
VIP-FS: A VIrtual, Parallel File System

for High Performance Parallel and Distributed Computing
�

Michael Harry , Juan Miguel del Rosario , and Alok Choudhary y

Northeast Parallel Architectures Center

111 College Place, Rm 3-228

Syracuse University, Syracuse NY 13244

mharry, mrosario, choudhar @npac.syr.edu

Abstract

In the past couple of years, signi�cant progress has
been made in the development of message-passing li-
braries for parallel and distributed computing, and in
the area of high-speed networking. These advances in
computing technology have also led to a tremendous
increase in the amount of data being manipulated and
produced by scienti�c and commercial application pro-
grams. Despite their popularity, message-passing li-
braries only provide part of the support necessary for
most high performance distributed computing applica-
tions { support for high speed parallel I/O is still lack-
ing.

In this paper, we provide an overview of the con-
ceptual design of a parallel and distributed I/O �le
system, the Virtual Parallel File System (VIP-FS),
and describe its implementation. VIP-FS makes use
of message-passing libraries to provide a parallel and
distributed �le system which can execute over multi-
processor machines or heterogeneous network environ-
ments.

1 Introduction
In the past couple of years, signi�cant progress has

been made in the development of message-passing li-
braries for parallel and distributed computing [15]
[13] [2]. These libraries allow users to produce highly
portable application code by providing a consistent
communication interface over a wide variety of exist-
ing parallel machines and networks of workstations.

�This work was supported in part by NSF Young Investigator

Award CCR-9357840, grants from Intel SSD and IBM Corp., in

part by ASRA CESDIS Contract #5555-26 and also in part

by an ARPA Assert Fellowship under contract #DABT63-91-

C-0028. The content of the information does not necessarily

reect the position or the policy of the US Government and no

o�cial endorsement should be inferred.
yThe authors are also with the Dept. of Electrical and Com-

puter Engineering, Syracuse University

Through collective user experience, a group of primi-
tives which form a set of basic, required communica-
tion functionalities has emerged and is currently sup-
ported in one form or another by almost all existing
message-passing libraries.

Another signi�cant event that has occurred along-
side the re�nement of message-passing libraries has
been the recent development of more e�ective high-
speed networking. Networking technologies such as
FDDI, DQDB, and ATM have allowed communication
rates to increase to the 100Mbps to 1Gbps and over
range [1] [9] [10].

Both message-passing libraries and high-speed net-
works have evolved to the point where programmers
and scientists are now becoming encouraged to port
many of their applications previously executed exclu-
sively on parallel machines into distributed programs
for execution on more readily available networks of
workstations.

A data storage and retrieval infrastructure needs to
be constructed which will satify data access rates and
capacities required by I/O intensive programs. Only
recently has any attempt been made at providing I/O
extensions to message-passing libraries [12] [14]. Al-
though these works recognized the de�ciency in mes-
sage passing libraries, they only constitute partial so-
lutions.

In order to deal with this issue in a general way,
two problems need to be addressed: �rst, the prob-
lem of designing a parallel I/O system with a coherent
distributed, concurrent I/O functionality that can be
incorporated as an extension to any message-passing
library; second, the problem of de�ning a consistent
high performance parallel I/O interface to these li-
braries. In this paper, we propose a solution to these
problems. We provide an outline of the conceptual
design of a parallel and distributed I/O runtime sys-
tem, the Virtual Parallel File System (VIP-FS), and
describe its implementation. For a more detailed dis-
cussion of the system, see [11].



Figure 1: VIP-FS Functional Organization

In the next section, we discuss the conceptual de-
sign and implementation of VIP-FS. In section 3, we
describe the communication mechanisms used in VIP-
FS. In section 4 we present some preliminary perfo-
mance results. We conclude in section 5 with brief
discussion of future work.

2 Design and Implementation
A key objective in designing VIP-FS is portability.

If the �le system is to be an extension to message pass-
ing libraries, it must be portable across di�erent li-
braries; as such, the design must employ only features
which are common to most, if not all, message pass-
ing libraries. Also, it must be capable of co-existing
with other (Unix based) data managment or network
�le systems that may be employed. Further, it must
be capable of operating in heterogeneous distributed
system environments.

2.1 Conceptual Overview
VIP-FS has three functional layers: the Interface

layer, the virtual parallel �le (VPF) layer, and the
I/O device driver (IDD) layer. Figure 1 illustrates
the logical con�guration of VIP-FS.

The Interface layer provides a variety of �le access
abstractions to the application program. For example,
it may be a simple interface composed of standard
Unix open, close, read, write functions. Or, the �le
system may accept information describing the map-
ping of a parallel �le to a partitioned data domain,
and transparently arbitrate access according to this
mapping.

The VPF layer de�nes and maintains a uni�ed
global view of all �le system components. It provides
the Interface layer with a single �le image, allowing
each parallel �le to be viewed as a single large �le orga-
nized as a sequential stream of bytes. It achieves this
by organizing and coordinating access to the IDD's
�les in such a way that a global, parallel �le is con-
structed whose component stripes are composed of the
independent IDD �les. Any speci�cation of a �le o�-
set by the Interface layer is resolved by the VPF into
an IDD address, �le ID, and IDD �le o�set.

As shown, the IDD layer is built upon and commu-
nicates with the local host's �le system. It manages
each �le as an independent non-parallel �le and pro-
vides a stateless abstraction to the VPF layer above.
Thus, the IDD layer acts as the mediator between the
local host �le system and the VPF layer. Commu-
nication between layers within and across hosts is ac-
complished through the use of message-passing library
primitives.

2.2 Implementation
In the following section we discuss the implementa-

tion of VIP-FS. The discussion proceeds in a bottom-
up manner, from the IDD layer to the Interface layer.
We begin with a brief description of the initialization
and con�guration process.

2.2.1 IDD Layer

As its primary function, the IDD layer is responsible
for communicating with the local �le system and pro-
viding a stateless interface to the VIP-FS layer. The
IDD layer is implemented in VIP-FS as a set of Unix
processes.

The IDD supports a non-parallel (i.e., Unix stream)
view of �les. It does not have knowledge of the logical
parallel �le or of mapping functions; that is, it carries
no knowledge of how data is distributed among the
disk set or among the processors. All communication
with the IDD will take place through a communica-
tions daemon. Requests will identify the requesting
taskid, the desired operation (i.e.,Read, Write, Open,
Close), the number of bytes involved, and the data if
necessary (i.e., for Read reqeusts).

IDD processes receive �le access requests from the
VPF layer in the form of messages sent through the
message-passing library being used. Requests can be
made for any of the standard Unix �le access opera-
tions such as open, close, read, write, etc. The IDD
process performs the requested operation and sends
an appropriate response back to the VPF layer. The
IDD process has no notion of any global �le space.
The IDD �le descriptor for each �le is returned to the
requesting VPF layer during the open call request; it
is an index into an array of �le descriptors returned
when the IDD process makes an open call to the local
�le system.

2.2.2 VPF Layer

The VPF layer provides distributed applications with
a single �le image for every parallel �le that is opened.
It's key function is to enforce the mapping of the dis-
tributed application's (distributed) data domain to
the parallel �le. It maintains the data structures nec-
essary to support the view of logical parallel �le struc-
tures. It manages pointers to each of the Unix �les
that comprise every parallel �le. Requests to the �le



system (in the parallel �le view) will be translated into
requests to the IDD layer which are the custodians of
the Unix �les comprising the parallel �le. Response
data returned by the IDD layer will be recomposed
into the necessary structure to satisfy the parallel view
prior to sending it to the interface layer above. The
aforementioned information is stored in the VPF layer
�le descriptor table.

2.2.3 Application Interface Layer

The application interface provided to a parallel �le
system is a very important consideration. Most par-
allel �le systems only provide Unix-like access to the
�le system [4] [8]. This allows for exibility but
can become cumbersome to use. For example, when
a distributed array is being used by the application,
the burden for maintaining a mapping from the ar-
ray to the parallel �le (not always trivial) is placed
squarely on the programmer. This may easily result
in code which sacri�ces better performance for ease of
programming.

The function of the interface layer is to provide a
logical, structural view of the parallel �le to the over-
laying application. It will permit the application to
engage in I/O by working with the data structure that
it is using, rather than by the �le abstraction if it so
wishes. The interface layer itself uses a parallel �le
abstraction; it is responsible for translating each lo-
cal I/O request by the application into a request to
the parallel �le in the �le abstraction (i.e., as an o�set
and number of bytes a certain parallel �le), and for
converting or reorganizing data from the Parallel Vir-
tual File Server (VIP-FS) back into the application's
desired logical structure.

The interface layer of VIP-FS currently supports
two types of parallel �le access by the application:
conventional Unix-like access where, by default, all
nodes have equal access to the entire parallel �le, and
mapped access. Future implementations will include
array access. We describe each of these below.

Unix Interface

VIP-FS provides access to parallel �les in the con-
ventional Unix manner using open(), close(), read(),
write(), lseek(), etc. calls. When using this interface,
each host executing the application will have access to
the entire parallel �le. It is the responsibility of the
programmer to arbitrate and schedule host access to
the parallel �les to ensure the desired results are ob-
tained. As with Unix, �rst-come-�rst-served seman-
tics apply.

Mapped Access

In many distributed and parallel applications, par-
allelism is obtained by using data decomposition.
Data is partitioned, usually equally, among the host
computers and operated on concurrently. When data

is partitioned for this purpose, some mapping is often
involved. The mapping associates the global position
of each data element with a host and a local address
on that host, and vice versa. The complexity involved
in doing this is often manageable, and libraries have
been developed to assist programmers in performing
such decompositions.

The way in which a parallel �le is distributed among
disks can likewise be viewed in terms of a data decom-
position mapping. This map is maintained by VIP-FS
to allow transparent access to parallel �les.

The situation becomes much more complex when
a distributed application wishes to perform I/O op-
erations in a distributed manner. In this case, the
host location and local address of each distributed el-
ement has to be mapped to disk location, �le, and an
o�set within the local �le. This map will change for
every data decomposition, number of computational
hosts, and number of disks employed by the appli-
cation. Maintaining this mapping in a general way
for every application becomes a tremendous burden
for the programmer. Futher, any application which
is written to perform optimally for a given con�gura-
tion would require major revisions whenever execution
under a di�erent data decomposition or system con-
�guration is required.

The mapping function from the data element (on a
client) to the I/O device element (disk o�set) is bro-
ken down into two di�erent mapping functions, and
the composition de�nes the overall mapping. To use
mapped access, the programmer is required to de�ne
the data decomposition mapping, and the parallel �le
mapping to disk. (Alternatively, the programmer can
simply employ the parallel �le default mapping). The
decomposition mapping information in communicated
to the �le system via a procedure call.

Once the desired mappings have been declared, I/O
access can be performed by each host using the stan-
dard Unix calls. VIP-FS will maintain the mappings
in complete transparency.

Array References

The dataparallel programming model has emerged
as the most popular programming model for parallel
and distributed applications. As a result, many lan-
guages have been designed to support such a program-
ming model. Within the scienti�c computing com-
munity, languages such as High Performance Fortran
(HPF) [5] [16] [3] [6] have been developed to fa-
cilitate the migration of massive quantities of legacy
Fortran applications to parallel and distributed envi-
ronments.

A dataparallel interface to the parallel I/O system
would greatly enhance the power of dataparallel lan-
guages. In such a system, data could be viewed en-
tirely as a data structure, commonly an array of some
sort. Performing parallel I/O operations on the array



data would require merely reading or writing the de-
sired section of the array. Each client will issue the
same I/O instruction. By making use of the data de-
composition information (previously declared), the �le
system will transparently deliver only the appropriate
portion to the associated client.

2.3 Design Tradeo�s
All three functional layers of VIP-FS could be com-

bined, along with the application, into a single exe-
cuting process. The advantage of such an organiza-
tion would be that interlayer communication would
involve the use of intraprocess communication mecha-
nisms (e.g., procedure calls) resulting in a reduction of
overhead versus the interprocess communication oth-
erwise necessary. This cost savings could be signi�-
cant depending upon the message passing library used.
Further, it would simplifymessage handling within the
entire distributed system. On the other hand, such a
design would have one serious limitation. All I/O re-
quests on a given host would have to be controlled
and directed by the VIP-FS process (now also the ap-
plication process) on that host. This renders all I/O
requests to be blocking calls, serializing them at the
host.

By separating the IDD layer as a distinct process
from the rest of the layers, any communication to the
IDD layer can be done asynchronously. Requests for
I/O on a given host will be controlled by the IDD pro-
cess on that host. Furthermore, all I/O requests can
be made non-blocking allowing the system to overlap
communication with I/O which, in lower-bandwidth
networks, results in great performance bene�ts.

3 Communication in VIP-FS
In this section, we describe the communication

strategies used during data access in VIP-FS. Three
strategies for data access have been incorporated into
VIP-FS: direct access, two-phase access, and assumed
requests. This will facilitate research in data access
and availability schemes { one of the primary objec-
tives of the project.

3.1 Direct Access
The direct access strategy is the traditional access

method used for parallel and distributed �le systems.
In this scheme, every I/O request is translated into
requests to the appropriate I/O device.

Each distributed application is composed of one or
more clients. The �le system services each client in-
dependently of the others. There is no globally orga-
nized access strategy as with the remaining two meth-
ods. This scheme is used when each client obeys a
self-scheduled access pattern.

3.2 Two-Phase Access
When all clients in the distributed application per-

form I/O access with some global pattern, then it is
useful to employ a more e�cient access strategy. The

two-phase access strategy has been shown to provide
more consistent performance across a wider variety
of data distributions than direct access methods [7].
With two-phase access, all clients access data approx-
imately simultaneously. The �le system schedules ac-
cess so that data sotrage or retrieval from the I/O
devices follow a near optimal pattern with a reduc-
tion in the total number of requests for the entire I/O
operation. In a second stage, the data is bu�ered and
redistributed to conform with the data decomposition
used by the application (the target decomposition).

3.3 Assumed-Requests
The two-phase access strategy gains its e�ectiveness

by relying upon the existence (assumed) of a higher de-
gree, less congested interconnection networks between
clients versus the network used to access data to and
from the storage system; this is often the case in paral-
lel machines. However, in distributed systems, shared
media networks are commonly employed, and the ba-
sis for two-phase strategy's improved performance is
lost. We have designed an alternative approach which
may signi�cantly improve read performance by greatly
reducing the number of requests seen by each I/O de-
vice; we call this the assumed-requests technique.

With assumed-requests, data decomposition infor-
mation is distributed to the IDD processes as part of
the �le description information. Clients are assured
to make requests in a collective manner as in two-
phase access. That is, we assume a Single-Program-
Multiple-Data (SPMD) of computation. A one-to-one
or many-to-one mapping is established from the set
of I/O devices to a subset of clients (the latter case
occurs when the number of I/O devices exceeds the
number of clients). We say that the members of the
subset are assigned to the I/O devices.

When a read operation is performed by the appli-
cation program, only the assigned clients have their
requests actually delivered to I/O devices. Thus, each
I/O device only receives a single request each. From
the request the I/O device receives, along with data
decomposition information, each I/O device computes
the amount of data required by all clients (assigned or
not). It then satis�es the portion of requests which
involve locally stored data by delivering this data di-
rectly to the appropriate client.

By reducing the number of I/O requests that ac-
tually traverse the network to a minimum, assumed-
requests can provide great improvements in read per-
formance.

4 Performance Results
In this section we present our initial results for VIP-

FS. These results cover only a small set of con�gura-
tions and apply only to a single transmission medium
{ Ethernet. We are primarily concerned with gaining
some indication of the feasibility of this approach for
building a parallel virtual �le system.



Figure 4: VIP-FS Read Performance: RowBlock to
RowBlock



libraries. We have briey described a number of
message-passing mechanisms that may improve per-
formance on heterogeneous systems. We have pro-
vided our initial results which indicate that there
is much promise in using approach to construct a
portable, scalable, parallel virtual �le system.

In order to further improve the performance of our
system, we have a number of future research plans
which we are optimistic will lead to ideas for design
improvement which we can then incorporate into VIP-
FS. For instance, the e�ects of incorporating caches at
the I/O devices or the clients will be studied. Further
studies on access (communication)methods in relation
to various transmission media and architectures will
also be carried out. At the interface level, an MPI
compatible interface is currently being designed, and
an HPF interface is being planned in conjunction with
the PASSION project at Syracuse University.

References
[1] A. Danthine and O. Spaniol. High Performance

Networking, IV. In International Federation for
Information Processing, 1992.

[2] A. Geist and A. Beguelin and J. Dongarra and W.
Jiang and R. Manchek and V. Sunderam. PVM
3 User's Guide and Reference Manual. Technical
Report ORNL/TM-12187, Oak Ridge National
Laboratory, May 1994.

[3] S. Benkner, B. Chapman, and H. Zima. Vienna
fortran 90. Scalable High Performance Comput-
ing Conference, April 1992.

[4] Thomas H. Cormen and David Kotz. Integrating
Theory and Practice in Parallel File Systems. In
The Proceedings of the 1993 DAGS/PC Sympo-
sium, Hanover, NH, pages 64{74, June 1993.

[5] CRPC technical report, Rice University. High
Performance Fortran Language Speci�cation,
version 0.3, 1992.

[6] D. M. Pase. MPP Fortran Programming
Model,Draft 1.0. Technical Report Technical Re-
port, Cray Research, October 1991.

[7] Juan Miguel del Rosario, Rajesh Bordawekar,
and Alok Choudhary. Improved parallel I/O via
a two-phase run-time access strategy. In The
1993 IPPS Workshop on Input/Output in Par-
allel Computer Systems, pages 56{70, 1993.

[8] Juan Miguel del Rosario and Alok Choudhary.
High Performance I/O for Parallel Computers:
Problems and Prospects. IEEE Computer, March
1994.

[9] F.E. Ross. An Overview of FDDI: The Fiber
Distributed Data Interface. IEEE Journal on
Selected Areas in Communications, pages 1043{
1051, Sept. 1989.

[10] H.T. Kung. Gigabit Local Area Networks: A sys-
tems perspective. IEEE Communications Maga-
zine, April 1992.

[11] J. M. del Rosario and M. Harry and A. Choud-
hary. The Design of VIP-FS: A Virtual, Par-
allel File System for High Performance Parallel
and Distributed Computing. Technical Report
SCCS-628, Northeast Parallel Architectures Cen-
ter (NPAC), May 1994.

[12] M. Henderson and B. Nickless and R. Stevens. A
Scalable High-Performance I/O System. In Scal-
able High-Performance Computing Conference,
May 1994.

[13] Ralph Butler and Ewing Lusk. User's Guide to
the P4 Programming System. Technical Report
ANL-92/17, Argonne National Laboratory, Oc-
tober 1992.

[14] S.A. Moyer and V.S. Sunderam. PIOUS: A Scal-
able Parallel I/O System for Distributed Comput-
ing Environments. In Scalable High-Performance
Computing Conference, May 1994.

[15] University of Tennessee. MPI: A Message-
Passing Interface Standard, May 1994.

[16] Zeki Bozkus and Alok Choudhary and Geo�rey
Fox and Tomasz Haupt and Sanjay Ranka. Com-
piling Distribution Directives in a Fortran 90D
Compiler. Technical Report SCCS-388, NPAC,
Syracuse University, July 1992.


