
Multithreaded approach for dynamic load balancing

of parallel adaptive PDE computations

Nikos Chrisochoides�

Northeast Parallel Architectures Center

and Computer Science Department

Syracuse University, Syracuse, NY 13244-4100

Abstract

We present a multithreaded model for the dynamic load-balancing of parallel adaptive

PDE computations. Multithreading is used as a means of exploring concurrency in the

processor level and for tolerating: (i) long memory latencies, and (ii) synchronization costs

inherent to traditional load-balancing methods. We show that under certain values of the

parameters (i.e., number of threads, and context switch time) of the model, multithreaded

load-balancing systems are expected to perform better than existing software systems based

on traditional load-balancing methods.

1 Introduction

One of the di�culties in parallel programming is attaining good performance when solving prob-

lems with irregular and dynamic (adaptive) computations. Many of the early successes of parallel

processing were obtained on relatively regular problems (e.g., structured, static grids). The need

to solve real-life problems increased the necessity to address issues related to the parallelization

of irregular and adaptive computations such as adaptive �nite-element computations for uid

�This work was supported by an Alex Nason Prize Award, by NSF ASC 93 18152/ PHY 93 18152 (ARPA

supplemented), and by NASA Contract No. NAS1-19480, while the author was in residence at ICASE, NASA

Langley Research Center, Hapton, VA 23681.

1

ows and structures. One way to deal with these problems is to explore the use of concurrency

within a processor. A processor executes many computational actions or threads of control; each

thread is typically dependent on results of local or remote threads. Instead of scheduling these

threads in a static and prede�ned way, we allow them to be dynamically scheduled based on

availability of the data they depend on.

Traditional load-balancing methods for single-threaded computations under-utilize multipro-

cessor resources such as CPU, memory, and network. Because the load-balancing of single-

threaded computations is carried out in sequential phases that require global synchronizations

[1], [2]. As an alternative to the traditional load-balancing methods we propose a multithreaded

model for developing runtime support systems for parallel adaptive computations. Multithread-

ing is used as a mechanism for : (i) tolerating long memory latencies, and (ii) concurrently

executes both tasks required for load-balancing|such as information dissemination, decision

making, and data migration|and tasks required for the computation of the actual application.

Multithreading improves CPU and network utilization by masking the inherent synchronization

delays involved in traditional single-threading load-balancing methods. We prove that under cer-

tain values of the parameters (i.e., number of threads, and context switch time) of the model, mul-

tithreaded load-balancing systems are expected to perform better than existing single-threaded

load-balancing software.

The rest of this paper is organized as follows: Section 2 provides an overview of exiting load-

balancing methods and a brief introduction to lightweight threads. In Section 3 we describe

a set of geometric abstractions that we use in the rest of the paper. Section 4 outlines the

basic principles of our load-balancing algorithm based on the multithreaded model. Section 5

presents a comparison of the load-balancing algorithm with existing direct and incremental load-

balancing methods. Finally, in Section 6 we outline a number of advantages and disadvantages of

the multithreaded approach for parallel numerical computing and we conclude with future work

and directions.

2 Background

Parallelism, for data-parallel PDE solvers, is achieved by decomposing the underline geometric

(i.e., grids) or algebraic (i.e., linear systems of equations) data structures. The data decomposi-

tion of grids or sparse coe�cient matrices is equivalent to a graph partitioning problem which is

2

an NP-Complete problem. During the last 8 to 10 years many interesting heuristics have been

proposed to compute sub-optimal data distributions for static PDE problems. In this section

�rst, we present an brief overview of the most commonly used heuristics and introduce basic

concepts of threads which we will be using throughout the paper. Threads were used for many

years in disciplines such as real-time systems, and distributed operating systems very successfully.

Threads are used here as a mechanism to explore concurrency within a processor and tolerate

long memory latencies and synchronization costs inherent to traditional load-balancing methods.

2.1 Load-Balancing: An Overview

The objective of any load-balancing system is to minimize the execution time of the slowest

processor. Existing systems assume no overlapping of communication with calculations and

balance the processors' work loads by minimizing an objective function that is equal to the

summation of the processors' work loads and communication costs1 [23]:

OF = max
1�i�P

f W (m(Di)) +
X

Dj2�Di

C(m(Di);m(Dj)) g (1)

where, for data-parallel PDE solvers, m : fDig
P
i=1 ! fPig

P
i=1 is a function that maps the grid

points (grids) of submeshDi to the processors; W (m(Di)) is the computational load per iteration

of the processor m(Di), which is proportional to the number of grids in Di; C(m(Di);m(Dj))

is the cost of communication required (per iteration) between the processors m(Di) and m(Dj);

and, �nally, �Di
is the set of submeshes that are adjacent to Di. These heuristics are classi�ed

into two classes: direct (or clustering) and iterative (or incremental). A list of very interesting

results for direct and incremental methods, which is by no means complete, appears in [22], [23],

[24], [25] [13], [41], [42], [43], [44], [50], [1], [45], [46], and [47].

The data-clustering algorithms are based on grouping mesh points into clusters such that the

points within a cluster have a high degree of \natural association" among themselves, while the

clusters are \relatively distinct" from each other. In our case, \natural association" is expressed

in terms of the locality properties of the �nite element and �nite di�erence stencils that are used

to approximate a continuous PDE operator. The \relative distinction" is expressed in terms of

the address space that is associated with the unknowns of the mesh or grid points of the same

cluster. Most of these algorithms are computationally expensive and very successful in solving

1We assume homogeneous processors.

3

the load-balancing problem for static PDE computations [13], [48], [49]. They require a complete

global knowledge of the graph (mesh) and, therefore, these methods are not suitable for adaptive

methods in which the topology and/or geometry of the mesh change any time we perform an

h-re�nement throughout the PDE solution process. In addition, some of these methods are

sensitive to small perturbations (h-re�nement) and often lead to heavy data migration [44], [45].

On the other hand, existing incremental (single-threaded) methods are not as expensive as

clustering methods. Flaherty's group at PRI have shown in [1], [50] that these methods are very

successful in load-balancing the computation of adaptive PDE methods on distributed-memory

MIMD machines. Incremental methods|as is true for direct methods|decompose the parallel

adaptive PDE computations into three phases: (1) computation, (2) balancing and (3) data-

migration. The computation phase corresponds to the actual computation and inter-processor

communication required by the PDE solver, while the balancing and data migration phases

correspond to the calculation and inter-processor communication required to solve and enforce

the solution of the minimization problem de�ned by equation (1). A global synchronization

barrier guarantees that all processors reach the balancing and data-migration phases at the same

time [1].

2.2 Threads

A thread is an independent set of instructions that executes within the context of a UNIX process

(see [8], [9], [10], [11], and [12]). Threads in multithreaded programs run logically concurrently.

For multicomputers, the decomposition of a coarse-grained computation into �ner grained, logi-

cally concurrent executable threads is needed for three reasons : (1) to overlap in time logically

separate tasks that use di�erent resources (i.e., network, CPU, disks), (2) to simplify parallel

programming, and (3) to load balance computations. Typical examples for the logically concur-

rent execution of threads are (1) the overlapping of calculation with communication [14], and (2)

the overlapping of load balancing and actual computation phases [15].

During execution each thread can be in one of the following states: new, ready, running,

blocked, dead. The state of a thread is de�ned by its current activity. When a thread is created

it is given a function to run and it is set to a new state. A thread in the new state consists of

various data structures that describe its context. Once the data structures are allocated and the

thread is registered with the system, the thread moves to the ready queue and its state is set

4

to ready. If a thread is selected to execute, then its state changes to running. While a thread

is in the running state it may decide2 to wait for a condition or for outstanding receives to be

signaled, in which case its state changes to blocked. Finally, after a thread completes its execution

or decides to terminate its state, it changes to dead. The use of these states will become clear in

Sections 4.

NEW

READY BLOCKING

RUNNING

DEAD

Figure 1: Thread state diagram.

For the type of parallel computations we address in this paper we need non-preemptive schedul-

ing of the threads (i.e., threads run to completion or voluntarily yield the CPU). An advantage

of such a scheduling strategy is the reduction of overhead by keeping context-switches3 at a min-

imum. Threads are classi�ed into heavy- or light-weight threads based on the amount of context

(weight) that needs to be saved/restored when a thread is removed or reinstated from/to CPU.

In this paper we deal with light-weight threads.

The computation of multithreaded data-parallel programs consists of two phases, namely,

computation and thread-scheduling phases. During the computation phase, the processor con-

currently performs the operations needed to execute the actual computation: (1) it initializes

send/write operations, (2) it polls and noti�es threads of outstanding messages, (3) it performs

actual calculations, and (4) it provides services such as get/put data to/from remote proces-

2In the case of non-preemptive systems.
3Switching from one thread to another requires a certain amount of time for administration (saving and loading

registers and memory maps, updating various tables and lists).

5

sors, check/change status of non-local threads, data migration, etc. Finally, during the thread-

scheduling phase the processor does the bookkeeping required for the administration and the

execution of threads. This is an additional overhead that does not appear in the single-threaded

data-parallel paradigm.

3 Basic abstractions

We break the original load-balancing problem into many simpler problems by de�ning a hierar-

chy of geometric abstractions: domains, blocks, subdomains and regions. Regions are mapped

to scalar objects called threads. Threads execute in a loosely synchronous mode. Based on

computation and synchronization requirements, threads are grouped into distributed objects:

strings, ropes and nets. Threads that correspond to regions of the same subdomain belong in

the same string (see Figure 2). Threads that belong in the same string execute the same code

on di�erent data (SPMD model). Strings that correspond to the subdomains of the same block

belong in the same rope. Threads on di�erent ropes might compute the solution for di�erent

PDEs, use di�erent grid types, apply di�erent solution methods, and they may therefore have

di�erent computational requirements and synchronization points (MPMD model). Finally, ropes

that correspond to blocks of the same domain and handle the computation associated with the

same application belong in the same net (see Figure 2).

Processor work-load is balanced by: (i) migrating threads from overloaded processors to under-

loaded ones that handle strings from the same rope, and (ii) by migrating strings from overloaded

processors to underloaded ones that handle ropes from the same net. The thread and string mi-

gration is non-preemptive and, therefore, instead of thread migration we perform data-migration.

The data are migrated so that subsequent communication for the actual parallel computation of

the PDE solver is minimized.

For each subdomain Si;j we identify two types of regions: interface regions and interior regions.

A region is considered to be interface if there is a grid point in the region that has at least one

of its adjacent neighbor points residing in a di�erent context (traditionally non-local memory).

Non-interface regions are considered to be interior (see Figure 3). Computations on interior

regions of di�erent subdomains can be performed independently. To each interface or interior

region we correspond (create) one thread, t (see Figure 3). The size, jtj, of a thread is analogous

to the number of grid points of the corresponding region|many times in this paper we denote

6

Blocks

Subdomains + Grid + Lu = f

+ PDEs

Interface Regions

Interior Regions

Geometry Computational Space

ropes

strings

threads

net
Bi

Bi :

Sij

Sik

Sij :

Sik :

ri

ri :
sij

sik

sij

sik

Figure 2: Geometric and parallel abstractions.

by t the mesh that corresponds to the thread t. All threads for h-re�nement PDE methods are

of the same size. The size of a thread can change during the computation in order to achieve

better balancing of processors' work-loads (i.e., each thread can be split into two or more threads,

depending on the required load-balancing resolution; such a resolution can be achieved within a

small number|order of log
2
jtj or log

4
jtj| of iterations compared to the number of iterations

required by incremental load-balancing algorithms [1]).

Interior threads execute exclusively on data residing in the memory of the processor on which

the threads execute, while interface threads require the access of non-local data. Threads cor-

responding to regions of the same subdomain belong in the same process (context) and com-

municate using the shared-memory (user-address space for the process) model, while interface

threads that correspond to regions from di�erent subdomains communicate through message

passing (for more details, see [17]). Two types of local communication are identi�ed: inter-block

(or inter-group) and intra-block (or intra-group). Scheduling between these communication types

can reduce network tra�c. Such schedulings can be achieved by grouping threads of the same

block into ropes [26], [27], [28]. Ropes can use group synchronization and collective commu-

nication mechanisms and more than one rope can share resources such as CPU, network, and

7

Interior

Region

Interface

Region

Subdomain 1

Interface unknowns

Interior unknowns

Subdomain 2

Subdomain 3

Subdomain 0

Interface Threads

Subdomain 0

Subadomain 1 Subdomain 2

Subdomain 3

Interior Threads

Figure 3: Left) Block, Bi, in middle row second from the left of Figure 2; Bi is partitioned into

four subdomains, fSi;Bi
g4i=1. Right) Global thread graph and its partition into four subgraphs

that correspond to fSi;Bi
g4i=1. Threads with data dependencies (edges) that cross the internal

boundary of the subdomains are interface threads, otherwise they are interior threads.

memory. For more details on ropes, see a companion paper on an object-oriented approach for

load-balancing [29] (also, see [27], [26]).

4 Multithreaded approach for load-balancing

In this section we describe a multithreaded model for developing load-balancing (sharing) al-

gorithms. We've seen in Section 2.1 that the traditional single-threaded approach for load-

balancing of PDE computations leads to (1) under-utilization of multiprocessor resources such

CPU and network and (2) in some cases intensi�cation of problems like network contention |

due to the fact that all processors perform data migration simultaneously. In this Section we

propose a new approach for load-balancing that explores concurrency within the processor in or-

der to maximize utilization of multiprocessor resources without sacri�cing program complexity.

Our approach, in contrast to the direct and incremental single-threaded load-balancing methods,

attempts to ensure that no processor is waiting idle while more than one thread remains to be

executed on other processors. Each processor, when the need arises, requests work (threads)

from a subset (neighborhood) of processors that are overloaded or slow.

8

Independently o� the approach (traditional or new) we use, to load-balance PDE compu-

tations we should concern about three fundamental issues, namely: (1) memory latency, (2)

synchronization cost, and (3) convergence rate. In this paper we address the memory latency

and synchronization cost; it is di�cult to uncouple these issues and therefore we have to consider

the convergence rate of PDE solvers whenever we deal with message passing and scheduling

latencies. In the rest of the paper we address issues related to convergence rate of PDE solvers

only whenever is absolutely necessary.

4.1 Memory Latency

Parallel computers introduce a new level in the storage hierarchy; in addition to registers, cache

and memory, there is remote memory that is accessed across an interconnection network. In this

paper our objective is to distribute the computation and data so that we not only balance proces-

sors' work loads but also minimize overheads due to message passing (i.e., memory latencies). In

order to achieve our objective: (1) we minimize the access of non-local unknowns by minimizing

the number of grid points that reside on the interfaces of the subdomains (see Figure 3) and

(2) we mask memory latencies due to access of non-local data by overlapping calculations with

communication. We use threads to solve the above minimization problems without increasing

the software complexity. Threads here are used as a mechanism to explore concurrency in the

processor level in order to tolerate memory latency.

For multithreaded parallel PDE computations we identify two types of communications: �rst,

the communication between interior and interface threads that belong in the same context (local

threads), and second, the communication between interface threads that belong in di�erent

contexts (non-local threads). The e�cient communication of interior and interface threads is

critical for the overall performance and success of the multithreaded approach. Next we briey

describe the di�erent communication mechanisms between local and non-local threads. For more

details on the implementation of these mechanism, see [36], [37], [38], [20], [39], and [40].

The communication between local threads can be implemented using one of the following three

approaches: (1)message-passing, (2) shared variables, or (3)W-bu�er scheme [36]. An advantage

of the �rst approach is that it treats the communication of both interior and interface threads

in a uniform way, thereby simpli�ng programming. A disadvantage is that its implementation

(with some exceptions e.g., Mach) requires copies of local data-structures (to threads) that

9

belong in the same address space.4 The second approach eliminates additional copy operations

by using shared global data-structures. A disadvantage of this approach is that it requires

the use of synchronization mechanisms (mutexes) to protect unwanted reads/writes from/to

shared variables. The implementation of this approach increases program complexity and requires

drastic code re-structuring of existing single-threaded programs.

Finally, the third approach we present in [36] is a communication scheme speci�c to PDE

computations5 and is based on W (� 2) copies of the shared-variables. The idea of this scheme

is to use \rondeau" memory locations in such a way that a thread (destination in the case of

message passing) always reads the correct values that its partner (source) just wrote. Read and

write operations between threads that share these copies of variables are interleaved (odd/even

|modW| iterations in the caseW = 2) in a way that the overwriting (by one thread) of useful

values (to another thread) is prevented. Therefore, this scheme preserves the integrity of shared

variables without substantially increasing program complexity (in the case of single-copy shared-

variables) and without introducing overheads by unnecessary and expensive copy operations (in

the case of message passing) on local data structures. This approach can be implemented on top

of the existing single-threaded data-parallel codes with minimummodi�cations. A disadvantage

of this communication scheme is that the storage complexity is increasing by O
�
W �

q
jtj
�
.

The communication between non-local threads (i.e., reside in the memory of di�erent proces-

sors) can be implemented on top of existing message-passing such as MPI [19], p4 [30], and PVM

[31]. Unfortunately, most of the currently available message-passing software do not provide

support for sending/receiving messages to (from) a speci�c entity (function) of a process. To

provide thread-to-thread communication mechanism we use an idea similar to the AMs which is

described next. For more details on the implementation of the thread-to-thread communication

mechanism, see [37], [38], [20] and [40].

An interface thread that executes for the �rst time sends its messages to other threads, then

posts all its receives6 and voluntarily yields the CPU to the dispatcher. The dispatcher does

the proper bookkeeping and schedules the next interface thread|if any. After all the interface

4This is additional overhead that does not appear in the single-threaded approach.

5However it can be generalized for many other similar computations.
6If a non-blocking receive operation is available, it �rst posts its receives and then sends its messages to other

threads, which increases the probability of saving a local copy of the message from the system bu�er to user

address space.

10

threads from the ready queue are exhausted the dispatcher schedules the �rst interior thread.

Interior threads require only local data and therefore execute until completion. This process is

repeated until all interior threads are also exhausted from the ready queue.

During the time interior threads perform their own computations, non-local data is arriving

from the network (see Figure 4). The non-local data is stored in memory locations at the user

space. In [37] we describe a mechanism where a speci�c function (message-handler) is activated

(on message arrival the process is interrupted by a hardware signal) and performs the following

operations:

� Parses the header of the message and identi�es the destination thread.

� Decrements thread counter that indicates the number of outstanding receives and, when it

becomes zero, changes the state of the thread from blocking to ready and then moves the

thread from the blocking stack to the ready stack (see Figure 4). At this point, interface

threads have all the data (local and non-local) they need to perform their computations.

Notice that while interface threads are waiting for incoming messages (through the net-

work), the CPU is utilized by the interior threads, and thus calculations and communication

are overlapped.

4.2 Synchronization Cost

Load-balancing operation is a special case of the producer-consumer operation. Consumer-

producer operations like forks and joins and mutual exclusion in parallel programming require

synchronization. In parallel adaptive PDE computations the synchronization cost appears in the

form of waiting time due to unbalanced processor work-loads. Our objective is to minimize this

time and mask if possible inherent delays involved in the traditional load-balancing methods.

Again we do not want to sacri�ce program complexity. Our approach, in contrast to the direct

and incremental single-threaded load-balancing methods, attempts to ensure that no processor is

waiting idle while more than one threads remain to be executed on other processors. Each pro-

cessor, when the need arises, requests work (threads) from a subset (neighborhood) of processors

that are overloaded or slow.

Let us assume that our processors are homogeneous and our PDE solver does not share the re-

sources of the system with any other application. We de�ne as computational graph GC(EC ; VC),

11

Network Interface

CPU

Memory

User
Space

Interface Threads

Interface Threads

Interior
Threads

Stack of Threads

Ready

Administrator

Tester

Interior

Threads Interface
Threads

Blocking

Stack of threads

Network

Registers

Hardware
Signal &
Interupt

Store
msg at

1)

2) Store data

3) signal
thread

Figure 4: Overlapping of computation with communication; while interface threads are blocked

in the blocking stack waiting for the arriving non-local data, interior threads|from the ready

stack|utilize the CPU, performing computations on local data.

and denote as GC throughout this paper, the graph whose vertices, vi, correspond to the sub-

meshes Di, and the edges ei;j connect two vertices (vi; vj) if Di \ Dj 6= ;. The weights, wi, on

the vertices vi of the graph correspond to the computation associated with the submesh Di and

they are analogous to the number of mesh points, jDij. Figure 5{right depicts the computational

graph of the re�ned mesh (Figure 5{left); the weights wi indicate the number of threads per

subdomains (i.e., context or processor).

During the computation of adaptive PDE methods the mesh is re�ned in areas where the

resolution of the solution is larger than a given tolerance (see Figure 5). After the mesh re�nement

is completed, new threads are created (or old ones are destroyed) at runtime. All threads are of

the same size (h-re�nement). Processor computation is balanced by migrating interface threads.

The thread migration is non-preemptive (i.e., threads migrate before they start execution) and,

therefore, instead of thread migration, (save-and-migrate threads context, registers-values, etc.)

we perform data-migration of mesh-points only. The data are migrated so that subsequent

communication for the actual parallel computation of the PDE solver is minimized. Figure 6

depicts the �rst four migration phases required to share processors work loads. Notice that,

12

5

5

5

5

15

13

12

5

114

4

4

4

6

12

6

Figure 5: Left) h-re�nement and a 16-way partition of the block Bi of domain de�ned in Figures

2. Right) Computational graph with uneven number of threads per subdomains (i.e., context or

processor).

in contrast to incremental methods, load sharing of processors is completed within the �rst

iteration (i.e., before any global reduction operation is required for error checking or update of

global variables).

The policy for thread migration is based on a consumer-initiated consumer/producer (C/P)

paradigm. That is, every processor Pi = m(Di) (consumer), after it completes its computation

(when counter of ready and blocking stacks is zero), searches its neighborhood

N(Pi; l) = fPj; Pj = m(Dj) and Dj 2 N(Di; l) ; l = 1; :::; diameter(GC) g

to identify neighboring processors that are overloaded.7 Since our model attempts to assure that

no processor remains idle the consumer sends interrupt-driven messages to its neighbors (see [37]

for implementation details) and requests the migration of one or more threads.

After an overloaded processor Pj 2 N(Pi; l) is identi�ed, Pj (producer) interrupts its computa-

tion and sends a thread (data) to Pi. The thread that is migrated from the producer to consumer

who has initiated the request is likely to have data dependencies with other threads that already

7Due to changes on the demand of computation, in the case of adaptive methods, or due to external loads of

the processors in the case of time-sharing heterogeneous workstations.

13

13

12

6 6

6

6

6

6

6

6 14

6 6

6

6

6

5

5

5

5

15

13

12

5

5 5

105

5

5

11

5

Phase 1

Phase 2

7

6

77

7

7

7

7

7

7 7

7

7

6

7

7

7

9

7

7

9

7

7

7

7 7

7

7

Phase 3

Phase 4

8

8

88

P0

P1

P2

P3

P4

P5 P6

P7

Figure 6: The four phases required to migrate threads from overloaded processors to underloaded

ones, for the example of Figure 5. All four phases take place before the end of the �rst iteration

or occurrence of a global barrier.

14

Network

CPU

Network

CPU

Network

CPU

Network

CPU

T1 T2 T3 T4

T5

T6

T7

t1 t2 t3

t4 t5
t6

t7 t8 t9

T1
T2 T3 T4

T5

T6

T7

T1
T2 T3

T4

T5

T6

T7

T1
T2 T3 T4

T5

T6

T7

Priorities

3

t1

t9

0

Priorities

0

t1

t9

T4

t1

t9

Priorities

1

0

t1

t9

0

Priorities

2T4

T4

T4

P1

P0

P3

P4

Figure 7: Threads T4 migrates from processor P0 to processor P1; T4 has most of its data

dependencies with the threads of processor P1. The thread migration is based on the principle

of minimizing the communication of the actual computation.

reside on the consumer's side. The producer's decision to migrate an interface thread, ti, is based

on priorities, �ti, that are computed at runtime using the following equation:

�ti =
X

tj2Nti

(1 � �(ti; tj))

where

�(ti; tj) =

8><
>:

0 if m(ti) = m(tj)

1 if m(ti) 6= m(tj)

and Nti is the set of all threads tj with data dependencies on ti. Figure 7 depicts the di�erent

priorities for an interface thread T4

A consumer (processor) might get data from more than one producer. In this case it creates

and executes non-local threads one at a time, using FIFO policy. Before a non-local thread is

created, the consumer uses a remote service request, Check Thread State, to check the state

of the threads. If the state of a non-local thread for execution is ready, then the thread is

scheduled for execution. The Check Thread State is also an interrupt-driven RSR (see [37]

for implementation details). Notice that in contrast to existing load-balancing methods, no

15

synchronization is required for load sharing between producer and consumer processors. Also,

most of the computation required for decision making in sharing loads among processors takes

place at the consumer's side. Since any consumer would stay idle, we can use it for the extra work

required for the load-sharing. Also, notice that we use interrupt-driven remote service requests

so that the consumer can get data and schedule non-local (migrated) threads as soon as possible.

Existing load-balancing methods are based on global synchronization barriers that have to be

reached by all processors. In the case of single-threaded incremental methods, this implies that

some processors have to wait idle, since the processors' loads are balanced gradually.

5 Analysis

Consider the computation graph of Figure 5 and let Tst be the total execution time required

by the PDE solver|whose computation is balanced by an incremental algorithm|to perform

N iterations until the next mesh re�nement occurs. An incremental method will balance the

computation in K iterations. For each iteration i, with 1 < i < K, let W i
max denote the

maximum work-load over all processors. Let Tslb be the summation of time needed for the

decision making, communication, and packing data to be migrated from an overloaded processor

to an underloaded one. The decision making takes place at the beginning of each iteration i (for

i < K), and it therefore delays further the execution process of the overloaded (slower) processor.

Once the processors decide on the data to be migrated, they send/receive the additional data we

denote this time as Tmigr.

Taking into account that the slowest (most overloaded) processor dominates the execution

time at each iteration, we can compute the total execution time between two mesh re�nements

by:

Tst =
KX
i=1

W i
max + (N �K)WK

max +K � (Tslb + Tmigr): 2

Let W i
max =WK

max+�i where �i depends on the application and e�ectiveness of the incremental

algorithm and let C1 =
PK

i=1�i, �i, and subsequently of C1, be relatively large constants.
8 Then

(2) can be written as :

Tst = K �WK
max + C1 +N �WK

max �K �WK
max +K � (Tlb + Tmigr))

8For the examples that appear in [51], �i varies from 10 to 50 units, and K varies from a few tens of iterations

to a few 100's of iterations.

16

Tst = N �WK
max +K � (Tslb + Tmigr) + C1: 3

Now, consider again the same computation (Figure 5) as above and let Tmt be the total execu-

tion time required by the PDE solver|whose computation is load balanced by a multithreaded

load-sharing algorithm|to perform N iterations until the next mesh re�nement occurs. Then

Tmt is equal to :

Tmt =
NX
i=1

(W t
avr +Nt � Tctxt) + L � (Tmlb + Tput))

Tmt = N �W t
avr +N �Nt � Tctxt + L � (Tmlb + Tput) 4

where W t
avr is the average load in threads, L is the number of times the slowest processor has

to migrate data, and Nt is the maximum number of threads. Since we adjust (reduce) the size

of the threads in order to get better load resolution (unit-wise, where a unit can be an element

for FEM or a grid point for FD), we can say that after a small number, M , of iterations that

depends on the size of the thread we can have W t
avr ' Wavr, which is very close to perfect load

balance, unit-wise. For example, for threads with 100's of units (elements of grid points), by

reducing each time the thread size, jtj, by half, we can achieve perfect balance in fewer than ten

iterations. Also, let �i = W t
avr �Wavr for i < M and C0 =

PM
i=1 �i be a small constant. Then (4)

can be written as :

Tmt = N �Wavr +N �Nt � Tctxt + L � (Tmlb + Tput) + C0: 5

From equations (3) and (5) and the fact that WK
max � Wavr +� � tunit (usually � >> 1 [1]), we

see that a multithreaded load-sharing algorithm can be more e�cient than any single-threaded

incremental algorithm if:

Nt �
N � (WK

max �Wavr) +K � (Tslb + Tmigr) + C2 � L � (Tmlb + Tput)

N � Tctxt
6

For light-weight threads, Tctxt is of an order of tens of micro-seconds as well as Tmlb and Tput

[33], therefore N �Tctxt and L � (Tmlb+Tput) are very small numbers compared to K � (Tslb+Tmigr)

and C2 = (C1 � C0)
9 [1] that are in the order of seconds. Therefore, theoretically, a light-

weight multithread system with a reasonably large number of threads Nt is capable of improving

the performance of parallel adaptive PDE methods even further. A careful and very e�cient

implementation of such a model will be able to realize the above expectations. Moreover, for

9C0 � C1, since M usually is of the order of 10 (log2100), while K can be from a few tens to a few hundreds

of iterations [1] and �i decreases each time by half, while �i can be between a few units to tens of units.

17

high-order schemes or problems with many degrees of freedom per grid point (4.6) is valid without

any questions, since WK
max �Wavr can be in the order of minutes. Also, this is true whenever

very expensive load-balancing algorithms (with Tslb sometimes in the order of hours) are used.

6 Discussion - Conclusions

Existing load-balancing algorithms require that all processors enter the balancing phase at the

same time|guaranteed by global synchronization barriers. This requirement leads to: (1) the

under-utilization of resources such as CPU and network because many processors may wait idle

until the overloaded or slow processors reach the global barrier, and (2) the intensi�cation of

problems like network contention due to exclusive use either of the network (data-migration)

or of the CPU (decision-making). Concurrent execution of tasks required for load-balancing

with tasks required for the actual computation is the key ingredient for developing e�cient load-

balancing algorithms, and thus high-performance adaptive PDE solvers on multicomputers. Here

threads are used as a mechanism to explore concurrency in the processor level in order to tolerate

memory latency and mask synchronization costs inherent to traditional load-balancing methods.

It is important that threads tolerate memory and scheduling latencies without sacri�cing program

simplicity and portability.

Our preliminary experimental data using CHANT [38] indicates that up to 16 threads the

overhead introduced is very small (see Figure 8{left). Moreover, applications with a large number

of coarse-grain threads (up to a point) can minimize cache misses and improve performance (of

course the same performance can be achieved by the re-structuring of single-threaded programs

|error prune process). Also, in [54] preliminary data indicates that with up to seven threads one

can overlap computation with communication and improve processor and network utilization.

Finally, further research is required in three directions: (1) performance evaluation and cali-

bration of the model using real applications, (2) generalization to handle a larger spectrum of

applications (e.g., hp-re�nement methods, AMR algorithm), and (3) a transformation mecha-

nism (re-usability) for converting the o�-the-shelf vast scienti�c computing libraries for PDEs

from single-threaded to multithreaded programming paradigms.

18

Figure 8: Left) 5-point stencil computation on SPARC-ELC. As the number of threads increase

from 1 to 16 the performance of the computation improves due to less cache misses. Right) The

same computation but involving only 5 variables |to eliminate cache e�ects. The increase of

number of threads from 1 to 16 has little e�ect on the overall execution time.

Acknowledgements

I would like to thank Mike del Rosario, Matthew Haines, Thomas Fahringer, Piyush Mehro-

tra Geo�rey Fox, John Rice, David Keyes and Janusz Niemic for interesting and very helpful

discussions on threads and dynamic load-balancing of adaptive computations.

References

[1] S. R. Wheat, K. D. Devine, and A. B. Maccabe, Experience with automatic, dynamic

load balancing and Adaptive Finite Element Computation, Proceedings of the 27th Hawaii

International Conference on Systems Sciences, January, 1997.

[2] Ravi Ponnusamy, Yuan-Shin Hwang, Joel Saltz, Alok Choudhary, Geo�rey Fox, Supporting

Irregular Distributions in FORTRAN 90D/HPF Compilers University of Maryland, Depart-

19

ment of Computer Science and UMIACS Technical Reports CS-TR-3268, UMIACS-TR-94-57,

1994.

[3] R. Das, Y. Hwang, M. Uysal, J. Saltz, A. Sussman, Applying the CHAOS/PARTI Library to

Irregular Problems in Computational Chemistry and Computational Aerodynamics Proceed-

ings of the Scalable Parallel Libraries Conference, Mississippi State University, Starkville, MS

pp: 45{46, October 6{8, 1993.

[4] High Performance Fortran Forum, High Performance Fortran Language Speci�cation,

Scienti�c Programming, vol.2 no.1, July 1993. Also available by anonymous ftp from

ftp.npac.syr.edu.

[5] Fox, G., S. Hiranadani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu. FortranD

Language Speci�cation. Technical Report SCCS-42c, Rice COMP TR90-141, 37p, 1991.

[6] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, S. Ranka, "Fortran 90D/HPF Compiler for

Distributed Memory MIMD Computers: Design, Implementation, and Performance Results,

Proceedings of Supercomputing '93, Partand, OR, November 1993;

[7] B. Chapman, P. Mehrotra, H. Zima, Vienna Fortran | A Fortran language extensions for

distributed memory multiprocessors, NASA Contractor Report 187634, ICASE Report No.

91-72.

[8] J. Boykin, D. Kirschen, A. Langerman, and S. LoVoerso, Programming under Mach. Unix

and Open Systems Series, Addison-Wesley, 1993, p500.

[9] H. Lockhart, Jr., OSF DCE, Guide to Developing Distributed Applications, J. Ranade

Workstation Series, McGraw-Hill, Inc. 1997.

[10] B. Marsh, M. Scott, T. LeBlanc, and E. Markatos, First-class user-level threads. Proceedings

of the Thirteenth SOSP, Paci�c Grove, CA, October 1991

[11] F. Mueller, Implementing POSIX threads under UNIX: Description of work in progress,

Proceedings of the 2nd software engineering research forum, Melbourne, Florida, Nov. 1992.

[12] F. Mueller, A library implementation of POSIX threads under UNIX, 1993 winter USENIX,

San Diengo, CA, January 25-29, 1993.

20

[13] D. Horst Simon. Partitioning of unstructured problems for parallel processing. Technical

Report RNR-91-008, NASA Ames Research Center, Mo�et Field, CA, 94035, 1990.

[14] E. Felten and D. McNamee, Improving the Performance of Message-Passing Applications

by Multithreading, Proceedings of the Scalable High Performance Computing Conference pp

84{89, 1992.

[15] N.P. Chrisochoides, Multithread PDE solving systems for distributed address space par-

allel machines, Proceedings of the IMACS World Congress on Computational and Applied

Mathematics, pp 93-96, Atlanta, July 11-15, 1997.

[16] D. Keppel, Tools and techniques for building fast portable threads packages, Univer-

sity of Washington, Department of Computer Science and Engineering, Technical Report

UWCSE93-05-06, 1993.

[17] N.P. Chrisochoides and Mike del Rosario Evaluation of Remote Service Protocols for Dis-

tributed Multithreaded Runtime Support Systems Submitted to the Frontiers'95.

[18] N. P. Chrisochoides, M. Haines and P. Mehrotra An Evaluation of Distributed Multithreaded

Primitives for PDE Computations, In preparation ICASE Report.

[19] MPI Forum, Message-Passing Interface Standard, April 15, 1997.

[20] I. Foster, Carl Kesselman, R. Olson, Steve Tuecke, Nexus: An Interoperability Layer for

Parallel and Distributed Computer Systems, Argonne National Laboratory, ANL/MCS-TM-

189, May 1994.

[21] F. Bodin, P. Beckman, D. Gannon, S. Yang, S. Kesavan, A. Malony, B. Mohr, Imple-

menting a Parallel C++ Runtime System for Scalable Parallel Systems, Proceedings of the

Supercomputing'93 Conference, Portland, Oregon, Nov. 15-19, 1993.

[22] Fox, G., R. Williams and P. Messina Parallel Computing Works! Morgan Kaufmann

Publishers, Inc. San Francisco, California, 1997.

[23] N. P. Chrisochoides, Elias Houstis and John Rice, Mapping Algorithms and Software En-

vironment for Data Parallel PDE Iterative Solvers, Special issue of the Journal of Parallel

and Distributed Computing on Data-Parallel Algorithms and Programming, Vol 21, No 1, pp

75{95, April, 1997.

21

[24] B. Hendrickson and R. Leland, The Chaco User's Guide, SAND93-2339

[25] B. Hendrickson and R. Leland, A Multilevel Algorithm for Partitioning Graphs, SAND93-

1301

[26] Piyush Mehrotra Matthew Haines, An overview of the OPUS language and runtime system,

NASA CR-194921 ICASE Report No. 94-39 , Institute for Computer Applications in Science

and Engineering Mail Stop 132C, NASA Langley Research Center Hampton, VA 23681-0001,

May 1997.

[27] N. Sundaresan and L. Lee, An object-oriented thread model for parallel numerical appli-

cations. Proceedings of the 2n Annual Object-Oriented Numerics Conference - OONSKI 94,

Sunriver, Oregon April 24-27 1997. Pages 291-308.

[28] Gannon, D. S. Yang, and P. Beckman. User Guide for a portable Parallel C++ Programming

System pC++. Department of Computer Science and CICA, Indiana University, January

1997.

[29] N.P. Chrisochoides, A Scalable Object-Oriented Model For Load Balancing Parallel Adap-

tive Computations On Multicomputers To appear in the proceedings of the U.S. Association

for Computational Mechanics, Dallas, June 12-14, 1995.

[30] Ralph M. Butler, and Ewing L. Lusk, User's Guide to p4 Parallel Programming System Oct

1992, Mathematics and Computer Science division, Argonne National Laboratory.

[31] A. Belguelin, J. Dongarra, A. Geist, R. Manchek, S. Otto, and J. Walpore, PVM: Experi-

ences, current status and future direction. Supercomputing'93 Proceedings, pp 765{6.

[32] R. Konuru, J. Casa, R. Prouty, S. Otto and J. Walpole, A user-level process package for

PVM, Proceedings of the Scalable High Performance Computing Conference, Knoxville Ten-

nessee, May 23-25, pp 48{55, 1997.

[33] Thorsten von Eicken, Davin E. Culler, Seth Cooper Goldstein, and Klaus Erik Schauser,

Active Messages: a mechanism for integrated communication and computation Proceedings

of the 19th International Symposium on Computer Architecture, ACM Press, May 1992.

22

[34] E. Brewer and B. Kuszmaul, How to get good performance from CM-5 data network,

Proceedings of the International Parallel Processing Symposium, 1997.

[35] Thorsten von Eicken, Personal Communication.

[36] N.P. Chrisochoides, An E�cient thread-to-thread communication for hybrid

shared/distributed address space programming paradigms, In preparation, to be submit-

ted to IEEE Trans. Parallel and Distributed Computing.

[37] Juan Miguel del Rosario and N.P. Chrisochoides An interrupt driven implementation of

thread-to-thread communication for distributed address space machines, To be submitted to

IEEE Trans. Parallel and Distributed Computing.

[38] Matthew Haines David Cronk Piyush Mehrotra, On the design of Chant : A talking threads

package, NASA CR-194903 ICASE Report No. 94-25, Institute for Computer Applications

in Science and Engineering Mail Stop 132C, NASA Langley Research Center Hampton, VA

23681-0001, April 1997.

[39] M. Feeley, J. Chase, and E. Lazowska, User-level threads and interprocess communication,

University of Washington, Department of Computer Science and Engineering, Technical Re-

port 93-02-03, 1993.

[40] I. Kala, E. Arjomandi, G. Gao, and B. Farrell, FTL: A multithreaded environment for

parallel computation, Proceedings CASCON'94, pp 292{303, 1994.

[41] Farhat, C. A simple and e�cient automatic fem domain decomposer. Computers and

Structures, 28:579{602, 1988.

[42] Nashat Mansour and Geo�rey Fox. Allocating Data to Multicomputer Nodes by Physical

Optimization Algorithms for Loosely Synchronous Computations. Concurrency: Practice

and Experience, Vol. 4, Number 7, pp 557-574, October 1992.

[43] M. Berger, S. Bokhari. A partitioning strategy for nonuniform problems on multiprocessors.

IEEE Trans. Computers, C-36, 5 (May), pp. 570{580, 1987.

[44] R. D. Williams. Performance of dynamic load balancing algorithms for unstructured mesh

calculations. Concurrency Practice and Experience, 3(5), 457-481, 1991.

23

[45] C. Walshaw and M. Berzins, Dynamic load balancing for PDE solvers an adaptive unstruc-

tured meshes, University of Leeds, School of Computer Studies, Report 92.32, 1992.

[46] M. Jones and P. Plassman, Parallel algorithms for adaptive re�nement and partitioning of

unstructured meshes. Proceedings of the Scalable High Performance Computing Conference,

Knoxvile Tennessee, May 23-25, pp 478{485, 1997.

[47] A. Vidwans and Y. Kallinderis, A parallel dynamic load balancing algorithm for 3-D adaptive

unstructured grids, 11th AIAA Computational Fluid Dynamics Conference, AIAA-93-3313-

CP, Orlando, FL, July 1993.

[48] N. P. Chrisochoides, J. R. Rice. Partitioning heuristics for PDE computations based on

parallel hardware and geometry characteristics. In Advances in Computer Methods for Partial

Di�erential Equations VII, (R. Vichnevetsky. D. Knight and G. Richter, eds) IMACS, New

Brunswick, NJ, pages 127-133, 1992.

[49] N. P. Chrisochoides, Nashat Mansour and Geo�rey Fox. A Comparison of data mapping

algorithms for parallel iterative PDE solvers Journal of Concurrency Practice and Experience,

1995.

[50] H. L. deCougny, K. D. Devine, J.E. Flaherty, R. M. Loy, C. Ozturan, and M. S. Spephard,

Load Balancing of Parallel Adaptive Solution of Partial Di�erential Equations, Rensselaer

Polytechnic Institute, Department of Computer Science, Technical Report, TR94-8, 1994.

[51] C. Ozturan , H.L. deCougny , M.S. Shephard , J.E. Flaherty, Parallel Adaptive Mesh

Re�nement and Redistribution on Distributed Memory Computers, Rensselaer Polytechnic

Institute, Department of Computer Science, Technical Report, TR93-26, 1993.

[52] N. P. Chrisochoides, G. C. Fox and J. F. Thompson, MENUS-PGG : Mapping Environment

for Numerical Unstructured & Structured - Parallel Grid Generation, In the Proceedings of

the Seventh International Conference on Domain Decomposition Methods in Scienti�c and

engineering computing, 1995.

[53] J. Holm, A. Lain, and P. Banerjee, Compilation of scienti�c programs into multithreaded

and message driven computation, Proceedings of the Scalable High Performance Computing

Conference, Knoxvile Tennessee, May 23-25, pp 518{525, 1994.

24

[54] I. Foster, Carl Kesselman, Steve Tuecke, Portable Mechanisms for Multithreaded Distributed

Computations Argonne National Laboratory, MCS-P494-0195.

[55] Berger, J.B. and J. Oliger. Adaptive mesh re�nement for hyperbolic partial di�erential

equations, Journal of Computational Physics., 53: 484-512, 1984.

25

