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Abstract

In out-of-core computations, data needs to be moved back and forth between main memory

and disks during program execution. In this paper, we propose a technique called the Extended

Two-Phase Method, for accessing sections of out-of-core arrays e�ciently. This is an extension

and generalization of the Two-Phase Method for reading in-core arrays from �les, which was

previously proposed in [7, 3]. The Extended Two-Phase Method uses collective I/O in which all

processors cooperate to perform I/O in an e�cient manner by combining several I/O requests

into fewer larger requests, eliminating multiple disk accesses for the same data and reducing

contention for disks. We describe the algorithms for reading as well as writing array sections.

Performance results on the Intel Touchstone Delta for many di�erent access patterns are pre-

sented and analyzed. It is observed that the Extended Two-Phase Method gives consistently

good performance over a wide range of access patterns.
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1 Introduction

Although the CPU and communication speeds of parallel computers have improved tremendously

over the years, their I/O speeds have not shown similar improvement. It is still orders of magnitude

more expensive to do I/O than to do computation or communication. In order to have a balanced

system, it is essential that the I/O performance is comparable to the CPU and communication

performance. I/O has become particularly important in recent times because parallel computers

are increasingly being used for applications with very large data sets, such as scienti�c computations,

database applications, multimedia systems, information retrieval, visualization etc. In order to get

better I/O performance, improvements are needed in I/O hardware as well as in software support

for parallel I/O.

We de�ne an in-core program as one in which all the data required by the program can �t in

main memory at the same time. Even in the case of in-core programs, I/O may be needed to read

initial data from �les and to write the results back to �les at the end of the computation. Also,

there may be intermediate writes either for checkpointing purposes, i.e. to save the current status

of the computation so that it can be restarted later, or to monitor the progress of the solution using

visualization or other techniques. An out-of-core program is de�ned as one in which all the data

required by the program cannot �t in main memory at the same time, and hence needs to be stored

in �les on disks. During program execution, data needs to be moved back and forth between main

memory and disk. Hence I/O forms a critical part in out-of-core programs.

In out-of-core computations, each processor needs to fetch a section of the out-of-core array into

main memory, do the computation on that section, and store the results back to disk if necessary.

Depending on how the �le is stored on disks, this may require accessing data elements with stride.

At present, the interface provided by most parallel �le systems does not support accesses with

stride. Hence the data needs to be fetched using more than one read call. Since the I/O latency is

very high, this may prove to be very expensive. Also, there may be some common accesses among

processors. If each processor tries to read its own section independently, the I/O performance

may be very low because of lower granularity of accesses and multiple accesses for the same data.

Therefore, it is necessary to use a more e�cient technique for doing I/O in out-of-core computations.

In the case of in-core arrays, Bordawekar, del Rosario and Choudhary [7, 3] have proposed a

Two-Phase Method for reading an entire array from a �le in an e�cient manner, into a distributed

array in main memory. This method is found to give consistently good performance for all data

distributions. In this paper, we propose an Extended Two-Phase Method for accessing sections

of out-of-core arrays, which is a generalization of the Two-Phase Method for in-core arrays. This

Extended Two-Phase Method is used in the PASSION Runtime Library for Out-of-Core Compu-
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tations [14, 4] which we are developing.

The rest of this paper is organized as follows. Section 2 gives an overview of the PASSION

Runtime Library and the di�erent data access models it supports. It also discusses the I/O issues

involved in these models and motivates the need for the Extended Two-Phase Method. An overview

of the Two-Phase Method for in-core arrays is given in Section 3. The Extended Two-Phase

Method for out-of-core arrays is introduced in Section 4. Section 5 describes in detail the algorithm

for reading sections of out-of-core arrays using the Extended Two-Phase Method, together with

performance results on the Intel Touchstone Delta. The algorithm for writing sections of out-of-core

arrays is explained in Section 6. Section 7 describes how the Extended Two-Phase Method relates

to other work in this area, followed by Conclusions in Section 8.

2 PASSION Runtime Library for Out-of-Core Computations

Our group at Syracuse University is developing a software system called PASSION (Parallel And

Scalable Software for Input-Output) [4], which provides software support for high performance

parallel I/O. PASSION provides support at the language [2], compiler [13], runtime [14] as well as

�le system level [8, 12]. The PASSION Runtime Library provides routines to e�ciently perform the

I/O required in loosely synchronous [9] out-of-core programs which use a Single Program Multiple

Data (SPMD) model. It provides the user with a simple high-level interface, which is a level higher

than any of the existing parallel �le system interfaces or even the proposed MPI-IO interface [5].

For example, the user only needs to specify what section of the array needs to be read in terms of its

lower-bound, upper-bound and stride in each dimension, and the PASSION Runtime Library will

fetch it in an e�cient manner. A number of optimizations such as Data Sieving, Data Prefetching

and Data Reuse have been incorporated in the library for improved performance [14, 13]. The

library can either be used directly by application programmers, or a compiler could translate out-

of-core programs written in a high-level data-parallel language like HPF to node programs with

calls to the runtime library for I/O.

2.1 Data Storage and Access Models

The PASSION Runtime Library supports three basic models of storing and accessing out-of-core

arrays, called the Local Placement Model (LPM), the Global Placement Model (GPM) and the

Partitioned In-Core Model (PIM).
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2.1.1 Local Placement Model (LPM)

In this model, the global array is divided into local arrays belonging to each processor. Since

the local arrays are out-of-core, they have to be stored in �les on disk. The local array of each

processor is stored in a separate �le called the Local Array File (LAF) of that processor, as

shown in Figure 1(I). The node program explicitly reads from and writes to the �le when required.

The simplest way to view this model is to think of each processor as having another level of memory

which is much slower than main memory. At any time, only a portion of the local array is fetched

and stored in main memory. The size of this portion depends on the amount of memory available.

The portion of the local array which is in main memory is called the In-Core Local Array

(ICLA). All computations are performed on the data in the ICLA. Thus, during the course of the

program, parts of the LAF are fetched into the ICLA, the new values are computed and the ICLA

is stored back into appropriate locations in the LAF.

2.1.2 Global Placement Model (GPM)

In this model, the global array is stored in a single �le called the Global Array File (GAF),

as shown in Figure 1(II), and no local array �les are created. The global array is only logically

divided into local arrays in keeping with the SPMD programming model. The PASSION runtime

system fetches the appropriate portion of each processor's local array from the global array �le,

as requested by the processor. The advantage of the Global Placement Model is that it does not

require the initial local array �le creation phase of the Local Placement Model. The disadvantage

is that each processor's data may not be stored contiguously in the global array �le and some

optimizations, such as those suggested in this paper, are needed in order to do I/O e�ciently.

2.1.3 Partitioned In-Core Model (PIM)

The Partitioned In-Core Model, illustrated in Figure 1(III), is a variation of the Global Placement

Model. The array is stored in a single global array �le as in the Global Placement Model, but

there is a di�erence in the way data is accessed. In the Partitioned In-Core Model, the global array

is logically divided into a number of partitions, each of which can �t in the main memory of all

processors combined. Thus the computation on each partition is essentially an in-core problem and

does not require any I/O. Hence the name Partitioned In-Core Model. This model is useful when

the data access pattern in the program has good locality. Otherwise, creating in-core partitions

itself is di�cult.
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The Extended Two-Phase Method described in this paper is used for accessing data in both the

Global Placement Model and the Partitioned In-Core Model.

2.2 I/O in the Global Placement Model

In the Global Placement Model, the data required by any processor can be classi�ed into the

following types:-

1. A section of its local array which is stored in the global array �le.

2. A section of the local array belonging to another processor (i.e. \o�-processor data").

3. Locally computed values from other processors, which are stored in-core. For example, in

order to calculate the sum of all elements in the out-of-core array, each processor computes a

local sum followed by a global sum reduction. No I/O is required for this reduction operation.

In general, a processor may need to access any arbitrary portion of the global array, with or

without stride. The global arraymay be stored in the global array �le in either row-major or column-

major order. As a result, the data required by each processor may not be stored contiguously in

the �le. Also, the requests of some processors may overlap. In the extreme case, all processors may

want to access the same section of the array. Clearly, if each processor directly tries to read the

data it needs, it may result in a large number of low granularity requests and multiple requests for

the same data, causing contention for disks. Hence, a more improved method such as the Extended

Two-Phase Method proposed in this paper needs to be used.

2.3 I/O in the Partitioned In-Core Model

In the Partitioned In-Core Model, each processor needs to access a portion of a partition of the global

array. Depending on how the partitions are stored in the �le and how a partition is distributed

among processors, each processor may need to access non-contiguous data sets from the �le. This

results in the same kind of problems as in the Global Placement Model. Hence an improved method

needs to be used for accessing data in the Partitioned In-Core Model as well.

3 Two-Phase Method for In-Core Arrays

Bordawekar, del Rosario and Choudhary [7, 3] have proposed a Two-Phase Method for read-

ing/writing in-core arrays from/to disks. This method can be used to e�ciently read an entire

in-core array from a single �le into a distributed array in main memory, and conversely to e�-

ciently write an entire distributed in-core array, to a single �le.
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The basic principle behind this Two-Phase Method is as follows. In a distributed memory

computer with a parallel �le system, data is distributed among processors in some fashion and

stored in �les on disks in some fashion. It is a well known fact that I/O performance is better when

processors make a small number of high granularity requests, instead of a large number of low

granularity requests. When data is distributed among processors in such a way that it conforms to

the way it is distributed on disks, each processor can directly read its portion of the in-core array in

a single request. This is called the conforming distribution. If an array is stored in a �le in column-

major order, a column-block distribution among processors is the conforming distribution. In this

case, each processor can directly read its local array from the �le in a single operation. For any

other distribution, a processor's local array will be stored in a non-contiguous manner in the �le,

and if each processor directly tries to read its local array (called the Direct Method), it will result

in a large number of low-granularity requests. Hence, in the Direct Method, the I/O performance

is best for the conforming distribution, but it degrades drastically for any other distribution.

The Two-Phase Method [7, 3] proposes to read the entire in-core array into a distributed array

in main memory in two phases. In the �rst phase, the processors always read data assuming

the conforming distribution. In the second phase, data is redistributed [16] among processors,

using interprocessor communication, to whatever is the actual desired distribution. This two phase

approach is found to give consistently good performance for all distributions [7, 3]. The main

advantages of the Two-Phase Method are:-

� It results in high granularity data transfer between processors and disks.

� It makes use of the higher bandwidth of the processor interconnection network.

Figure 2 shows the performance improvement provided by the Two-Phase Method over the Di-

rect Method. The timings shown are for reading an array of size 10K � 10K on the Intel Touchstone

Delta using 64 processors, for di�erent distributions. Since the column-block distribution is the

conforming distribution, the Two-Phase and Direct Access Methods take the same time. For any

other distribution, the Two-Phase Method performs considerably better. Among the distributions

shown, the row-cyclic distribution results in the largest number of non-contiguous accesses. Hence

the Direct Method takes the longest time for this case. However, the Two-Phase Method takes

nearly the same time for all distributions. This is because the di�erence in time for the di�erent

distributions is only due to the di�erence in time for the redistribution phase, and the time required

for redistribution is orders of magnitude lower than that required for I/O.
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Figure 2: Performance of the Two Phase Method for In-Core Arrays

4 Extended Two-Phase Method for Out-of-Core Arrays

We have extended the basic Two-Phase Method for in-core arrays proposed by Bordawekar, del

Rosario and Choudhary [7, 3], to access arbitrary sections of out-of-core arrays. This method

performs I/O for out-of-core arrays e�ciently by combining several I/O requests into fewer larger

requests, eliminating multiple disk accesses for the same data and reducing contention for disks.

Consider the large out-of-core array shown in Figure 3 which is stored in a �le in column-major

order. Assume that there are four processors, each requesting a block of rows as shown. Because

of the column-major ordering, each processor's request lies in a non-contiguous fashion in the �le

and the requests of di�erent processors are interleaved. One way to perform the I/O in this case is

for each processor to directly fetch the data it needs, oblivious of the requests of other processors

(the Direct Method). The obvious disadvantage of this method is that there are too many small

I/O requests which are not properly ordered. The Extended Two-Phase Method does not have the

drawbacks of the Direct Method and hence provides better performance.

The Extended Two-Phase Method assumes a collective I/O interface, i.e. all processors must

call the Extended Two-Phase read/write routine. Each processor may request a di�erent amount

of data. Even if a processor does not need any data, it must still call the routine with a request

for 0 bytes, and participate in the two-phase process. This is a reasonable assumption given that

7



3’s request

2’s request

1’s request

0’s request

Figure 3: Accessing Global Array Sections

our intention is to support a loosely synchronous model of parallel computation [9]. An advantage

of using collective I/O is that since all processors are participating, they can cooperate to perform

certain optimizations. Another advantage is that if any processor needs to access some data which

was previously modi�ed by some other processor, it can be done using just a read call without any

additional synchronization. The idea of collective I/O has also been used in other schemes such as

in [1, 11, 10].

In the next section, we describe the Extended Two-Phase Method for reading sections of out-

of-core arrays. The method for writing sections is analogous and is discussed in Section 6.

5 Reading Sections of Out-of-Core Arrays

Let us assume that each processor needs to read some regular section of the global array given

by its lower-bound, upper-bound and stride in each dimension (l1 : u1 : s1; l2 : u2 : s2) in global

coordinates. For the purpose of explanation, let us assume that the array is stored in the �le in

column-major order.

The Extended Two-Phase Method for out-of-core arrays assigns ownership to portions of the �le

such that a processor can directly access only the portion of the �le it owns. The �le is e�ectively

divided into domains. The portion of the �le which a processor can directly access is called its File

Domain (FD). For arrays stored in column-major order, we assume that each processor owns a

block of columns of the array, as if the array were distributed in a column-block fashion among the

processors. Thus the File Domain of each processor is a block of columns of the array, which is

stored contiguously in the �le. Figure 4 shows the File Domain of each processor when there are four

processors. This concept of File Domains is analogous to the concept of conforming distribution in

the Two-Phase Method for in-core arrays. Given the size of the array and the number of processors,
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each processor can determine its own File Domain and also the File Domains of other processors.

In the �rst step of the Extended Two-Phase Method, all processors exchange their own access

information (the indices l1; u1; s1; l2; u2; s2) with all other processors, which requires a complete

exchange or all-to-all type communication [15, 17]. Thus each processor knows the access requests

of all other processors. This information is stored in a data structure called the File Access

Descriptor (FAD), shown in Figure 5. The FAD contains exactly the same information on all

processors.

Since each processor knows its own File Domain and the access requests of other processors, it

can determine what portion of the data in its File Domain is needed by other processors. This is

done by computing the intersection of the requests of other processors from the FAD and the indices

of its own File Domain. This information is stored in a data structure called the File Domain

Access Table (FDAT), which is shown in Figure 6. Thus the FDAT of a processor contains
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information about which sections of its File Domain have been requested by other processors. If

no data requested by a particular processor lies in this processor's File Domain, the corresponding

\norequest" �eld in the FDAT of this processor is set to {1. Clearly, the FDAT on di�erent

processors contains di�erent information.

Each processor now has to read data from its File Domain, as determined by the FDAT. A

simple way of reading would be to read all the data needed by processor 0, followed by that needed

by processor 1 and so on in order of processor number. But in many cases, this may result in

too many small requests which are not in sequence. For example, consider Figure 7 which shows

two di�erent access patterns. In Figure 7(A), each processor needs to access a block of rows, and

because of the column-major ordering, the requests of all processors are interleaved. In Figure 7(B),

each processor needs to access a block of sub-columns, so the requests of processors 0 and 1 are

interleaved and also the requests of processors 2 and 3.

In order that the read is done e�ciently, it is important that the FDAT is analyzed so that the

�le is accessed in sequence and contiguously, as far as possible. We have devised a very general

method of analyzing the information in the FDAT, which ensures that the �le is read contiguously

and in sequence. Each processor calculates the minimum of the lower-bounds and the maximum

of the upper-bounds of all sections in its FDAT. This e�ectively determines the smallest section

which contains all the data that needs to be read from the File Domain. It may also contain some

data which is not required by any processor. If the processor tries to read only the useful data, it

may result in a number of small strided accesses. In order to avoid this, it uses an optimization

known as Data Sieving which is described in [14]. The processor reads an entire column of the

section at a time in a single operation into a temporary bu�er. This may include some unwanted

data. The useful data is extracted from the temporary bu�er and placed in communication bu�ers
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depending on which processors need the data. For example, for the requests in Figure 7(A), each

column read contains data needed by all processors plus some unwanted data. For the requests in

Figure 7(B), each column read contains data needed by two processors and no unwanted data. The

entire section is read from the File Domain one column at a time using Data Sieving. This forms

the �rst phase of the Extended Two-Phase Method.

The second phase of the Extended Two-Phase Method consists of communicating the data read

in the �rst phase to the respective processors. The information in the FDAT is su�cient for each

processor to know what data has to be sent to which processor. Since each processor knows the File

Domains of all processors and its own access request, it can calculate how much data it needs to

receive from other processors, as well as the locations where the received data needs to be placed.

An observation from Figure 7(B) is that for this particular access pattern, processors 1 and 3

do not do any I/O. This is because of the fact that File Domains have been de�ned as column

blocks. None of the access requests of any processor lie in the File Domains of processors 1 and 3.

One way to reduce this imbalance of I/O between the processors is to modify the de�nition of File

Domains as follows. Instead of each processor owning one large block of columns, a smaller block of

columns could be assigned to each processor in a cyclic fashion (block-cyclic assignment). This is

analogous to the way �les are striped across disks in a parallel �le system. However, a preliminary

study to determine a good way of de�ning File Domains has shown that the simple column-block

distribution performs well in most cases. File Domains de�ned using a block-cyclic distribution of

columns result in extra complications in the calculation of the FDAT, and in determining the source

and destination processor and index sets during the communication phase, and do not improve the

11



1. Exchange access information with other processors and �ll in the File Access Descriptor (FAD).

2. Compute intersection of FAD and this processor's File Domain (FD), and �ll in the

File Domain Access Table (FDAT).

3. Calculate the minimum of the lower-bounds and the maximum of the upper-bounds

of all sections in the FDAT to determine the smallest section containing all the data

needed from the File Domain.

4. Read this section using Data Sieving.

5. Communicate the data to the requesting processors.

Figure 8: Extended Two-Phase Algorithm for Reading Sections of Out-of-Core Arrays

I/O performance in many cases.

If the array is stored in the �le in row-major order instead of column-major order, the only

di�erence would be that the File Domains would be de�ned in terms of row-blocks and Data

Sieving would be done one row at a time. The algorithm for reading sections of out-of-core arrays

using the Extended Two-Phase Method is given in Figure 8.

5.1 Advantages

The Extended Two-Phase Method provides a very general way of accessing arbitrary sections

of out-of-core arrays in an e�cient manner. The �rst phase performs I/O optimizations at the

cost of inter-processor communication in the second phase. Since communication cost is orders

of magnitude lower than I/O cost, the overhead of communication is negligible. This method

combines many small requests into single larger requests, thus providing larger granularity of data

transfer and lower latency time. Another advantage is that multiple accesses to the same data

in the �le are eliminated. For example, if all processors need to read exactly the same section of

the array, it will be read only once from the �le and then broadcast to other processors over the

interconnection network. Similarly, if the requests of two or more processors are overlapping, the

overlapping portion will only be read once from the �le.

5.2 Performance

We have tested the performance of the Extended Two-Phase Method versus the Direct Method

on the Intel Touchstone Delta for many di�erent access patterns. These access patterns can be
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classi�ed into three types:-

1. Common Sections: All processors need to read exactly the same section of the array.

2. Overlapping Sections: Parts of the section requested by a processor may overlap with parts

of the sections requested by other processors.

3. Distinct Sections: The section requested by each processor does not have any data in common

with the section requested by any other processor.

Table 1 compares the performance of the Extended Two-Phase Method and the Direct Method

for reading common sections. The array size is 4K � 4K and the number of processors is 16.

Figure 9 shows approximately where each of these sections is located in the array. We observe

that the Extended Two-Phase Method performs considerably better than the Direct Method in all

cases. This is primarily because, in the Extended Two-Phase Method, the common section is read

only once and then broadcast to other processors, whereas in the Direct Method, all processors

simultaneously try to access the same portion of the �le resulting in extra I/O and contention for

disks. For a 4K � 4K array with 16 processors, each processor's File Domain is of size 4K � 256.

Thus, section I in Table 1 lies entirely in processor 0's File Domain. Section II is of the same

size as Section I, but it lies partly in the File Domains of processors 0 and 1. Since the I/O is

distributed among 2 processors, we observe that the Extended Two-Phase Method takes less time

to read section II than section I. Section III is larger than sections I and II and lies in the File

Domains of processors 1, 2 and 3. Section IV has a small number of rows but a large number of

columns. The Extended Two-Phase Method performs particularly well for this case, because the

I/O is distributed among many processors. Section V is an extreme case of this, as it contains

only 16 rows but all 4096 columns. The Extended Two-Phase Method provides very signi�cant

improvement over the Direct Method in this case. Section VI is the transpose of V and actually

resides contiguously in the �le. Hence it can be read in a single operation. Even in this case, the

Extended Two-Phase Method gives better performance, because the section is read only once.

Table 2 compares the performance of the Extended Two-Phase Method and the Direct Method

for reading overlapping sections. Figure 10 shows approximately where these sections are located

in the array. In order to represent these overlapping sections for all processors concisely, we use

the following notation. Each processor's request is denoted by (l1 + ov1 � p : u1 + ov1 � p :

s1; l2+ov2�p : u2+ov2�p : s2), where p is the processor number and ov1, ov2 are some constants.

The amount of overlap can be changed by varying ov1 and ov2. For example, the notation (1:100:1,

1+10p:100+10p:1) in row I of Table 2 represents a group of overlapping sections with processor 0

requesting section (1:100:1, 1:100:1), processor 1 requesting section (1:100:1, 11:110:1), processor

2 requesting section (1:100:1, 21:120:1) and so on. The sections in rows I | IV overlap along
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Table 1: Time for Reading Common Sections

4K � 4K array, 16 processors

No. Array Section Time (sec.)

Direct Read Extended Two-Phase

I (1:100:1, 1:100:1) 3.842 1.027

II (200:300:1, 200:300:1) 4.145 0.883

III (400:800:1, 400:800:1) 32.57 3.692

IV (32:64:1, 128:1024:1) 29.09 2.780

V (1:16:1, 1:4096:1) 118.2 3.241

VI (1:4096:1, 1:16:1) 3.251 2.024

(III)(I) (II)

(IV) (V) (VI)

Figure 9: The Common Sections listed in Table 1 (not to scale)
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Table 2: Time for Reading Overlapping Sections

4K � 4K array, 16 processors

No. Array Section Time (sec.)

(p = processor number) Direct Read Extended Two-Phase

I (1:100:1, 1+10p:100+10p:1) 1.522 1.830

II (1:100:1, 1+50p:100+50p:1) 1.163 1.859

III (400:800:1, 400+100p:800+100p:1) 16.51 3.348

IV (1:4096:1, 1+8p:16+8p:1) 3.951 3.374

V (1+50p:100+50p:1, 1:100:1) 3.763 1.994

VI (400+100p:800+100p:1, 400:800:1) 21.79 11.84

VII (1+8p:16+8p:1, 1:4096:1) 111.6 2.992

VIII (200+100p:400+100p:1, 200+100p:400+100p:1) 3.184 2.986

overlap

(I) (II) (III) (IV)

(VI)(V) (VII) (VIII)

overlap

overlap
overlap

overlap

overlap

overlap

overlap

Figure 10: The Overlapping Sections listed in Table 2 (not to scale)
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Table 3: Time for Reading Distinct Sections

4K � 4K array, 16 processors

No. Array Section Time (sec.)

(p = processor number) Direct Read Extended Two-Phase

I (1:100:1, 1+100p:100+100p:1) 1.747 1.954

II (1+100p:100+100p:1, 1:100:1) 2.676 2.182

III (200+200p:400+200p:1, 1:512:1) 9.246 5.680

IV (1+32p:16+32p:1, 1:4096:1) 112.2 4.823

V (200+200p:400+200p:1, 1+200p:512+200p:1) 10.52 4.524

VI (1+32p:32+32p:1, 1+100p:1024+100p:1) 12.95 2.991

(III)(I) (II)

(IV) (V) (VI)

Figure 11: The Distinct Sections listed in Table 3 (not to scale)

16



columns, the sections in rows V | VII overlap along rows and the sections in row VIII overlap in

both dimensions.

The sections in rows I and II are of the same size, but they di�er in the amount of overlap.

The sections in row I have more overlap than those in row II. For these two cases, we �nd that the

Direct Method itself performs well because the sections are small, there are few columns and only

parts of the sections overlap. The performance of the Direct Method is better for the sections in

row II because there is less overlap among sections. The extra processing involved in the Extended

Two-Phase Method is not actually required for these two cases, hence it takes more time than the

Direct Method.

The sections in row III are much larger than in rows I and II, and we �nd that the Extended

Two-Phase Method performs better. The sections in row IV contain all 4096 rows and only 16

columns and they lie contiguously in the �le. Hence the Extended Two-Phase Method performs

only slightly better than the Direct Method. The sections in rows V | VII are overlapped along

rows, so they lie interleaved in the �le. For these cases, the Extended Two-Phase Method performs

considerably better because it reorders I/O requests so that data is read contiguously. Finally, in

row VIII, the sections have overlap in both dimensions and the Extended Two-Phase Method again

performs better.

Table 3 compares the performance of the Extended Two-Phase Method and the Direct Method

for reading distinct sections. Figure 11 shows approximately where these sections are located in the

array. We use the same notation as above, (l1+ov1�p : u1+ov1�p : s1; l2+ov2�p : u2+ov2�p : s2),

for representing distinct sections. The overlap factors ov1 and ov2 need to be large enough to ensure

that the sections are distinct.

The sections in row I are located along rows and so the requests of di�erent processors lie in

separate locations in the �le. Also, they are small and have few columns. For this case, the Direct

Method itself performs well. The sections in rows II | IV are located along columns and so the

requests of di�erent processors lie interleaved in the �le. Hence the Extended Two-Phase Method

performs considerably better. The performance improvement is signi�cant for the sections in row

IV which contain all 4096 columns but only 16 rows. The sections in rows V and VI lie partly

interleaved in the �le. Even for these cases, the Extended Two-Phase Method performs the best.

6 Writing Sections of Out-of-Core Arrays

The Extended Two-Phase Method can also be used for writing sections of out-of-core arrays. The

algorithm for this is essentially the reverse of the algorithm for reading sections. The write routine

also assumes a collective I/O interface. All processors exchange access information and �ll up the

File Access Descriptor (FAD). Since each processor knows its own File Domain as well as the File
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Domains of other processors, it can determine what portion of the section it needs to write lies in

the File Domains of other processors. Each processor also computes its own File Domain Access

Table (FDAT), which indicates how much data it needs to receive from other processors. The �rst

phase of the Extended Two-Phase Method is to perform communication, so that all processors

receive all the data that needs to be written to their File Domain.

The second phase is to write the data to the �le in sequence and contiguously as far as possible.

The FDAT is analyzed in the same way as in the read algorithm. Each processor determines the

minimum and maximum of all indices in its FDAT. This e�ectively determines the smallest section

which contains all the data that needs to be written to the File Domain. It may also contain some

data which is not being written by any processor. The processor writes the useful data in this

section one column at a time using Data Sieving [14]. However, for writing using Data Sieving,

we cannot directly use the reverse of the method used for reading in Section 5. If the useful data

is placed at appropriate locations (possibly with stride) in a temporary bu�er and the temporary

bu�er is written to the �le, the contents of the bu�er between the useful data elements will overwrite

the data in the �le. In order to maintain data consistency, it is necessary to �rst read the entire

column from the �le into the temporary bu�er. Then, the data elements to be written in that

column can be stored at appropriate locations in the bu�er and the entire column can be written

back to disk. Thus, writing sections requires twice the amount of I/O compared to reading sections,

because to write each column, the corresponding column has to �rst be read into memory. It may

be possible to avoid this extra reading in cases where the entire column contains useful data to be

written. However, detecting this fact requires each processor to do a more extensive analysis of

the FDAT, to make sure that there are no \holes" between the data sets being written by di�erent

processors.

6.1 Performance

We only consider the case where each processor writes a distinct section to the �le, because it

is unlikely that processors will want to write overlapping or common sections. Table 4 compares

the performance of the Extended Two-Phase Method and the Direct Method for writing distinct

sections. The sections chosen are the same as those for reading in Table 3, and are shown in

Figure 11.

We use the most general algorithm for writing in the Extended Two-Phase Method, which

requires an extra read for each write. Hence for the sections in row I, the Direct Method performs

better because it does not require the extra read and also these sections are small with few columns.

The sections in rows II { IV lie interleaved in the �le, so the Extended Two-Phase Method performs

much better than the Direct Method. The sections in rows V and VI lie partly interleaved in the

�le and even for these cases, the Extended Two-Phase Method performs considerably better.
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Table 4: Time for Writing Distinct Sections

4K � 4K array, 16 processors

No. Array Section Time (sec.)

Direct Write Extended Two-Phase

I (1:100:1, 1+100p:100+100p:1) 1.839 3.250

II (1+100p:100+100p:1, 1:100:1) 2.678 2.501

III (200+200p:400+200p:1, 1:512:1) 11.64 8.715

IV (1+32p:16+32p:1, 1:4096:1) 98.96 10.25

V (200+200p:400+200p:1, 1+200p:512+200p:1) 11.33 6.461

VI (1+32p:32+32p:1, 1+100p:1024+100p:1) 13.75 4.994

7 Related Work

The Jovian library [1] also provides support for accessing sections of out-of-core arrays. This library

uses separate processes called coalescing processes to perform I/O optimizations. All application

processes send I/O requests to predetermined coalescing processes. Each coalescing process is

responsible for accessing a particular logical I/O device. The coalescing processes communicate with

each other to exchange access information, so that each coalescing process knows what requests are

directed at its logical I/O device. The coalescing processes perform the necessary I/O and forward

data directly to the original requesting application processes. The Extended Two-Phase Method

proposed in this paper provides similar functionality using only a single routine for reading sections

and a single routine for writing sections, which can be implemented very easily. It does not incur

the overhead of managing many processes and the associated context switching.

Disk-directed I/O [11] is another technique which uses collective I/O. In disk-directed I/O,

compute processors collectively send a single request to all I/O processors, which then perform I/O

e�ciently, and send the data to the compute processors. In other words, it is the I/O processors

that decide the best way of performing I/O, and not the compute processors. Disk directed I/O

needs to be implemented at the operating system or �le system level which requires considerable

e�ort and the implementation is not portable. There is no working implementation of disk-directed

I/O on any parallel machine at present. On the other hand, we have implemented the Extended

Two-Phase Method on the Intel Touchstone Delta and Paragon, and we plan to port it to the

IBM SP-1/SP-2 using the Vesta/PIOFS �le system [6]. It can also be implemented on top of any

new portable standard interfaces such as the proposed MPI-IO interface [5], resulting in portable

implementations.
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8 Conclusions

We have proposed a technique, called the Extended Two-Phase Method, for accessing sections of

out-of-core arrays in an e�cient manner. This method performs I/O e�ciently by combining several

I/O requests into fewer larger requests, eliminating multiple disk accesses for the same data and

reducing contention for disks. We have tested the performance of this method for a wide range of

access patterns. Except for a few simple cases where the Direct Method is itself good enough, the

Extended Two-Phase Method is found to provide considerable performance improvement over the

Direct Method for both reading and writing data. Another advantage of the Extended Two-Phase

Method is that it is simple and can be easily implemented.
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