subroutines) will always be distinct, and the template to
which a dummy argument is aligned is always distinct from the template to which the
actual argument is aligned. The only way for two program units to refer to the same
template is to declare the template in a module that is then used by the two program units

(Note: Modules are not in Subset HPF)

It may help to understand HPF mapping by assuming that each array is aligned with
a template, even though an actual implementation may be different. By default, each
array is aligned with its natural template, i.e. an index space that is identical to that
declared for the array. Therefore, one can think that the following code:

REAL, DIMENSION(100,100) :: A,B
!HPF$ PROCESSORS P(4,4)
!HPF$ DISTRIBUTE A(BLOCK,BLOCK) ONTO P
!HPF$ ALIGN B(:) WITH A(:)

is processed in the following way. First compiler create implicitly a natural template of A,
as if the user declared !HPF$ TEMPLATE natural_template_of_a(100,100)
and then the template is distributed onto processor arrangement P, and finally, array B is
aligned with the template. The explicitly declared templates allow to align the array to a
template that is larger than its natural one without unnecessary waste of memory.

When passing an array to a subprogram, by default the actual argument is aligned
with its natural template. For example, for the following call

10

T. Haupt HPF Tutorial

REAL, DIMENSION(100) :: A
...
CALL FOO(A(11:90))
...

the natural template of the actual argument has shape [80]. The user may then chose
to let the compiler to implicitly declare the template of the dummy argument to be an
exact copy of the natural template of the actual argument or the user may force use of
different template by using appropriate mapping directives (c.f. INHERIT directive and
section Alignment, Distribution and Subprogram Interface).

3.8 INHERIT

The INHERIT directive specifies that a dummy argument should be aligned to a
copy of the template of the corresponding actual argument in the same way that the
actual argument is aligned. In other words, the dummy argument is to be aligned to the
inherited template rather than to the natural template of the actual argument. For example:

REAL, DIMENSION(100) :: A
...
CALL FOO(A(11:90))
...
SUBROUTINE FOO(B)
REAL B(80)

!HPF$ INHERIT B
Here, the directive INHERIT force dummy argument B to be aligned to a template of
shape [100] as if the user declared
!HPF$ TEMPLATE inherited(100)
!HPF$ ALIGN B(I) WITH inherited(I+10)

Note that this allows to avoid costly data remapping on subroutine boundaries at the price
of possible introducing of some load imbalance.

If the actual argument is not a regular array section, say, it is an array expression,
then the inherited template is chosen arbitraily by the language processor. Consequently,
the programmer cannot know anything a priori about its distribution.

The INHERIT attribute implies a default distribution of DISTRIBUTE * ONTO *
(that is, the distribution of the inherited template is assumed to be exactly the same as that
declared in the calling procedure), and this default distribution is not part of Subset HPF.

11

T. Haupt HPF Tutorial

Therefore, if a program uses INHERIT, it must override the default distribution with an
explicit mapping directives in order to conform Subset HPF.

3.9 Alignment, Distribution, and Subprogram Interface

When calling subroutines, one typically faces the following situations:

• the mapping of the dummy arguments is known at compile time and it is to be forced
regardless the mapping of the actual argument

• the mapping of the dummy argument is known at compile time, moreover, it is known
at compile time that it is exactly the same as that of the actual argument

• the mapping of the dummy argument is not known at compile time and it should be
exactly the same as that of the actual argument (in particular, it may be different at
each invocation of the subprogram)

A dummy argument always has a fresh template to which is aligned. This template is
contructed in one of three ways:

• The template is declared explicitely (a natural template of other array may serve as
the explicit template here), and the dummy argument is aligned to it explicitly by
ALIGN directive.

• The dummy argument is not explicitly aligned and it have the INHERIT attribute.
In this case the argument is aligned to the inherited template, that is, the natural
template of the actual argument as declared in the callee (or it is implementation
dependent if the actual argument is not a regular array section).

• The dummy argument is not explicitly aligned and it does not have INHERIT
attribute. In this case, the dummy argument is aligned to the natural template of the
actual argument (which has the same shape and boundaries as the dummy argument).

To force a specific mapping of the dummy argument, the mapping must be defined
explicitly, and it must also appear in interface blocks.

To assert the language processor that the actual argument is mapped in the same way
as the dummy argument one uses descriptive form of mapping directives with asterisks
proceeding the mapping specifications. For example:
!HPF$ DISTRIBUTE A *(BLOCK) ONTO *P

asserts the compiler that A is already distributed BLOCK onto processor arrangement P
so, if possible, no data movement should occur.

12

T. Haupt HPF Tutorial

One can mix prescriptive and descriptive modes:
!HPF$ DISTRIBUTE A(BLOCK) ONTO *P

Here, the compiler should do whatever it takes to cause A to have BLOCK distribution
on the processor arrangement P; A is already distributed onto P, though it might be with
some other distribution format.

To force the language processor to copy all or some aspects of the distribution from
that of the actual argument, one uses transcriptive format of mapping directives (with
distribution parameters replaced by asterisks). For example:
!HPF$ DISTRIBUTE A * ONTO *

specifies that mapping of A should not be changed from that of the actual argument.

The transcriptive format in not included in Subset HPF.

13

T. Haupt HPF Tutorial

3.10 Examples

Example 1

(adopted from PARKBENCH, Low Level HPF Compiler Benchmarks, Kerenel AA)

program AA
parameter (N = 100000)

real PX(13,N), Q
integer i

!HPF$ PROCESSORS P(8)
!HPF$ TEMPLATE D(N)
!HPF$ ALIGN PX(*,I) WITH D(I)
!HPF$ DISTRIBUTE D(BLOCK) ONTO P

FORALL (i = 1:N)
* PX(1,i) = 10.0 * PX(13,i) + 0.2 * PX(12,i) +
* 2.6 * PX(11,i) + 0.25 * PX(10,i) +
* 0.11 * PX(9,i) + 2.5 * PX(8,i) +
* 1.01 * PX(7,i) + 0.5 * (PX(5,i) +
* PX(6,i)) + PX(3,i)
STOP
END

14

T. Haupt HPF Tutorial

the template is divided into 8 contiguous blocks of size 12,500

i.e., each processor is assigned block of array PX of size 13 x 12,500

PX(1,1)

PX(13,1)

PX(1,1000)

PX(13,1000)

ARRAY PX(13,1000)

TEMPLATE D(1000)

PROCESSORS P(8)

elements PX(1,k)...PX(13,k) are aligned

to a single template element D(k)

CHPF$ ALIGN PX(*,I) WITH D(I)

CHPF$ DISTRIBUTE D(BLOCK)

15

T. Haupt HPF Tutorial

Example 2

(adopted from NAS benchmark, fragment of the IS kernel)

program bucksort
integer :: N,MAX,KEY,i,j
parameter(MAXKEY=100) parameter(N=10000)
integer, dimension(0:N-1) :: key
integer, dimension(0:MAXKEY-1) :: keyden,keydenc
integer, dimension (0:MAXKEY-1,0:N-1) :: nkeyden

!HPF$ PROCESSORS PROC(4)
!HPF$ TEMPLATE TMP(0:MAXKEY-1)
!HPF$ DISTRIBUTE TMP(CYCLIC) ONTO PROC
!HPF$ ALIGN(:) WITH TMP(:) KEYDEN,KEYDENC
!HPF$ ALIGN NKEYDEN(:,*) WITH TMP(:)

forall(i=0:N-1) key(i)=mod(i,100)
nkeyden=0

do j=0,MAXKEY-1
where(key.eq.j) nkeyden(j,:)=nkeyden(j,:)+1

enddo

keydenc=0
keyden=sum(nkeyden,dim=2)
FORALL(i=1:MAXKEY-1) keydenc(i)=sum(keyden(0:i-1))

end

16

T. Haupt HPF Tutorial

A relative alignment of the arrays is defined:

elements NKEYDEN(i,0:9999), KEYDENC(i), and KEYDEN(i)

are to be stored in the same abstract processor

 NKEYDEN(0:99,0:9999) KEYDENC(0:99) KEYDEN(0:99)
TEMPLATE

TMP(0:99)

!HPF$ ALIGN NKEYDEN(:,*) WITH TMP(:)

!HPF$ ALIGN KEYDEN(:) WITH TEM(:)

!HPF$ ALIGN KEYDENC(:) WITH TEM(:)

!HPF$ DISTRIBUTE TMP(CYCLIC)

Elements of the template (and consequently, the array

elements aligned to them) are distributed onto the processor

load balance is achived for concurrent execution of the final

FORALL statement in this example code.

Note that array KEY is not distributed (it is assumed to be replicated) in order to minimize cost of communication. This may cause that

the first FORALL statement will be serialized by the HPF compiler. This inelegant feature of this example code comes from the fact that

we wanted to make the code simple and short, and therefore we skept the original initilaization phase of the IS kernel.

grid in a round robin fashion. This way an approximate

!HPF$

17

T. Haupt HPF Tutorial

Example 3

(adopted from PARKBENCH, Low Level HPF Compiler Benchmarks, Kerenel TM)

program TM
INTEGER NDIM,MDIM,ND1,MD1
PARAMETER (NDIM=1023,MDIM=2047,ND1=NDIM+1,MD1=MDIM+1)
REAL, DIMENSION(MDIM) :: R
REAL, DIMENSION(NDIM) :: C
REAL, DIMENSION(NDIM,MDIM) :: A
REAL, DIMENSION(ND1,MD1) :: ABIG
REAL, DIMENSION(1,1) :: ACORN
REAL, DIMENSION(NDIM-1,MDIM-1) :: B

CHPF$ PROCESSORS P(8)
CHPF$ TEMPLATE TMPL(ND1)
CHPF$ DISTRIBUTE TMPL(BLOCK) ONTO P
CHPF$ ALIGN ABIG(I,*) WITH TMPL(I)
CHPF$ ALIGN A(I,*) WITH TMPL(I)
CHPF$ ALIGN C(:) WITH TMPL(:)
CHPF$ ALIGN B(I,*) WITH TMPL(I+2)

forall(i=1:mdim) r(i)=1.0+i
forall(i=1:ndim) c(i)=1.0-i
forall(i=1:ndim,j=1:mdim) a(i,j)=i+j
acorn = 0.5

ABIG(1:NDIM,1:MDIM)=A
ABIG(1:NDIM,MD1)=C
ABIG(ND1,1:MDIM)=R
ABIG(ND1,MD1)=ACORN(1,1)

FORALL(I=1:ND1-2,J=1:MD1-2) B(I,J)=ABIG(I+2,J+2)
STOP
END

18

T. Haupt HPF Tutorial

array ABIG(ND1,MD1)

array A(ND1-1,MD1-1)

array B(ND1-2,MD1-2)

each element of the template TMPL(i) is associated with array elements

ABIG(i,1:MD1), A(i,1:MD1-1), B(i+2,1:MD1-2), and C(i,MD1-1) with

exceptions for TMPL(1), TMPL(2) not associated with any elements of B

and TMPL(MD1) which is not associated with any alements of A or C.

CHPF$ PROCESSORS P(8)

Contiguous blocks of the template (i.e. array elements associated

with them) are stored in local memories of the abstract processors

LEGEND:

 CHPF$ ALIGN B(I,*) WITH TMPL(I+2)

 CHPF$ ALIGN C(:) WITH TMPL(:)

 CHPF$ ALIGN A(I,*) WITH TMPL(I)

 CHPF$ ALIGN ABIG(I,*) WITH TMPL(I)

array C

A, and B

ABIG,

arrays

 CHPF$ TEMPLATE TMPL(ND1,MD1)

CHPF$ DISTRIBUTE TMPL ONTO P

As a result of this mapping directives assignments ABIG(i,k) = A(i,k), ABIG(j,k)=C(j) and B(i,j)=ABIG(i+2,k) will not cause interprocessor

communication

19

T. Haupt HPF Tutorial

4 Data Parallel Statements and Directives

The parallelism can be explicitly expressed in HPF using the following lan-
guage features: Fortran 90 array assignments, masked array assignments WHERE,
WHERE...ELSEWHERE construct, FORALL statements, FORALL constructs, INDE-
PENDENT assertions, intrinsic functions and the HPF library, and extrinsic functions

4.1 Overview

Several Fortran 90 features, notably array syntax, WHERE construct and many
elemental intrinsic functions proved to be well suited to express parallelism explicitly (as
it was intended to be). However, experience with early attempts to define data parallel
versions of Fortran, such as CM-Fortran, demonstrated severe limitations of Fortran 90
at this respect. Inspired by research languages, including Fortran D, Vienna Fortran and
others, Fortran 90 was augmented with new, HPF features to express data parallelism:

• FORALL statement and construct
• INDEPENDENT directive
• PURE directive
• parallel equivalents of transformational intrinsic functions such as SUM, MAXLOC,

RESHAPE, etc.
• a rich set of new standard library functions
• extrinsic procedures

FORALL statement and construct are generalization of array assignments and
WHERE construct to relax some restrictions imposed by Fortran 90. The INDEPEN-
DENT directive provides a mechanism to assert the compiler about data dependencies in
FORALL and DO loops (it may be obvious for a programmer that a loop can be safely
executed in parallel, while it is very difficult to prove it at compile time). In addition
within INDEPENDENT DO one can define a NEW instance of selected variables for
each iteration without broadcasting its value to all processors involved in computation.

In addition to Fortran 90 elemental intrinsics, HPF introduces a mechanism that is
semantically equivalent to user defined elemental functions: PURE functions called in
FORALL loops (not in Subset HPF). HPF superseeds Fortran 90 intrinsic transformational
functions by their parallel equivalents and adds 48 new routines collected in the HPF
Library (the Library is not a part of Subset HPF). Finally, HPF standardize mechanism
by which HPF programs call non-HPF subprograms (extrinsic procedures). This feature

20

T. Haupt HPF Tutorial

allows for a mixture of sequential and parallel programs (example: visualization routines),
as well as for taking full advantage of the machine’s specific architecture on which the
program is run, when the algorithm is difficult to express in a data parallel fashion.

To summarize, the parallelism can be explicitly expressed in HPF using the follow-
ing language features: Fortran 90 array assignments, masked array assignments WHERE,
WHERE...ELSEWHERE constructs, FORALL statements, FORALL constructs, INDE-
PENDENT assertions, intrinsic functions and the HPF library, and extrinsic procedures.

4.2 Array Assignments (FORALL)

Fortran 90 array assignments
Fortran77 forces the programmer to process array elements one at a time, in DO

loops. In fact, the more natural way of the process is that it performs some operation
on the whole array. In Fortran90 it is possible to treat a whole array as a single object.
For example, supposing that A, B and C are 100x100 arrays of real values, the sum of
arrays A, B resulting in array C can be simply expressed in Fortran 90 as

C = A + B
instead of tideous

DO i=1,100
DO j=1,100

C(i,j)=A(i,j)+B(i,j)
END DO

END DO Note, that the assignment of the array elements can be done in arbitrary
order, in particular in parallel. This observation is a base for HPF semantics of the array
assignments.

Array Sections
User can also refeference part of an array ("array sections"), such as B(:,1:99:2)

which corresponds to the odd-numbered columns of B.

WHERE statement and construct
Fortran90 allows for masked array assignments, WHERE statement and

WHERE...ELSEWHERE construct, for example:
WHERE(mask) A=B

21

T. Haupt HPF Tutorial

Here, the assignment a(i,j)=b(i,j) is executed only for these pairs of indices (i,j) where
elements of the logical array mask(i,j) evaluate to .TRUE.

Elemental invocation of intrinsic functions

Arrays and array sections can be arguments to a broad class of elemental initrinsic
functions, such as ABS, ATAN, COS, COSH, EXP, to name a few. For example, if A,
B are arrays as defined above

B = ABS(A)
is equivalent to Fortran77

DO i=1,100
DO j=1,100

b(i,j) = ABS(A(i,j))
END DO

END DO

FORALL statement and construct

FORALL statement and construct are new language features to express data par-
allelism, that is, to provide a convenient syntax for simultaneous assignments to large
groups of array elements. The functionality they provide is very similar to that provided
by the array assignments and the WHERE constructs in Fortran 90. In fact, all Fortran
90 array assignments, including WHERE, can be expressed using FORALL statements.
For example,

B = 1.0
A = B
A(1:98,3:100)=B(3:100,1:98)
WHERE(B.GT.0) A=2.*B

can be expressed using FORALL syntax as
FORALL(I=1:100,J=1:100) B(I,J)=1.0
FORALL(I=1:100,J=1:100) A(I,J)=B(I,J)
FORALL(I=1: 98,J=3:100) A(I,J)=B(I+2,J-2)
FORALL(I=1:100,J=1:100,B(I,J).GT.0) A(I,J)=2.*B(I,J) How-

ever, Fortran 90 places several restrictions on array assignments. In particular, it requires
that operands of the right side expressions be conformable with the left hand side ar-

22

T. Haupt HPF Tutorial

ray. These restrictions are relaxed by FORALL statements. For example, the following
assignments cannont be expressed easily in Fortran90:

FORALL(I=1:100,J=1:100) A(I,J)=(I+J)*B(I,J)
FORALL(I=1:100) A(I,I)=C(I)
FORALL(I=1:100) A(I,IX(I))=X(I)

In addition, a FORALL may call user-defined functions on the elements of an array,
simulating Fortran 90 elemental function invocation (albeit with a different syntax).
Functions that are allowed to be called in a FORALL loop must be declared as PURE
and they must not produce any side effects. Example:

FORALL(K=1:9) X(K)=SUM(X(1:10:K))

(Note: Fortran90 intrinsic functions are pure by definition).

The FORALL statement essentially preserves the semantics of Fortran 90 array
assignments: the array elements may be assigned in an arbitrary order, in particular,
concurrently. To preserve determinism of the result, it is required that each array element
is assigned only once.

Fig. 4.1 Data dependencies in a DO loop

23

T. Haupt HPF Tutorial

The FORALL construct is semantically equivalent to a sequence of the FORALL
statements. This implies that no loop carried dependencies may by present in the body
of the FORALL construct. These are shown in the fig. 4.1 which represents a DO loop

DO i=1,3
lhsa(i)=rhsa(i)
lhsb(i)=rhsb(i)

ENDDO
The lines on the diagram represent dependencies. Since assignment a in the second
iteration of the loop depends on assignment b in the first iteration, this DO loop cannot
be executed in parallel, and consequently it cannot be expressed as a FORALL construct.

The next diagram, in fig. 4.2 shows a parallelizable loop:

Fig. 4.2 Data dependencies in a FORALL loop

Here, the rhs expression of the assignment a can be safely evaluated concurrently for
each loop iteration, since elements rhsa(i) do not depend on computations performed in
other iterations. After this is completed (processors must be synchronized at this point),
assignments lhsa(i)=rhsa(i) are taking place, again in parallel. Then, the processors must
be synchronized once more, before the next array assignment is processed. With such

24

T. Haupt HPF Tutorial

dependency pattern we may instruct the compiler that we want to execute this loop in
parallel using FORALL construct:

FORALL (i=1:3)
lhsa(i)=rhsa(i)
lhsb(i)=rhsb(i)

ENDFORALL
In case of the masked array assignments (WHERE or FORALL with an optional mask) the
mask (or condition) must be evaluated before the loop is executed. Therefore statements
of the loop body may modify arrays that serve as a mask without influencing the mask
itself:

FORALL(i=1:n, a(i) > 1.0) a(i)=1.0/a(i)
This may lead to an additional synchronization.

FORALL construct and PURE directive are not part of Subset HPF

WHERE...ELSEWHERE construct

The FORALL construct does not replace the WHERE...ELSEWHERE construct,
that is, there no generalization of ‘ELSE’ clause for FORALL. The semantics of
the WHERE...ELSWHERE construct, as defined by Fortran 90 standard, is that both
"WHERE" block of statements and "ELSEWHERE" blocks are always executed (as op-
posed to IF...ELSEIF construct). In particular, the execution of the "WHERE" block
may affect data that are accessed by the "ELSEWHERE" block. Therefore assignments
defined in the "WHERE" block must be completed before "ELSEWHERE" block of
statements is executed.

4.3 Pure Procedures

A pure function is one that obeys certain syntactic constrains that ensure it produces
no side effects. This means that the only effect of a pure function reference on the state
of a program is to return a result - it does not modify the values, pointer associations,
or data mapping of any of its arguments or global data, and perform no external I/O.
A pure subroutine is one that produces no side effects except for modifying the values
and/or pointer associations of INTENT(OUT) and INTENT(INOUT) arguments. These
properties are declaraed by a new attribute (the PURE attribute) of the procedure.

A pure procedure may be used in any way that a normal procedure can. However, a
procedure is required to be pure if it is used in any of the following contexts:

25

T. Haupt HPF Tutorial

• the mask or body of a FORALL statement or construct

• within the body of a pure procedure

• as an actual argument in a pure procedure reference

Example:
INTERFACE PURE FUNCTION f(x)
REAL, DIMENSION(3) :: f
REAL, DIMENSION(3), INTENT(IN) :: x
END FUNCTION f
END INTERFACE

REAL v(3,10,10)
...
FORALL (i=1:10, j=1:10) v(:,i,j)=f(v(:,i,j))
...

PURE procedures are not part of Subset HPF

4.4 INDEPENDENT Directive

The execution of the FORALL assignment may require an intra- and interstatement
synchronizations: the evaluation of the left hand side expression of the FORALL
assignment must be completed for all array elements before the actual assignment is made.
Then, the processors must be synchronized again, before the next array assignment is
processed.

In some cases these synchronizations may be not necessary. The following diagram
illustates a situation where each loop iteration can be processed independently of any
computations performed in other iterations (lines in this diagram symbolize data depen-
dencies):

26

T. Haupt HPF Tutorial

Fig. 4.3 Data dependencies in an INDEPENDENT DO loop

!HPF$ INDEPENDENT !HPF$ INDEPENDENT
DO i=1,3 or FORALL(i=1:3)
lhsa(i)=rhsa(i) lhsa(i)=rhsa(i)
lhsb(i)=rhsb(i) lhsb(i)=rhsb(i)

END DO END FORALL

A mature HPF compiler should be able to perform appropriate data dependency
analysis to determine possible optimizations. Nevertheless, sometimes the dependency
analysis may be extremely difficult, e.g., because of indirections. In that cases, the user,
by putting INDEPENDENT directive, may assert the compiler that the operation in the
following FORALL statement or construct may be executed independently - that is, in any
order, or interleaved, or concurrently - without changing the semantics of the program.

The INDEPENDENT directive may also precede a DO loop, to assert the compiler
that iterations in the following DO loop may be executed independently. In addition,
in context of DO loop, the INDEPENDENT directive allows for declaration of new

27

T. Haupt HPF Tutorial

instances of a variable for each iteration of the loop. This is an exception from the global
space name paradigm (since each processor is allowed to assign a different value to a
variable that has the same name on different processors). For the sake of determinism,
the NEW variable becomes undefined beyond the scope of the DO loop.

5 Intrinsic and Library Procedures

HPF includes all Fortran90’s intrinsic procedures. It also adds new intrinsic pro-
cedures: NUMBER_OF_PROCESSORS, PROCESSORS_SHAPE, ILE , and extends
definition of MAXLOC and MINLOC by addition of an optional DIM argument. Not
all Fortran90 intrinsic procedures are in Subset HPF.

In addition to the new intrinsic functions, HPF defines a library module,
HPF_LIBRARY, that must be provided by vendors of any full HPF implementation
(thus not Subset HPF).

5.1 Elemental Functions

Many intrinsic procedures have scalar dummy arguments, and many of these may be
called with array actual arguments. These are called elemental intrinsic procedures. In
Fortran90 there are 64 elemental intrinsic function and one elemental subroutine.

Elemental functions are defined to have scalar results as well as scalar dummy
arguments. If the actual argument is an array or array section, the function is applied
element-by-element, resulting in an array of the same shape as the aragument and whose
element vaalues are the same as if the function had been individually applied to the
corresponding elements of the argument.

For example, if A, B are real arrays 100 by 100
B = ABS(A)

is equivalent to Fortran77
DO i=1,100

DO j=1,100
b(i,j) = ABS(A(i,j))

END DO
END DO Since the result does not depend on order in which assignments

of the array elements are done, the assignments can be performed concurrently.

HPF introduces an new elemental intrinsic function ILEN which computes the number
of bits needed to store an integer value.

28

T. Haupt HPF Tutorial

List of Fortran 90 elemental functions

New HPF Elemental Function ILEN

• ILEN(I) – returns one less than the lenght, in bits, of the two’s-complement repre-
sentation of an integer: if I is nonnegative, ILEN(I) has the value log2(I+1); if I is
negative, ILEN(I) has the value log2(-I). Argument I must be of type integer, result
type and type parameter are the same as I.

Numeric Computation Functions

• ABS(A) Absolute value.
• ACOS(X) Arc cosine function (radians).
• ASIN(X) Arc sine function (radians)
• ATAN(X) Arc tangent function (radians)
• ATAN2(Y,X) Argument of complex number (X,Y)
• CEILING(A) Least integer greater than or equal to its argument.
• COS(X) Cosine function (radians)
• COSH(X) Hyperbolic cosine function
• DIM(X,Y) MAX(X-Y,0)
• DPROD(X,Y) Double precision real product of two default real scalars.
• EXP(X) Exponential function
• FLOOR(A) Greatest integer less than or equal to its argument
• LOG(X) Natural (base e) logarithm
• LOG10(X) Common (base 10) logarithm
• MAX(A1,A2{,A3,...]) Maximum value
• MIN(A1,A2[,A3,...]) Minimum value
• MOD(A,P) Remainder modulo P, that is A-INT(A/P)*P
• MODULO(A,P) A modulo P
• SIGN(A,B) Absolute value of A times sign of B
• SIN(X) Sine function (radians)
• SINH(X) Hyperbolic sine function
• SQRT(X) Square root function
• TAN(X) Tangent function (radians)
• TANH(X) Hyperbolic tangent function

(DOT_PRODUCT and MATMUL are transformational intrinsic functions)

29

T. Haupt HPF Tutorial

Character Computation Functions

• ADJUSTL(STRING) Adjust left, removing leading blanks and inserting trailing
blanks.

• ADJUSTR(STRING) Adjust right, removing trailing blanks and inserting leading
blanks.

• INDEX(STRING,SUBSTRING[,BACK]) Starting position of SUBSTRING within
STRING

• LEN_TRIM(STRING) Length of string without trailing blanks
• LGE(STRING_A,STRING_B) True if String_A equals or follows String_B in ASCII

collating sequence
• LGT(STRING_A,STRING_B) True if String_A follows String_B in ASCII collating

sequence
• LLE(STRING_A,STRING_B) True if String_A equals or precedes String_B in ASCII

collating sequence
• LLT(STRING_A,STRING_B) True if String_A precedes String_B in ASCII collating

sequence
• SCAN(STRING,SET[,BACK]) Index of left-most (right-most if BACK is TRUE)

character of STRING that belongs to SET; zero if none belong
• VERIFY(STRING,SET[,BACK]) Zero if all characters of STRING belong to SET

or index of left-most (right most if BACK is TRUE) that does not.

(REPEAT and TRIM are transformational intrinsic functions)

Bit Computation Functions

• BTEST(I,POS) True if bit POS of integer I has value 1.
• IAND(I,J) Logical AND on the bits
• IBCLR(I,POS) Clear bit POS of I to zero.
• IBSET(I,POS) Set a Bit POS of I to one.
• IEOR(I,J) Exclusive OR on the bits
• IOR(I,J) Inclusive OR on the bits
• ISHFT(I,ISHFT) Logical shift on the bits (end off shift)
• ISHFTC(I,ISHFT[,SIZE]) Logical circular shift on a set of bits on the right.
• NOT(I) Logical complement of the bits

There is also an elemental subroutine:

• CALL MVBITS(FROM,FROMPOS,LEN,TO,POS) Copy bits

30

T. Haupt HPF Tutorial

Conversion Functions

• ACHAR(I) Character in position I of ASCII collating sequence.
• AIMAG(Z) Imaginary part of complex number.
• AINT(A[,KIND]) Truncate to a whole number.
• ANINT(A,[KIND]) Nearest whole number
• CHAR(I[,KIND]) Character in position I of the processor collating sequence
• CMPLX(X[,Y][,KIND]) Convert to COMPLEX type
• CONJG(Z) Conjugate of a complex number
• DBLE(A) Convert to DOUBLE PRECISION real.
• IACHAR(C) Position of character C in ASCII collating sequence
• IBITS(I,POS,LEN) Extract a sequence of bits
• ICHAR(C) Position of character C in the processor collating sequence
• INT(A[,KIND]) Convert to integer type
• LOGICAL(L[,KIND]) Convert between KINDs of logicals
• NINT(A[,KIND]) Nearest integer
• REAL(A[,KIND]) Convert to REAL type

5.2 Transormational Functions

A transformational intrinsic procedure is one that is not elemental, i.e., array argu-
ments are interpreted as a single objects rather than in elemental fashion. For example,
function MATMUL returns an algebraic product of two matrices and not an array of
products of the corresponding array elements.

HPF superseeds Fortran90 transformational functions by their parallel implementa-
tions optimized for specific architecure of the machine on which the program is run. In
addition, HPF defines a rich set of new transformational functions collected in the HPF
library (not in Subset HPF). Together they constitute a very powerful set of language
features to express paralelism.

List of Fortran 90 Transformational Intrisic Functions

Array Reduction Functions

• ALL(MASK,[DIM]) True if all elements are true.
• ANY(MASK[,DIM]) True if any element is true
• COUNT(MASK[,DIM]) Number of True elements

31

T. Haupt HPF Tutorial

• MAXVAL(ARRAY[,DIM][,MASK]) Value of maximum array element
• MINVAL(ARRAY[,DIM][,MASK]) Value of minimum array element
• PRODUCT(ARRAY[,DIM][,MASK]) Product of array elements
• SUM(ARRAY[,DIM][,MASK]) Sum of selected array elements

Array Construction Functions

• MERGE(TSOURCE,FSOURCE,MASK) Combines two (comformable) arrays under
control of a mask, i.e. TSOURCE when MASK is true and FSOURCE otherwise.

• PACK(ARRAY,MASK[,VECTOR]) Packs a masked array into a vector
• SPREAD(SOURCE,DIM,NCOPIES) Replicates an array by adding a dimension
• UNPACK(VECTOR,MASK,FIELD) Unpacks a masked array from a vector

Array Manipulation Functions

• CSHIFT(ARRAY,SHIFT[,DIM]) Performs circular shift(element i+1 -> i for shift
of +1)

• EOSHIFT(ARRAY,SHIFT[,DIM]) Performs end off shift(element i+1 -> i for shift
of +1)

• TRANSPOSE(MATRIX) Matrix transpose

Array Reshape Functions

• RESHAPE(SOURCE,SHAPE[,PAD][,ORDER]) Reshape SOURCE to shape SHAPE

Array Computation Functions

• DOT_PRODUCT(VECTOR_A,VECTOR_B) Dot product of two vectors
• MATMUL(MATRIX_A,MATRIX_B) Matrix multiplication

Array Location Functions Note: HPF extends Fortran90 definition of these function
allowing for an optional parameter DIM

• MAXLOC(ARRAY[,DIM][,MASK]) Location of maximum array element
• MINLOC(ARRAY[,DIM][,MASK]) Location of minimum array element

32

T. Haupt HPF Tutorial

Other Transformational Functions

• REPEAT(STRING,NCOPIES) Concatenates NCOPIES of STRING
• SELECTED_INT_KIND(R) Kind of type parameter for specified exponent range
• SELECTED_REAL_KIND([P][,R]) Kind of type parameter for specified precsion

and exponent range
• TRANSFER(SOURCE,MOLD[,SIZE]) Same physical representation as SOURCE,

but type of MOLD
• TRIM(STRING) Remove trailing blanks from a single string

5.3 Inquiry Functions

Fortran 90 has a number of intrinsic functions known as inquiry functions and nu-
meric manipulation functions (sometimes called the "environmental intrinsics"). These
functions, rather than performing some computation with their arguments, return infor-
mation concerning the status or nature of the argument.

There are several classes of the inquiry intrinsics: Numeric (KIND, PRECISION,
RADIX, EXPONENT, etc) to inquire or set the numerical environment , Array Inquiry
(ALLOCATED, SHAPE, SIZE, LBOUND, UBOUND), Pointer Association Status (AS-
SOCIATED), Argument Presence (PRESENT) and others.

HPF defines a new class of inquiry functions: System Inquiry Intrinsic Functions:

• NUMBER_OF_PROCESSORS returns the total number of processors available to
the program or the number of processors available to the program along a specified
dimension of the processors array.

• PROCESSOR_SHAPE returns the shape of the processor array.

In addition, HPF introduces Mapping Inquire Subroutines that allow the program to
determine the actual mapping of an array at runtime (particularly important when an
EXTRINSIC subprogram is invoked). These subroutines are included in the HPF Library
(not in Subset HPF).

List of Inquiry Intrinsic Functions

HPF System Inquiry Functions

• NUMBER_OF_PROCESSORS([DIM]) Total number of processors available to the
program or the number of procesors available along a specified dimension of the
procesor array

33

T. Haupt HPF Tutorial

• PROCESSOR_SHAPE() Shape of the processor array

Numeric Inquiry Functions

• DIGITS(X) Number of significant digits in the model for X.
• EPSILON(X) Number that is almost negligble compared with one in the model for

numbers like X.
• HUGE(X) Largest number in the model for numbers like X.
• MAXEXPONENT(X) Maximum exponent in the model for numbers like X.
• MINEXPONENT(X) Minimum exponent in the model for numbers like X.
• PRECISION(X) Decimnal precision in the model for X
• RADIX(X) Base of the model for numbers like X.
• RANGE(X) Decimal exponent range in the model for X.
• TINY(X) Smallest positive number in the model for numbers like X
• EXPONENT(X) Exponent part of the model for X
• FRACTION(X) Fractional part of the model for X
• NEAREST(X,S) Nearest different machine number in the direction given by the sign

of S
• RRSPACING(X) Reciprocal of the relative spacing of model numbers near X
• SCALE(X,I) X * b**I where b = RADIX(X)
• SET_EXPONENT(X,I) Model number whose sign and fractional part are those of

X and whose exponent part is I
• SPACING(X) Absolute spacing of model numbers near X

Kind Functions

• KIND(X) Kind type parameter value of X.

Also see transformational intrinsic functions SELECTED_INT_KIND and SE-
LECTED_REAL_KIND

Array Inquiry Functions

• ALLOCATED(ARRAY) True if the array is allocated.
• LBOUND(ARRAY[,DIM]) Array lower bounds
• SHAPE(SOURCE) Array (or scalar) shape
• SIZE(ARRAY[,DIM]) Array size
• UBOUND(ARRAY[,DIM]) Array upper bounds

34

T. Haupt HPF Tutorial

Pointer Association Inquiry Function

• ASSOCIATED(POINTER[,TARGET]) True if pointer is associated with target

Argument Presence Inquiry Function

• PRESENT(A) True if optional argument is present

Character Inquiry Function

• LEN(STRING) Lenght of the actual argument

Bit Inquiry Function

• BIT_SIZE(I) Maximum number of bits that may be held in an integer I.

5.4 Fortran90 intrinsic subroutines

Intrinsic subroutines are new in Fortran90; Fortran77 has only intrinsic functions.
These subroutines are referenced in the same way as any other subroutines. None of
them may be used as an actual argument.

List of Intrinsic Subroutines

• CALL DATE_AND_TIME([DATE][,TIME][,ZONE][,VALUES]) Real time clock
reading date and time.

• CALL MVBITS(FROM,FROMPOS,LEN,TO,POS) Copy bits
• CALL RANDOM_NUMBER(HARVEST) Uniform random numbers (0<=x<1)
• CALL RANDOM_SEED([SIZE][,PUT][,GET]) Initialize or restart random number

generator
• CALL SYSTEM_CLOCK([COUNT][,COUNT_RATE][,COUNT_MAX]) Integer

data from real-time clock

5.5 HPF Library

The Library procedures are divided into folowing categories:

• Mapping Inquiry Subroutines
• Bit Manipulation Functions
• Array Reduction Functions

35

T. Haupt HPF Tutorial

• Array Combining Scatter Functions
• Array Prefix and Suffix Functions
• Array Sorting Functions

Mapping Inquiry Subroutines

The mapping inquiry subroutines HPF_ALIGNMENT, HPF_TEMPLATE and
HPF_DISTRIBUTION allow the program to determine the actual mapping at run time.
It may be especially important to know the exact mapping when an EXTRINSIC sub-
program is invoked. To keep the number of routines small, the inquiry procedures are
structured as subroutines with optional INTENT(OUT) arguments.

Bit Manipulation Functions

The HPF library includes three elemental bit-manipulation functions.LEADZ com-
putes the number of leading zero bits in an integer’s representation. POPCNT counts the
number of one bits in an integer. POPPAR computes the parity of an integer.

Array Reduction Functions

HPF extends Fortran90’s repertoire of array reduction functions by IALL, IANY,
IPARITY, and PARITY which correspond to the commutative, associative binary opera-
tons IAND, IOR, IEOR, and .NEQV., respectively. These new functions operate in the
same manner as the Fortran90 SUM and ANY which correspond respectively to + and
.OR. operators.

Array Combining Scatter Functions

These are generalized array reduction functions in which arbitrary, but nonover-
laping, subset of array elements can be combined. There are twelve scatter functions:
ALL_SCATTER, ANY_SCATTER, etc., each being a generalization of one of the twelve
reduction functions: ALL, ANY, COPY, COUNT, IALL, IANY, IPARITY, MAXVAL,
MINVAL, PARITY, PRODUCT, and SUM.

Example We want to combine array elements of array A of shape [3,4] and put them
to array RESULT of shape[2,2] according to the following receipe:

36

T. Haupt HPF Tutorial

that is,
RESULT(1,1)=A(1,1)+A(2,1)+A(1,2)+A(2,2)
RESULT(2,1)=A(3,1)+A(3,2)+A(3,3)
RESULT(1,2)=A(1,3)+A(2,3)+A(1,4)+A(2,4)
RESULT(2,2)=A(3,4)

We can achieve this using function SUM_SCATTER in the following way:

1. declare base array B of shape [2,2] (because it is the shape of the RESULT) and
set it to 0.

2. declare two mapping arrays (because rank of B is 2), say I1,I2, each of shape [3,4]
(because it is the shape of A).

3. initialize arrays I1 and I2 in the following way:
1 1 1 1 1 1 2 2

I1 = 1 1 1 1 I2 = 1 1 2 2
2 2 2 2 1 1 1 2

This defines mapping of elements of A to elements of RESULT. For example, element
A(1,3) goes to RESULT(1,2) = RESULT(I1(1,3),I2(1,3)).

4. function call RESULT = SUM_SCATTER(A,B,I1,I2) does specified reduction.

Array Prefix and Suffix Functions
These functions allow for a scan of a vector. For a prefix scan, each element of the

result is a function of the elements of the vector that precede it, and for suffix scan, each
element of the result is a function of the elements of the vector that follow it.

There are twelve prefix function ALL_PREFIX, ANY_PREFIX, etc., and twelve
suffix functions ALL_SUFFIX, ANY_SUFFIX, etc., each corresponding to one of tweleve

37

T. Haupt HPF Tutorial

scan functions: ALL, ANY, COPY, COUNT, IALL, IANY, IPARITY, MAXVAL,
MINVAL, PARITY, PRODUCT, and SUM.

Use of the optional arguments DIM, MASK, SEGMENT and EXLUSIVE is demon-
strated in the following examples:

Examples Example 1

let A = [1, 2, 3, 4] SUM_PREFIX(A) = [1, 3, 6, 10] SUM_SUFFIX(A) = [10, 9, 7,
4] note that the results has always the same size and shape as array A

Example 2

let A = [1, 2, 3, 4] SUM_PREFIX(A, EXCLUSIVE=.TRUE.) = [0, 1, 3, 6]
SUM_SUFFIX(A, EXCLUSIVE=.FALSE.) = [10, 9, 7, 4] default value of the optional
parameter EXCLUSIVE is .FALSE.

Example 3

let A = [1, 1, 1, 2] and M = [T, T, F, T] SUM_PREFIX(A, MASK=M) = [1, 2,
2, 4] SUM_SUFFIX(A, MASK=M) = [4, 3, 2, 2] masked elements do not contribute
to the result

Example 4

let A = [1, 2, 3, 4, 5, 6] and S = [T, T, T, F, F, T] SUM_PREFIX(A, SEGMENT=S)
= [1, 3, 6, 4, 9, 6] SUM_SUFFIX(A, SEGMENT=S) = [6, 5, 3, 9, 5, 6] array S "divides"
array A into 3 segments: (1,2,3)(4,5)(6). The scan is made in each segment independently

Example 5

1 1 1
A = 2 2 2

3 3 3

1 7 13
SUM_PREFIX(A) = 3 9 15

6 12 18

array A is processed in array element order, as if temporarily regarded as rank one
array. Arrays MASK and SEGMENT are interpreted the same way, if present

38

T. Haupt HPF Tutorial

Example 6

1 1 1
A = 2 2 2

3 3 3

1 2 3
SUM_PREFIX(A, DIM=2) = 2 4 6

3 6 9
since optional argument DIM is present, a family of independent scan operations are
carried out along the selected dimension of A

Example 7

1 2 3 4 5 T T T T T T T F F F
A = 6 7 8 9 10 M = F F T T T S = F T T F F

11 12 13 14 15 T F T F F T T T T T

0 1 0 3 7
SUM_PREFIX(A, 2, M, S,.TRUE.) = 0 0 0 0 9

0 11 11 24 24
any combination of optional parameters DIM, MASK, SECTION, EXCLUSIVE is permit-
ted. If no elements are selcted for a given element of the result, that result element is
set to a default value that is specific to the particular function. For SUM_PREFIX and
SUM_SUFFIX it is 0.

Array Sorting Functions
HPF includes procedures for sorting multidimensional arrays: GRADE_DOWN and

GRADE_UP. These are structured as functions that return sorting permutations. An array
can be sorted along a given axis, or the whole array may be viewed as a sequence in
array element order. The sorts are stable, allowing for conveniet sorting of structures
by major and minor keys.

6 Extrinsic Procedures

Some algorithms may not be expressible efficiently in a data parallel paradigm. Some

39

T. Haupt HPF Tutorial

computations are inherently sequential (e.g., existing commercial visualization packages)
or it may be resonable to take full advantage of the machine’s architecure on which the
program is run at the price of nonpartability of the code. Therefore, it may desirable for
an HPF program to call a procedure written in a language other than HPF and possibly
supporting programming paradigm other than that of HPF. In that case the user may have
to take responsibility for interprocessor communication, synchronization of processors,
possibly dynamic process forking, etc.

For obvious reasons, HPF cannot specify anything about language in which the
extrinsic procedure is written (such as Fortran77, C, ADA or any other existing or yet
to be developed language). However, HPF does require extrinsic procedures to satisfy
certain behavioral requirements: the call to an extrinsic procedure that fulfills these rules
is semantically equivalent to the execution of an ordinary HPF procedure. An extrinsic
procedure must be declared EXTRINSIC and must have an explicit interface.

6.1 Restrictions

HPF requires a called extrinsic procedure to satisfy the following behavioral require-
ments:

• The overall implementation must behave as if all actions of the caller preceding
the subprogram invocation are completed before any action of the subprogram is
executed; and as if all actions of the subprogram are completed before any action of
the caller following the subprogram invocation is executed.

• IN/OUT intent restrictions declared in the interface for the extrinsic procedure must
be obeyed.

• Replicated variables, if updated, must be updated consistently.
• No HPF variable is modified unless it could be modified by an HPF procedure with

the same explicit interface.
• When a subprogram returns and the caller resumes execution, all objects accesible

to the caller after the call are mapped exactly as they were before the call.
• Exactly the same set of processors are visible to the HPF environment before and

after the subprogram call.

Extrinsics are not in Subset HPF

HPF_LOCAL procedures
The annex to HPF defines a mechanism for coding a specific type of extrinsic

procedures: HPF_local procedures. These are single processor "node" codes written

40

T. Haupt HPF Tutorial

either in single-process Fortran90 or in a single processor subset of HPF; the idea is
that only data that is mapped to a given physical processor is accessible to it. This
allows the programming of MIMD multiprocessor machines in a single-program multiple-
data (SPMD) style. Implementation-specific libraries may be provided to facilitate
communication between the physical procesors that are independently executing this
code, but specification of such libraries is outside the scope of HPF.

7 Storage and Sequence Association

7.1 Storage Associations

In general, the physical storge units or storage order for data object cannot be speci-
fied. However, Fortran 90’s COMMON, EQUIVALENCE, and SEQUENCE statements
provide sufficient control over the order and layout of storage units to permit data to
share storage units:

• COMMON statements provides the primary means of sharing data between units.

• EQUIVALENCE statement provides a means whereby two or more objects can share
the same storage units.

• SEQUENCE statement defines a storage order for structures permitting structures to
appear in common blocks and be equivalenced.

The model of storage association is a single linearly addressed memory, based on the
traditional single address space, single memory unit architecture. This model can cause
severe inefficiencies on architecures where storage for variables is mapped.

HPF modifies the model of storage associations, and, as a result, conforming
Fortran77 and Fortran90 may be not conforming HPF.

On the other hand, HPF introduces SEQUENCE directive to allow a user to de-
clare explicitely that variables or COMMON block are to be treated by the compiler as
sequential for which Fortran90 storage association rules apply. Since some implemen-
tations may supply an optional compilation environment where SEQUENCE directives
is applied by default to all variables and COMMON blocks, HPF defines also NO SE-
QUENCE directive.

41

T. Haupt HPF Tutorial

7.2 HPF Storage Associations Rules

• COMMON blocks are either sequential or nonsequential. By default they are
nonsequential. They may be declared as sequential using explicit HPF direcitve
SEQUENCE. Note that some implementations may suppply an optional compilation
environment where sequential is the default. In such a case user may explicitly declare
COMMON block as nonsequential using HPF directiveNO SEQUENCE.

• In essence, variables in a nonsequential COMMON block can be mapped using HPF
ALIGN and DISTRIBUTE directives as long as the components of the COMMON
block are the same in every scoping unit (subroutine, function, etc.) that declares
the COMMON block. A nonsequential variable in any occurence of the COMMON
block must be nonsequential with identical type, shape, and mapping attributes in
every occurence of the COMMON block. See more precise formulation below.

• Variables involved in an EQUIVALENCE statements may be mapped only by the
mechanism of declaring a rank-one array to cover exactly the aggregate variable
group and mapping that array.

• A sequential COMMON block has a single common block storage sequence as
defined in Fortran90 standard. All variables that appear in a sequential COMMON
block are sequential variables. A sequential variable cannot be explicitly mapped
(by HPF ALIGN or DISTRIBUTE directives) unless it is a scalar or rank 1 array
that is an aggregate cover

• No explicit mapping may be given for a component of a derived type having the
Fortran 90 SEQUENCE attribute.

An aggregate variable group is a collection of variables whose individual storage
sequences are parts of a single storage sequence. Variables associated by EQUIVALENCE
statements or by combination of EQUIVALENCE and COMMON statements form an
aggregate variable group. The variables of a sequential COMMON block form a single
aggregate variable group. The size of an aggregate variable group in the number of
storage units in the group’s storage sequence (as defined in Fortran90)

If there is a member in an agregate variable group whose storage sequence is totally
associated with the storage sequence of the aggregate variable group, that variable is
called an aggregate cover. Example:

COMMON /F00/ A(100), B(100), C(100)
DIMENSION, REAL(200) :: Z
EQUIVALENCE (A(1), Z(1))

Z is an aggregate cover for aggregate variable group (A,B).

42

T. Haupt HPF Tutorial

A COMMON block contains a sequence of components. Each component is either
anaggregate variable group, or a variable that is not a member of any aggregate variable
group. Example:

COMMON /F00/ A(100), B(100), C(100), D(100), E(100)
DIMENSION, REAL(100) :: X, Y
EQUIVALENCE (A(51), X(1)) (C(80), Y(1))

COMMON block /FOO/ has two components: (A,B) and (C,D,E). There is no aggregate
cover in this example.

Sequential COMMON blocks contain a single component. Nonsequential COMMON
blocks may contain several components that may be nonsequential or sequential variables
or aggregate variable groups.

If a COMMON is nonsequential, then all of the following must hold:

• Every occurence of the COMMON block has the same number of components with
each corresponding component having a storage sequence of exactly the same size.

• If a component is a nonsequential variable in any occurrence of the COMMON block,
then it must be nonsequential with identical type, shape, and mapping attributes in
every occurence of the COMMON block.

• If a component is sequential and explicitly mapped in any occurence of the COM-
MON block, then it must be sequential and explicitly mapped with identical mapping
attributes in every occurrence of the COMMON block. In addition, the type and shape
of the explicitly mapped variable must be identical in all occurences; and

• Every occurence of the COMMON block must be nonsequential.

Variables are either sequential or nonsequential. A variable is sequential if and only
if any of the following holds:

• it appears in a sequential COMMON block
• it is a member of an aggregate variable group
• it is an assumed-size array
• it is a component of a derived type with the Fortran90 SEQUENCE attribute
• it is declarewd to be sequential in an HPF SEQUENCE directive

7.3 Sequence Associations

Sequence association is a special form of argument association that applies to
character, array, and sequence structure arguments.

43

T. Haupt HPF Tutorial

For array arguments the fundamental rule in Fortran90 is that the shapes of an actual
argument and its associated dummy argument must be the same. To make this simple
rule viable and to make passing array sections possible, a new type of dummy aragument
was introduced in Fortran90: assumed-shape dummy argument.

But, alas, Fortran77 does not have assumed-shape arrays and therefore does not offer
the array argument simplicity they provide. Moreover, being array element sequence
oriented, the Fortran77 array argument association mechanisms are geared towards
associating array element sequences rather than associating array objects. Fortran90,
in order to be completely upward compatible with Fortran77, provides these separete
mechanisms that are natural only in systems with a linearly addressed memory.

HPF modifies Fortran90 sequence associations rules. In a nutshell, a distributed array
can be passed to a subprogram only if acutual and dummy arguments are conformable,
that is, they have the same shape. Otherwise both actual and dummy arguments must be
declared sequential. For a more precise description see below. As a result, conforming
Fortran77 and Fortran90 programs may be not conforming HPF.

7.4 HPF Sequence Associations Rules

When an array element or the name of an assumed-size array is used as an actual
argument, the associatead dummy argument must be a scalar or specified to be a sequential
array. An array-element designator of a nonsequinetial array must not be associated with
a dummy array argument.

When an actual argument is an array or array section and the corresponding dummy
argument differs from the actual argument in shape, then the dummy argument must be
declared sequential and the actuall array argument must be sequential.

A variable of type character (scalar or array) is nonsequential if it conforms to the
requirements of the definition of a nonsequential variable. If the lenght of an explicit-
lenght character dummy argument differs from the lenght of the actual argument, then
both the actual and dummy arguments must be sequentinal.

8 Subset HPF
At the time when specification of the HPF was being agreed upon (1992) there were

no commercial Fortran90 implementations on the market, except for a few source-to-
source, Fortran90 to Fortan77 or C, translators. In addition, some advanced HPF features
did not seem to be easily implementable, either. Many vendors expressed their concern

44

T. Haupt HPF Tutorial

about possibility of implemetation of HPF in a timely fashion. This inspired an idea of
defining a subset of HPF. The subset is a mandatory minimum of Fortran90 and HPF
features to be supported by a language processor in order to earn the name of a HPF
compiler. This way it was possible to develop early implemenations of HPF that provide
portable, basic set of tools for developing data parallel programs in Fortran.
(Note that implementators are allowed to support additional Fortran90 and HPF features,
and these features may be not portable at this time).

8.1 Fortran 90 Features in Subset HPF

• All Fortran77 standard conforming featurs, except for storage and sequence associ-
ations.

• DO WHILE, END DO, IMPLICIT NONE, INCLUDE
• Arithmetic and logical array features:

• array sections (subsript triple notation, vector-valued subsripts)
• array constructors limited to one level of implied DO
• array assignment
• masked array assignment (WHERE and WHERE...ELSEWHERE)
• arithmetic and logical operations on whole arrays and array sections
• array-valued external functions
• automatic arrays
• ALLOCATABLE arrays and ALLOCATE and DEALOCATE statements
• assumed-shape arrays

• Type declaration statements TYPE, TARGET and POINTER (except for kind-selector
and access-spec in TYPE declaration).

• Attribute specifications statements: ALLOCATABLE, INTENT, OPTIONAL, PA-
RAMETER, SAVE.

• Procedure features: INTERFACE blocks (with no generic-spec or module-procedure-
stmt), optional arguments and keyword argument passing.

• All intrinsic procedures are included in Subset HPF execpt for:

• character computation functions: ADJUSTL, ADJUSTR, LEN_TRIM, REPEAT,
SCAN, TRIM, VERIFY

• bit inquiry function: BIT_SIZE
• pointer association inquiry function: ASSOCIATED

45

T. Haupt HPF Tutorial

• numeric inquiry functions: DIGITS, EPSILON, EXPONENT, FRACTION,
HUGE, MAXEXPONENT, MINEXPONENT, NEAREST, PRECISION,
RADIX, RANGE, RRSPACING, SCALE, SETEXPONENT, SPACING, TINY,
TRANSFER

• conversion functions: ACHAR, IACHAR
• kind functions: KIND, SELECTED_INT_KIND, SELECTED_REAL_KIND

The following functions are part of Subset HPF as they are defined by Fortran77
(thus Fortran90 extensions are excluded form Subset HPF): CHAR, ICHAR, INDEX,
LEN, LGE, LGT, LLE, LLT, LOGICAL
The following functions are part of Subset HPF, however, with the contraint that an
optional agrument expressions DIM are initialization expressions and hence deliver
a known shape at compile time: ALL, ANY, COUNT, MAXVAL, MINVAL,
PRODUCT, SUM, LBOUND, SIZE, UBOUND, SPREAD, CSHIFT, EOSHIFT,
MACLOC, MINLOC.

• Syntax improvements: long (31) character names, lower case letters, use of "_" and
"!" initiated comments, both full line and trailing.

8.2 HPF Features Not in Subset HPF

• REALIGN, REDISTRIBUTE, and DYNAMIC directives
• INHERIT directive used with transcriptive form of the DISTRIBUTE directive such

as "DISTRIBUTE A * ONTO *"
• PURE function attribute
• FORALL...ENDFORALL construct
• The HPF library and he HPF_LIBRARY module
• Actual argument expressions corresponding to optional DIM arguments to the For-

tran90 MAXLOC and MINLOC intrinsic functions that are not initialization expres-
sions

9 More About HPF

It is impossible to touch all aspects of HPF in a such short tutorial. Hope-
fully, it provides enough information to get started with HPF, or just learn
what HPF is all about. An HPF programmer definitely must refer to the
language specification (href=ftp://ftp.npac.syr.edu/HPFF/hpf-v10-final.ps.Z or

46

T. Haupt HPF Tutorial

href=http://www.netlib.org/hpf/index.html) and vendor’s manuals for necessary de-
tails. A book "The High Performance Fortran Handbook" by C.H.Koebel, D.B.Loveman,
R.S.Schreiber, G.L.Steele, and M.E.Zosel, MIT Press 1994 is recommended as well.

HPF is a superset of Fortran90, therefore a knowledge of this language is necessary
to understand HPF. In this tutorial only selected Fortran90 features are discussed.
There are several books describing Fortran90, my favorite is "Fortran 90 Handbook,
Complete ANSI/ISO Reference" by J.C.Adams, W.S.Brainerd, J.T.Martin, B.T.Smith
and J.L.Wagener, McGraw_Hill Book Company, 1992.

The current version of HPF, sometimes referred to as HPF-1, is just the first
step to define a comprehensive language for parallel machines. The HPF Fo-
rum continues its effort, and the current status can be found in a web page
http://www.erc.msstate.edu/hpff/home.html .

There are ongoing efforts to build a suite of applications written in HPF. One of
those is available now, see http://www.npac.syr.edu/NPAC1/PUB/haupt/parkbench.html.
The Low Level HPF Compiler Benchmark Suite which is a part of the PARKBENCH
suite (http://www.epm.ornl.gov/˜walker/parkbench).

Last but not least, it is also worth mentioning the HPF Application Evaluation project
carried on at NPAC at Syracuse University (href=http://www.npac.syr.edu/hpfa) .

47

